材料学基础课程 第六章 第四部分
材料科学基本知识点

材料科学基础第零章材料概论该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。
核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。
主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。
材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。
按基本组成分为:金属、陶瓷、高分子、复合材料金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、Cu、Ni等。
原子之间的键合方式是金属键。
陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。
它可以是晶体、非晶体或混合晶体。
原子之间的键合方式是离子键,共价键。
聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。
它主要是非晶体或晶体与非晶体的混合物。
原子的键合方式通常是共价键。
复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。
其原子间的键合方式是混合键。
材料选择:密度弹性模量:材料抵抗变形的能力强度:是指零件承受载荷后抵抗发生破坏的能力。
韧性:表征材料阻止裂纹扩展的能力功能成本结构(Structure)性质(Properties)加工(Processing)使用性能(Performance)在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。
宏观结构←显微镜下的结构←晶体结构←原子、电子结构重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。
以及有哪些主要因素能够影响和改变结构,实现控制结构和性能的目的。
上海交大材料科学基础知识点总结

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
图1-5特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷;b 可有无限多种。
2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。
《材料科学基础》课件

1 2
a
101
1 6
a
121
1 3
a
111
3-11
全位错
几何条件:
shockley不全位错
Franker不全位错
• 能量条件:
shockley不全位错
全位错
Franker不全位错
b=a/3<111>和{111}面垂直。纯刃位错。
b垂直于滑移面,不是fcc晶体的滑移方向, 不能滑移,只可攀移。
ቤተ መጻሕፍቲ ባይዱ
4、(3-8)比较刃位错和螺位错的异同点。
14、表征晶体中晶向和晶面的方法有 解析法 和 图示 法。(晶 体投影图 )
二、分析计算
1、(2-3)(1)晶面A在x、y、z轴上的截距分别是2a、3b和 6c,求该晶面的米勒指数;(2)晶面B在x、y、z轴上的截 距分别是a/3、b/2和c,求该晶面的米勒指数。
1 : 1 : 1 3: 2:1 236
3 0.40183
0.683
•(4) CsCl的分子量为:
(35.453 +132.905 )=168.358,
•阿佛加得罗常数是6.0238×1023;
•每个CsCl分子的质量A为:
168.358/(6.0238×10 ) 23
ZM / N A a3
1168.358 /(6.02 1023) (0.4018 107 )3
配位数是8.
[CsCl 8] 或 [ClCs8]配位六面体。
(4)
对CsCl晶体,晶体结构为简 单立方,晶胞中含有一个 正离子一个负离子,沿体 对角线正负离子相切:
3a 2r 2r
a=0.4018nm
3a 2 (0.167 0.181) 0.696
《材料性能学》课程教学大纲

《材料性能学》课程教学大纲课程名称(英文):材料性能学(Properties of Materials)课程类型:学科基础课总学时: 72 理论学时: 60 实验(或上机)学时: 12学分:4.5适用对象:金属材料工程一、课程的性质、目的和任务本课程为金属材料工程专业的一门专业基础课,内容包括材料的力学性能和物理性能两大部分。
力学性能以金属材料为主,系统介绍材料的静载拉伸力学性能;其它载荷下的力学性能,包括扭转、弯曲、压缩、缺口、冲击及硬度等;断裂韧性;变动载荷下、环境条件下、高温条件下的力学性能;摩擦、磨损性能以及其它先进材料的力学性能等。
物理性能概括介绍常用物理性能如热学、电学、磁学等的基本参数及物理本质,各种影响因素,测试方法及应用。
通过本课程的学习,使学生掌握材料各种主要性能指标的宏观规律、物理本质及工程意义,了解影响材料性能的主要因素,了解材料性能测试的原理、方法和相关仪器设备,基本掌握改善或提高材料性能指标、充分发挥材料潜能的主要途径,初步具备合理的选材和设计,开发新型材料所必备的基础知识和基本技能。
在学习本课程之前,学生应学完物理化学、材料力学、材料科学基础、钢的热处理等课程。
二、课程基本要求根据课程的性质与任务,对本课程提出下列基本要求:1.要求学生在学习过程中打通与前期材料力学、材料科学基础等课程的联系,并注重建立与同期和后续其它专业课程之间联系以及在生产实际中的应用。
2.能够从各种机器零件最常见的服役条件和失效现象出发,了解不同失效现象的微观机理,掌握工程材料(金属材料为主)各种力学性能指标的宏观规律、物理本质、工程意义和测试方法,明确它们之间的相互关系,并能大致分析出各种内外因素对性能指标的影响。
3.掌握工程材料常用物理性能的基本概念及影响各种物性的因素,熟悉其测试方法及其分析方法,初步具备有合理选择物性分析方法,设计其实验方案的能力。
三、课程内容及学时分配总学时72,课堂教学60学时,实验12学时。
材料力学教学大纲

