中考数学复习第三部分统计与概率第三十一课时统计基础知识练习

合集下载

最新初三数学统计与概率知识点及例题

最新初三数学统计与概率知识点及例题

为⼤家整理的最新初三数学统计与概率知识点及例题的⽂章,供⼤家学习参考!更多最新信息请点击
【易错分析】
易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数.
易错点2:在从统计图获取信息时,⼀定要先判断统计图的准确性.不规则的统计图往往使⼈产⽣错觉,得到不准确的信息.
易错点3:对全⾯调查与抽样调查的概念及它们的适⽤范围不清楚,造成错误.
易错点4:极差、⽅差的概念理解不清晰,从⽽不能正确求出⼀组数据的极差、⽅差.
易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率.
【好题闯关】
好题1.在⼀次数学竞赛中,10名学⽣的成绩如下: 75 80 80 70 85 95 70 65 70 80.则这次竞赛成绩的众数是多少?
解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的意义可知,⼀组数据中出现次数最多的数据是这组数据的众数.⽽在数据中70也出现了三次,所以这组数据是众数有两个.
答案:这组数据的众数是70和80.。

2024年中考数学训练《统计与概率》

2024年中考数学训练《统计与概率》

2024中考专题训练——统计与概率知识点梳理考点一、平均数1.平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++= 叫做这n 个数的平均数,x 读作“x 拔”。

(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x =11+22+ k k,这样求得的平均数x 叫做加权平均数,其中f 1,f 2, ,f k 叫做权。

2.平均数的计算方法(1)定义法当所给数据x 1,x 2, ,x n ,比较分散时,一般选用定义公式:1(x 1x 2x n )nx +++= (2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。

(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。

其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。

)'''(1'21n x x x x =n++ +是新数据的平均数(通常把x 1,x 2, ,x n ,叫做原数据,x '1,x '2, ,x 'n ,叫做新数据)。

考点二、统计学中的几个基本概念1.总体所有考察对象的全体叫做总体。

2.个体总体中每一个考察对象叫做个体。

3.样本从总体中所抽取的一部分个体叫做总体的一个样本。

4.样本容量样本中个体的数目叫做样本容量。

5.样本平均数样本中所有个体的平均数叫做样本平均数。

6.总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。

初中数学《统计与概率》讲义及练习

初中数学《统计与概率》讲义及练习

1. 能准确判断事件发生的等可能性以及游戏规则的公平性问题.2. 运用排列组合知识和枚举等计数方法求解概率问题.3. 理解和运用概率性质进行概率的运算知识点说明在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的一半左右.这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率.这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值.在统计里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体。

从总体中所抽取的一部分个体叫做总体的一个样本。

样本中个体的数目叫做样本的容量。

总体中所有个体的平均数叫做总体平均数,把样本中所有个体的平均数叫做样本平均数。

概率的古典定义:如果一个试验满足两条: ⑴试验只有有限个基本结果:⑵试验的每个基本结果出现的可能性是一样的. 这样的试验,称为古典试验.对于古典试验中的事件A ,它的概率定义为:()mP A n=,n 表示该试验中所有可能出现的基本结果的总数目,m 表示事件A 包含的试验基本结果数.小学奥数中,所涉及的问题都属于古典概率.其中的m 和n 需要我们用枚举、加乘原理、排列组合等方法求出.相互独立事件:()()()P A B P A P B ⋅=⋅ 事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件. 公式含义:如果事件A 和B 为独立事件,那么A 和B 都发生的概率等于事件A 发生的概率与事件B 发生的概率之积.举例:⑴明天是否晴天与明天晚餐是否有煎鸡蛋相互没有影响,因此两个事件为相互独立事件.所以明天天晴,并且晚餐有煎鸡蛋的概率等于明天天晴的概率乘以明天晚餐有煎鸡蛋的概率.⑵第一次抛硬币掉下来是正面向上与第二次抛硬币是正面向上是两个相互独立事件.所以第一次、第二次抛硬币掉下来后都是正面向上的概率等于两次分别抛硬币掉下来后是正面向上的概率之积,即111224P =⨯=.⑶掷骰子,骰子是否掉在桌上和骰子的某个数字向上是两个相互独立的事件,如果骰子掉在桌上的概率为0.6,那么骰子掉在桌上且数字“n ”向上的概率为10.60.16⨯=.知识点拨教学目标8-7概率与统计例题精讲【例 1】(2007年“希望杯”二试六年级)气象台预报“本市明天降雨概率是80%”.对此信息,下列说法中正确的是.①本市明天将有80%的地区降水.②本市明天将有80%的时间降水.③明天肯定下雨.④明天降水的可能性比较大.【解析】降水概率指的是可能性的大小,并不是降水覆盖的地区或者降水的时间.80%的概率也不是指肯定下雨,100%的概率才是肯定下雨.80%的概率是说明有比较大的可能性下雨.因此④的说法正确.【巩固】一个小方木块的六个面上分别写有数字2、3、5、6、7、9,小光、小亮两人随意往桌面上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分.当小亮扔时,如果朝上的一面写的是奇数,得1分.每人扔100次,______得分高的可能性比较大.【解析】因为2、3、5、6、7、9中奇数有4个,偶数只有2个,所以木块向上一面写着奇数的可能性较大,即小亮得分高的可能性较大.【例 2】在多家商店中调查某商品的价格,所得的数据如下(单位:元)25 21 23 25 27 29 25 28 30 2926 24 25 27 26 22 24 25 26 28请填写下表【解析】:【例 3】在某个池塘中随机捕捞100条鱼,并给鱼作上标记后放回池塘中,过一段时间后又再次随机捕捞200尾,发现其中有25条鱼是被作过标记的,如果两次捕捞之间鱼的数量没有增加或减少,那么请你估计这个池塘中一共有鱼多少尾?【解析】200尾鱼中有25条鱼被标记过,所以池塘中鱼被标记的概率的实验得出值为252000.125÷=,所以池塘中的鱼被标记的概率可以看作是0.125,池塘中鱼的数量约为1000.125800÷=尾.【例 4】有黑桃、红桃、方块、草花这4种花色的扑克牌各2张,从这8张牌中任意取出2张。

