塑胶件的超声波焊接工艺下
塑料超声波焊接结构

塑料超声波焊接结构一、介绍塑料超声波焊接结构是一种常用的塑料焊接技术,通过超声波振动将塑料件的表面加热并压合,实现塑料件的连接。
本文将对塑料超声波焊接结构进行全面、详细、完整且深入地探讨。
二、原理塑料超声波焊接结构的原理是利用超声波振动将塑料件的表面加热并压合,实现塑料件的连接。
具体步骤如下: 1. 将需要焊接的塑料件放置在焊接工装中。
2. 通过超声波振动器将超声波传导到塑料件上。
3. 超声波振动使得塑料件表面分子产生摩擦热,温度升高。
4. 当温度升高到一定程度时,塑料件表面开始软化。
5. 在超声波振动的作用下,将两个塑料件的表面压合在一起。
6. 随着温度的升高和超声波振动的作用,塑料件表面的分子逐渐交错并重新排列,形成焊接接头。
7. 焊接接头冷却后,塑料件之间形成坚固的连接。
三、优点塑料超声波焊接结构具有以下优点: 1. 高效:焊接速度快,可以实现连续生产。
2. 焊接强度高:焊接接头强度高,与塑料件本身强度相当。
3. 无需添加其他材料:不需要焊接剂或胶水等辅助材料。
4. 焊接过程无污染:焊接过程中无产生烟尘、气味等污染物。
5. 适用范围广:适用于各种塑料材料的焊接。
四、应用领域塑料超声波焊接结构广泛应用于以下领域: 1. 汽车制造:用于汽车塑料件的连接,如车灯、仪表盘等。
2. 电子电器:用于电子电器产品的组装,如手机、电视机等。
3. 包装行业:用于塑料包装产品的制造,如瓶盖、塑料袋等。
4. 医疗器械:用于医疗器械的生产,如输液器、注射器等。
五、注意事项在进行塑料超声波焊接结构时,需要注意以下事项: 1. 焊接温度控制:要控制好焊接温度,避免过高或过低导致焊接质量下降。
2. 焊接压力控制:要控制好焊接压力,避免过大或过小导致焊接接头强度不足。
3. 焊接时间控制:要控制好焊接时间,避免过长或过短影响焊接效果。
4. 选择适当的超声波频率:不同塑料材料对超声波频率的要求不同,需要选择适当的频率。
超声波塑料焊接工艺

超声波焊是一种快捷,干净,有效的装配工艺,用来装配处理热塑性塑料配件,及一些合成构件的方法。
目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!它取代了溶剂粘胶机械坚固及其它的粘接工艺是一种先进的装配技术!超声波焊接不但有连接装配功能而且具有防潮、防水的密封效果。
超声波的优点:1,节能2,无需装备散烟散热的通风装置3,成本低,效率高4,容易实现自动化生产!超声波焊接机的工作原理!超声波焊接装置是通过一个电晶体功能设备将当前50/60Hz的电频转变成20KHz或40KHz的电能高频电能,供应给转换器。
转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。
焊头是将机械振动能直接传输至需压合产品的一种声学装置。
振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!!焊接:指的是广义的将两个热塑性塑料产品熔接的过程。
当超音停止振动时,固体材料熔化,完成焊接。
其接合点强度接近一整块的连生材料,只要产品的接合面设计得匹配,完全密封是绝对没有什么问题的,碟合:熔化机械锁形成一个材质不同的塑料螺栓的过程。
嵌入:将一个金属无件嵌入塑料产品的预留孔内。
具有强度高,成型周期短安装快速的优点!!类似于模具设计中的嵌件!Ultrasonic Welding 1 Ultrasonic Welding 2塑料件超声波焊接设计塑料与塑料加工2010-12-09 22:53:48 阅读34 评论0 字号:大中小订阅现代注塑方式能有效提供比较完美的焊接用塑胶件。
光我们决定用超声波焊接技术完成熔合时,塑料件的结构设计必须首先考虑如下几点:1 焊缝的大小(即要考虑所需强度)2 是否需要水密、气密3 是否需要完美的外观4 避免塑料熔化或合成物的溢出5 是否适合焊头加工要求焊接质量可能通过下几点的控制来获得:1 材质2 塑料件的结构3 焊接线的位置和设计4 焊接面的大小5 上下表面的位置和松紧度6 焊头与塑料件的妆触面7 顺畅的焊接路径8 底模的支持为了获得完美的、可重复的熔焊方式,必须遵循三个主要设计方向:1 最初接触的两个表面必须小,以便将所需能量集中,并尽量减少所需要的总能量(即焊接时间)来完成熔接。
塑料超音波焊接工艺