《材料力学》课程教学大纲总学时:90 学分:5理论学时:78 实验学时:12面向专业:土木工程课程代码:HD0686先开课程:高等数学、理论力学课程性质:专业基础课第一部分:理论教学部分一、说明1、课程的性质、地位和任务材料力学是变形固体力学的一个分支,它是土木工程专业必修的专业核心课程。
为后续课程《结构力学》、《混凝土结构设计原理》、《钢结构设计原理》、《钢结构设计》以及《砌体结构》等各专业课的学习提供预备知识。
本课程安排在第三学期,是在学生学完高等数学、理论力学等课程之后,在学生数学力学等必备的知识基础上,进一步研究构件在力的作用下,内力、应力、变形及稳定性等问题。
通过材料力学的学习,要求学生对杆件的强度、刚度和稳定性等问题具有明确的基本概念和必要的基础知识,对常用材料的基本力学性能及其测定方法、电测试验应力分析的基本原理和基本方法有初步认识,使学生初步会用材料力学的理论和分析方法,解决一些简单的工程实际问题,为学习有关的后继课程打下初步基础。
由于本课程的内容及众多公式具有一定程序及规律,为了系统地学习、研究其内在规律,对整个教材的教学设想是应用框图思维法,即削枝强干,删繁就简,强调“三基”,突出重点,达到有利于培养学生分析问题与解决问题的能力。
2、课程教学和教改基本要求通过本课程的学习,使学生明确认识材料力学的基本概念和基本分析方法,培养分析问题、推导计算、判断结果和自学查阅的能力;熟练地做出杆件基本变形时的内力图,进行应力和位移、强度和刚度计算;掌握应力状态分析方法和理论,掌握组合变形下杆件的强度计算;掌握简单超静定问题的求解方法;了解压杆的稳定性概念,会计算轴向受压杆的临界力与临界应力;了解低碳钢和铸铁的基本力学性能及其测试方法;掌握电测实验应力分析的基本原理和方法。
对杆件的受力分析、强度、刚度和稳定性问题具有明确的基本概念、必要的基础知识、比较熟练的计算能力,初步的力学建模及对简化模型近似性评估的能力,一定的定性与定量分析能力和初步的实验能力。
材料学课程教案模板范文

一、课程名称材料学二、授课对象土木工程、材料科学与工程等相关专业学生三、授课学时共32学时四、教学目标1. 理解材料学的基本概念、分类、性能及应用;2. 掌握材料的基本性质,如力学性能、热性能、电性能等;3. 熟悉材料制备、加工、检测及表征方法;4. 了解材料科学的发展趋势,培养创新意识。
五、教学内容第一章材料学导论1. 材料学的定义、发展历程及在现代社会中的作用2. 材料的基本分类及特点3. 材料科学的研究方法第二章材料的基本性质1. 材料的力学性能2. 材料的热性能3. 材料的电性能4. 材料的磁性能第三章材料制备与加工1. 材料制备的基本原理2. 材料加工的方法及工艺3. 材料制备与加工中的质量控制第四章材料表征与检测1. 材料表征的基本方法2. 材料检测的技术与设备3. 材料性能测试与分析第五章材料的应用1. 建筑材料的应用2. 汽车材料的应用3. 航空航天材料的应用4. 电子材料的应用第六章材料科学的发展趋势1. 新材料的研究与发展2. 材料科学与其他学科的交叉融合3. 材料科学在可持续发展中的作用六、教学方法1. 讲授法:系统讲解材料学的基本概念、原理及发展趋势;2. 案例分析法:结合实际工程案例,分析材料的应用及问题;3. 讨论法:引导学生对材料学相关话题进行讨论,提高学生分析和解决问题的能力;4. 实验法:通过实验操作,使学生掌握材料制备、加工、检测及表征方法。
七、考核方式1. 课堂参与:20%2. 作业与报告:30%3. 期末考试:50%八、教学进度安排第1-4周:材料学导论、材料的基本性质第5-8周:材料制备与加工、材料表征与检测第9-12周:材料的应用第13-16周:材料科学的发展趋势九、教学资源1. 教材:《材料学》2. 教学课件3. 实验指导书4. 网络资源十、教学评价1. 学生对课程内容的掌握程度;2. 学生对材料科学问题的分析和解决能力;3. 学生对课程教学的满意度。
《材料科学基础教案》课件