最新北师大版九年级中考数学总复习统计与概率知识点+练习试题

最新北师大版九年级中考数学总复习统计与概率知识点+练习试题

九年级中考数学统计和概率知识点+练习试题统计和概率1、着教育信息化的发展,学生的学习方式日益增多.教师为了指导学生有幸效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有人;在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该校共有1200名学生,请你估计该校学生课外利用网络学习的时间在“A”选项的有多少人?2、八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m=;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.3、中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数; (4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.1、如图所示的几何体,其俯视图是( ) A . B . C . D .2、如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是( )A .B .C .D .3、如图所示的几何体,它的左视图是( )4、下面四个几何体:其中,俯视图是四边形的几何体个数是( ) A .1 B .2 C .3 D .4 814187652015105人数5、如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()。

初三数学中考复习专题概率与统计知识点级练习

初三数学中考复习专题概率与统计知识点级练习

统计与概率知识点归纳及练习一、知识归纳与例题讲解:1、总体,个体,样本和样本容量.注意“考查对象”是所要研究的数据.2、中位数,众数,平均数,加权平均数,注意区分这些概念.相同点:都是为了描述一组数据的集中趋势的.不同点:中位数——中间位置上的数据(当然要先按大小排列)众数——出现的次数多的数据.3、方差,标准差与极差.方差:顾名思义是“差的平方”,因有多个“差的平方”,所以要求平均数,弄清是“数据与平均数差的平方的平均数”,标准差是它的算术平方根.会用计算器计算标准差与方差.最大值-最小值(也就是极差)4、频数,频率,频率分布,常用的统计图表.5、确定事件(分为必然事件、不可能事件)、不确定事件(称为随机事件或可能事件)、概率.并能用树状图和列表法计算概率;二、达标训练(一)选择题1、计算机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”的百分比,使用的统计图是()A条形统计图B折线统计图C扇形统计图D条形统计图或折线统计图2、小明把自己一周的支出情况,用右图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出具体消费数额B.从图中可以直接看出总消费数额C.从图中可以直接看出各项消费数额占总消费额的百分比D.从图中可以直接看出各项消费数额在一周中的具体变化情4、下列调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式5、下列事件:①检查生产流水线上的一个产品,是合格品.②两直线平行,内错角相等.③三条线段组成一个三角形.④一只口袋内装有4只红球6只黄球,从中摸出2只黑球.其中属于确定事件的为()A、②③B、②④C、③④D、①③67(二)填空题1、在一个班级50名学生中,30名男生的平均身高是1.60米,20名女生的平均身高是1.50米,那么这个班学生的平均身高是________米.2、已知一个样本为1,2,2,-3,3,那么样本的方差是_______;标准差是_________.3、将一批数据分成五组,列出频数分布表,第一组频率为0.2,第四组与第二组的频率之和为0.5,那么第三、五组频率之和为_________.4、已知数据x1,x2,x3的平均数是m,那么数据3x1+7,3x2+7,3x3+7的平均数等于_________.5、装有5个红球和3个白球的袋中任取4个,那么取到的“至少有1个是红球”与“没有红球”的概率分别为________与________6、有甲、乙两把不相同的锁,甲锁配有2把钥匙,乙锁配有1把钥匙,事件A为“从这3把钥匙中任选2把,打开甲、乙两把锁”,则P(A)=________如果销售1000件该名牌衬衫,至少要准备____件合格品,供顾客更