《材料科学基础教案》PPT课件第一章:材料科学导论1.1 材料科学的定义和发展历程1.2 材料的分类和特性1.3 材料科学的研究内容和方法1.4 材料科学在工程中的应用第二章:材料的力学性能2.1 弹性、塑性和脆性2.2 材料的强度、硬度和韧性2.3 材料的热膨胀和导热性2.4 材料的疲劳和腐蚀性能第三章:材料的结构3.1 原子结构与元素的电子配置3.2 金属晶体结构3.3 非金属晶体结构3.4 材料的微观结构与宏观性能的关系第四章:材料的热处理和加工4.1 材料的热处理工艺和性能4.2 金属的铸造、焊接和热轧4.3 非金属材料的加工方法4.4 新型材料的加工技术和应用第五章:材料的选择与应用5.1 材料的选用原则和标准5.2 工程常用金属材料的选择与应用5.3 常用非金属材料的选择与应用5.4 新型材料在工程中的应用案例分析第六章:金属的腐蚀与防护6.1 金属腐蚀的基本类型和机理6.2 金属腐蚀的影响因素6.3 金属的腐蚀防护方法6.4 实例分析:金属腐蚀与防护的应用第七章:陶瓷材料7.1 陶瓷材料的定义和特性7.2 陶瓷材料的制备方法7.3 陶瓷材料的分类与应用7.4 先进陶瓷材料的最新发展第八章:高分子材料8.1 高分子材料的定义和结构8.2 高分子材料的制备方法8.3 高分子材料的性能与应用8.4 生物基高分子材料和可持续发展的关系第九章:复合材料9.1 复合材料的定义和特点9.2 复合材料的制备方法9.3 常见复合材料的类型与应用9.4 复合材料在航空航天和汽车工业中的应用第十章:纳米材料10.1 纳米材料的定义和特性10.2 纳米材料的制备方法10.3 纳米材料的应用领域10.4 纳米材料的发展趋势和挑战重点和难点解析重点一:材料科学的定义和发展历程解析:理解材料科学的定义是掌握整个学科的基础,对材料科学的发展历程有一个全面的了解,能够帮助我们更好地理解其在不同历史阶段的重要性。
重点二:材料的分类和特性解析:材料的分类是理解不同材料性质的基础,而特性则是材料应用的关键。
材料科学基础试题及答案