换;8、随意地抛掷一只纸可乐杯,杯口朝上的概率约是0.22,杯底朝下的概率约是0.38,则横卧的概率是_________;9、某篮球运动员投3分球的命中率为0.5,投2分球的命中率为0.8,一场比赛中据说他投了20次2分球,投了6次3分球,估计他在这场比赛中得了____分;10、由1到9的9个数字中任意组成一个二位数(个位与十位上的数字可以重复),计算:①个位数字与十位数字之积为奇数的概率_______;②个位数字与十位数字之和为偶数的概率_______;③个位数字与十位数字之积为偶数的概率_______;请填好最后一行的各个频率,由此表推断这个射手射击1次,击中靶心的概率的是___________;12、某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给出的信息回答:(1)填写完成下表:这20个家庭的年平均收入为______万元;(2)样本中的中位数是______万元,众数是______万元;(3)在平均数、中位数两数中,______更能反映这个地区家庭的年收入水平.(三)解答题1、从同一家工厂生产的20瓦日光灯中抽出6支,40瓦日光灯中抽出8支进行使哪种日光灯的寿命长?哪种日光灯的质量比较稳定?2、某样本数据分为五组,第一组的频率是0.3,第二、三组的频率相等,第四、五组的频率之和为0.2,则第三组的频率是多少?3、小明与小刚做游戏,两人各扔一枚骰子.骰子上只有l、2、3三个数字.其中相对的面上的数字相同.规则规定.若两枚骰子扔得的点数之和为质数,则小明获胜,否则,若扔得的点数之和为合数,则小刚获胜,你认为这个游戏公平吗?对谁有利?怎样修改规则才能使游戏对双方都是公平的?三、自我检测1、一个班的学生中,14岁的有16人,15岁的有14人,16岁的有8 人,17岁的有4人.这个班学生的平均年龄是______岁.2、布袋里有1个白球和2个红球,从布袋里取两次球,每次取一个,取出后放回,则两次取出都是红球的概率是_____________.3、如果数据x1,x2,x3,…x n的的平均数是x,则(x1 -x)+(x2 -x)+…+(x n-x)的值等于___________.4、抛掷两枚分别标有1,2,3,4的四面体骰子.写出这个实验中的一个可能事件是_________________________________;写出这个实验中的一个必然事件是________________________________;5、从全市5 000份试卷中随机抽取400份试卷,其中有360份成绩合格,估计全市成绩合格的人数约为________人.6、一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是_____________.7、四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为()A.1/4 B.1/2 C.3/4 D.18、从1至9这九个自然数中任取一个,是2的倍数也是3的倍数的概率是()9、数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图),根据图表,全班每位同学答对的题数所组成样本的中位数和众数分别为A、8,8B、8,9C、9,9D、9,810、有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛()A、平均数B、众数C、最高分数D、中位数11、如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:⑴计算并完成表格;⑵请估计当n很大时,频率将会接近多少?⑶假如你去转动该转盘一次,你获得可乐..的概率是多少?在该转盘中,表示“可.乐.”区域的扇形的圆心角约是多少度?⑷如果转盘被一位小朋友不小心损坏,请你设计一个等效的模拟实验方案(要求交代清楚替代工具和游戏规则).。

中考数学总复习:统计与概率

中考数学总复习:统计与概率

中考数学总复习:统计与概率统计与概率是中学数学中的一大重要内容,也是中考数学中出现频率较高的考点之一。

本文将从统计和概率两个方面进行和复习,以帮助同学们系统地回顾和巩固相关知识点。

统计一、数据的整理和统计学中的第一步是对所给的数据进行整理和,常见的方法有以下几种:1.频数表:将数据按照取值的不同进行分类,并统计每个类别中数据出现的频数。

示例: | 数据 | 频数 | | —- | —- | | 2 | 4 | | 3 | 6 | | 4 | 8 | | 5 | 5 |2.频率表:在频数表的基础上,计算每个类别的频率,即频数与样本容量的比值。

3.线性图:可用于展示数据的分布特征,横坐标表示数据的取值,纵坐标表示频数或频率。

二、代表性指标代表性指标是对数据集中趋势或平均水平进行衡量的数值,常见的代表性指标有以下几种:1.平均数:在一组数据中,所有数值的和除以数据的个数。

示例:给定一组数据:4, 5, 6, 7, 8,求平均数。

平均数 = (4 + 5 + 6 + 7 + 8) / 5 = 30 / 5 = 62.中位数:将一组数据从小到大排列,位于中间位置的数值。

示例:给定一组数据:3, 5, 1, 9, 2,求中位数。

排序后的数据:1, 2, 3, 5, 9 中位数为33.众数:一组数据中出现频率最高的数值。

三、概率概率是研究随机事件发生可能性的数学分支。

以下是概率计算中常用的一些基本概念和方法:1.样本空间:随机试验的所有可能结果组成的集合。

2.事件:样本空间中的一个子集。

3.概率:事件发生的可能性大小,范围在0到1之间。

4.加法法则:对于两个互斥事件 A 和 B,它们同时发生的概率等于各自概率的和。

示例:P(A ∪ B) = P(A) + P(B)5.乘法法则:对于独立事件 A 和 B,它们同时发生的概率等于各自概率的乘积。

示例:P(A ∩ B) = P(A) × P(B)以上仅为统计与概率的部分内容,同学们在备考中需结合教材和试题进行全面复习。

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。

北京市西城区2019年中考复习《统计与概率》建议讲义及练习

北京市西城区2019年中考复习《统计与概率》建议讲义及练习

北京市西城区重点中学2019年3月九年级数学中考复习 《统计与概率》复习建议讲义及2019年各区县一模、二模相关题新版课程标准中指出:“统计与概率”的内容在新课程中得到了较大重视,成为和“数与代数”“图形与几何”“综合与实践”并列的四部分内容之一,而统计则成为这一部分的重点。

统计与概率的主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。

中考内容中统计与概率大约占14分,15年之前是两道选择题一道解答题,15年是两道3分选择题,一道3分填空题和一道5分解答题,总体难度略有增加。

一、知识结构统计部分知识结构:描述数据分析数据样本估计总体 总体 样本中位数 众 数 平均数 收集、整理数据全面调查 统计表抽样调查条 形 图 扇 形 图 折 线 图 直 方 图方 差概率部分知识结构:二、考试说明要求三、近几年中考统计、概率考点分布统计试题涉及知识点:年份选择题考查的概念解答题考查的统计图表统计图统计表2010 平均数、方差折线图、扇形图(补全)补全2011 众数、中位数折线图、条形图(补全)√2019 众数、中位数条形图(补全)、扇形图√2019 加权平均数复合条形图(补全)、扇形图补全2019 众数、加权平均数扇形图(补全)√2019 众数、中位数、条形统计图自制统计图自制统计表另:2019年增加的填空15题为开放性题型,要求学生根据统计图进行数据预估,并阐述预估理由。

概率试题涉及知识点:2010年—2019年:选择题,求随机事件概率四、2019年中考统计题第7题、某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5C.21,22 D.22,22本题涉及到根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三部分统计
与概率
第31统计基础知识
备 考 演 练
一、精心选一选
1.(2017·百色)在以下一列数3,3,5,6,7,8中,中位数是
( C ) A.3 B.5 C.5.5 D.6 2.(2017·包头)一组数据5,7,8,10,12,12,44的众数是
(B ) A.10 B.12 C.14 D. 44 3.(2017·温州)某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表: 零件
个数(个)
5 6 7 8
人数
(人) 3 1
5 1
表中表示零件个数的数据中,众数是 ( C )
A.5个
B.6个
C.7个
D.8个
4.(2017·贵港)数据3,2,4,2,5,3,2的中位数和众数分别是 (
C )
A.2,3
B.4,2
C.3,2
D.2,2
5.(2017·自贡)对于一组统计数据3,3,6,5,3.下列说法错误的是( D )
A.众数是3
B.平均数是4
C.方差是1.6
D.中位数是
6
6.(2017·荆州)为了解某班学生双休户外活动情况,对部分学生参
加户外活动的时间进行抽样调查,结果如下表:
则关于“户外活动时间”这组数据的众数、中位数、平均数分别
是( A )
A.3、3、3
B.6、2、3
C.3、3、2
D.3、2、3
7.(2017·德州)某专卖店专营某品牌的衬衫,店主对上一周中不同
尺码的衬衫销售情况统计如下:
该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的
统计量是( C )
A.平均数
B.方差
C.众数
D.中位数
8.(2017·绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
(

)


6.6 6.8 6.7 6.6
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( D )
A.甲
B.乙
C.丙
D.丁
二、细心填一填
9.(2017·南宁)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有680人.
10.(2017·包头)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163 cm,则30名男生的平均身高为168cm.
11.(2017·张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:




3 4 5 6
人数2
1
5
1
5
那么这50名学生平均每人植树4棵.
12.(2017·长沙)甲、乙两名同学进行跳高测试,每人10次跳高的
平均成绩恰好是1. 6米,方差分别是=1.2,=0.5则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”).。

相关文档
最新文档