第一章 原子排列与晶体结构1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。
2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数为 ,四面体间隙数为 。
3. 纯铁冷却时在912ε 发生同素异晶转变是从 结构转变为 结构,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。
4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平面上的方向。
在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。
5. 求]111[和]120[两晶向所决定的晶面。
6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径R=0.175×10-6mm 。
第二章 合金相结构一、 填空1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。
2) 影响置换固溶体溶解度大小的主要因素是(1) ;(2) ;(3) ;(4) 和环境因素。
3) 置换式固溶体的不均匀性主要表现为 和 。
4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。
5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑性 ,导电性 。
6)间隙固溶体是 ,间隙化合物是 。
二、 问答1、 分析氢,氮,碳,硼在α-Fe 和γ-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 这种熔融升温现象的产生是高分子结晶速 度慢所致,而通常的降温速度难以使高分 子中的链段充分扩散来结晶出较完善的晶 体。而这些晶体在通常的升温速度下,比 较不完善晶体(晶片厚度薄,而且缺陷多) 将在较低的温度下熔融,而比较完善的晶 体需要在较高的温度下才能熔融,因而在 通常的升温速度下,便出现较宽的熔融温 度。
• 若在缓慢的升温条件下,如每升温 l℃,恒温保持24h,直到体积不再改 变后测定质量体积,所得结果表明, 结晶高分子的熔融过程十分接近跃变 过程。 • 熔融过程可发生在3~4℃的较窄温度 范围内,而且在熔融过程的终点处, 曲线出现明显的转折,可以此转折点 来确定高分子的熔点。 • 在缓冷条件下使熔限变窄的原因可解 释为:不完善晶体在较低的温度下被 破坏后,有足够的时间通过再结晶形 成更完善和更稳定的晶体,这样所有 较完善的晶体在较高的温度下和较窄 的温度范围内被熔融。
• 1.相似性 1).晶粒尺寸受过冷度影响。 • 结晶高分子从熔点(Tm )以上冷却到熔 点和玻璃化转变温度(Tg )之间的任何 一个温度下都能结晶。结晶需要过冷度, 并随着过冷度的增加,形核率增加。高 分子从熔体(液)冷却结晶时,通常形 成球晶。
•
•
球晶是由多层片晶经分叉,以捆束状形式逐渐形成的,在光学显微镜下观察 时,球晶以球形对称的方式生长。在生产上,通过控制冷速来控制制品中的 球晶尺寸,冷速越快,过冷度越大,球晶越小,密度越大。 过冷度小时形成的大球晶,其晶片较厚,晶片内部缺陷较少,但晶片之间的 “联结链”少,杂质或低分子的浓度较高;相反,过冷度大时形成的小球晶, 其晶片较薄.晶内缺陷较多,但晶片之间和球晶之间的“联结链”较多。联 结链增多可提高结品高分子的力学强度。
• 4).高分子的等温结晶转变量也可用阿弗拉密方程来描述。高分子熔体冷 却结晶时,体积不断收缩,通常可用膨胀仪测定高分子结晶过程中的体 积收缩量。
• 2.差异性 • 高分子结晶具有不完全性。最易结晶的聚乙烯,其最高 结晶度为95%,而一般高分子大多只有50%左右。高分 子结晶的不完全性及其结晶能力的大小起因于大分子链 结构特征。影响高分子结晶能力的结构因素有: • (1) 链的对称性。高分子链的结构对称性越高,越容易 结晶。例如,聚乙烯和聚四氟乙烯的分子,主链上全部 是碳原子,碳原子上都是氢原子或氟原子,对称性高, 故最容易结晶。 • (2) 链的规整性。对于主链型完全是无规的,不具有对 称中心的高分子,一般都失去结晶能力。例如,自由基 聚合的聚苯乙烯,聚甲基丙烯酸甲酯等就是厚度之 间的关系。 • 厚度大熔点高。
end
• 3).非均匀形核所需的过冷度较均匀形核小。 • 因此,形核剂能有效地提高形核率,加快高分子的结 晶速度。形核剂已被广泛应用于工业生产中来改善高 分子的性能。 • 形核剂对尼龙6结晶速度和球晶大小的影响。当各种成 核剂的量达到1%时,不仅结晶速度提高2-3倍,而且 球晶大小与结晶温度(即过冷度)无关,这一点在生产上 具有重要意义。控制冷速来控制球晶大小,出于方法 简便有效而在生产上常被使用。但对于厚壁制件来说, 由于高分子是不良导体,从而使制件从表层到内部产 生较大的温度梯度,各部分的冷速不一致,导致制件 内外球晶大小不均而影响产品质量。如果采用形核剂, 则制件各部分温度的不均匀对结晶过程的影响不大, 从而获得球晶尺寸较均匀的制品。
• (3) 共聚效应。两种或两种以上不同单体分子形 成的高分子称为共聚物。无规共聚通常会破坏链 的对称性和规整性,从而使结晶能力降低甚至丧 失殆尽。但是,如果两种共聚单元的均聚物(均 聚物由一种单体生成的高分子)有相同类型的结 晶结构,那么共聚物也能结晶。 • (4)链的柔顺性。链的柔顺性是结晶时链段向结 晶表面扩散和排列所必须的,因此,使链柔顺性 降低的结构因素,均会影响高分子的结晶能力。 例如,聚乙烯的主链柔顺性很好,如果含苯环后 使聚对苯二甲酸乙二醇酯链的柔顺性降低,结晶 能力显著减弱。
2).高分子的结晶过程包括形核与长大两个过程。 • 形核又分为均匀(均相)形核和非均匀(异相) 形核两类。 • 均匀形核是由熔体中的高分子链段靠热运动形 成有序排列的链束为晶核;而非均匀形核则以 外来的杂质,未完全熔化的残余结晶高分子, 分散的小颗粒或容器的型壁为中心,吸附熔体 中的高分子链作有序排列而形成晶核。
6.2.6 高分子的结晶特征
• 高分子中的晶体像金属 、 陶瓷及低分子有机物一 高分子中的晶体像金属、 在三维方向上具有长程有序排列,因此, 样 , 在三维方向上具有长程有序排列 , 因此 , 高 分子的结晶行为在许多方面与它们具有相似性。 分子的结晶行为在许多方面与它们具有相似性 。 但由于高分子是长链结构, 但由于高分子是长链结构 , 要使高分子链的空间 结构均以高度的规整性排入晶格, 结构均以高度的规整性排入晶格 , 这比低分子要 困难得多, 困难得多 , 这使得高分子结晶呈现出不完全性和 不完善性、熔融升温和结晶速度慢的特点。 不完善性 、 熔融升温和结晶速度慢的特点 。 本节 将简要描述高分子在结晶方面与低分子的异同性。 将简要描述高分子在结晶方面与低分子的异同性 。
• • •
•
结晶高分子与低分子另一个差异是熔融过程中通常出现升温现象(边熔融边升温)。 图示为结晶高分子和低分子熔融过程质量体积-温度曲线。 由图可知,结晶高分子的熔融过程与低分子没有本质上的差异,热力学函数(如质量体积、 比热容等)发生突变,只是程度上有差异,这一过程不像低分子那样发生在0.2℃的狭窄 的温度范围,而存在一个较宽的熔融温度范围,这个温度范围称为熔限。 在这个温度范围内,发生熔融升温的现象,这不像低分子那样几乎在液、固两相热力学平 衡的恒温下结晶。