塑料超音波焊接工艺
塑料超音波焊接工艺是一种高科技技术,利用每秒15000次或20000次或更高频率的振动将两个塑料工件的接触面在短时间内熔合在一起,从而形成一个坚固的分子链,实现焊接的目的。
超音波熔接法是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂、粘接剂或其它辅助品。
应用这种工艺时,焊头以超音波超高频率振动的焊头在适度压力下,使二块塑胶的接合面产生磨擦热而瞬间熔融接合,焊接强度可与本体媲美。
超声波塑料焊接的好坏取决于换能器焊头的振幅、所加压力及焊接时间等三个因素。
其中,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。
当超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区。
由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。
又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。
当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的。
此外,还有铆焊法和埋植法等应用方法。
如需了解更多关于塑料超音波焊接工艺的信息,建议查阅相关资料或咨询专业技术人员。
塑料超声波焊接简介

塑料超声波焊接简介1.连接器超声波焊接原理及步骤1.1超声波焊接简介及原理超声波焊接是利用超声波振动频率,接触摩擦产生热能而使两个塑胶件在焊接界面熔融而固定在一起。
超声波焊接是一种快捷、干净、有效的装配工艺,用于满足塑胶件高强度的装配要求,是广泛使用的一种先进装配技术,适用于多种类型塑胶件的装配。
正常情况下,超声波焊件具有较高的抗拉强度,可以取代溶剂粘胶及机械紧固等装配方法,同时还可以具有防水、防潮的密封效果。
超声波焊接的工作原理是通过超声波发生器将50 Hz或60 Hz电流转换成 15、20、30或40 kHz的电能,被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的调幅器装置传递到焊头,如图1所示。
图1超声波焊接原理焊头将接收到的振动能量传递到待焊接塑胶件的界面,在该区域,振动能量通过摩擦方式被转换为热能,将塑料熔化,振动停止后维持在塑胶件上的短暂压力使两塑胶件以分子连接方式凝固为一体,如图2所示。
图2超声波焊接过程1.2超声波焊接步骤超声波焊接详细步骤如图3所示:图3超声波焊接详细步骤1.3超声波焊接在连接器中的适用范围、优点及局限性1.3.1超声波焊接在连接器中的适用范围超声波焊接是一种快速高效的连接技术,不需要焊剂和外部加热。
超声波塑料焊接以其生产效率高、生产成本低、精度保证高、质量一致性好合维护使用方便等优点,广泛应用于连接器行业。
超声波焊接可以应用到需要塑料连接的场合。
对于两体式的绝缘体连接,可以直接应用超声波焊接来替代传统的胶粘剂粘接。
对于依靠倒钩相扣的绝缘体连接形式也可以直接改为超声波焊接,取消原倒钩和横抽芯的模具结构,达到简化模具结构、提高产品可靠性的目的。
对于一体式的印制板连接器,改用超声波焊接结构可以解决绝缘体开裂问题,避免塑压参数的客观或人为的变化造成批量生产不稳定,且可以简化结构。
1.3.2超声波焊接的优点超声波焊接是一种快捷、十净、可靠性高的装配工艺,具有以下优点:1)焊接速度快,效率高。
超声波焊接工艺

咬花导熔面
咬花导熔面主要用于增强熔接强度, 如下图所示
防水的导熔线结构
防水的导熔线结构主要用于增加气密密封性圈, 如下图所示,
剪切型熔接面
剪切型熔接熔接过程是, 首先熔化开始接触的小面积 材料, 然后沿着壁面继续垂直向下而有控制的导引到 工件里头去。如图所示
剪切型熔接面
剪切型熔接的优点: 1.熔接强度高,气密性好。 2.适合所有的塑胶材料,特别是具提早固体特性的半
凸出材料, 它的的基本作用是聚集能量, 使之可以尽
快达到熔解的温度, 从而得到更好的熔接效果。导熔
线的基本设计如下图所示, 实际应用时可根据具体要
求改变。
非结晶聚合物
半结晶聚合物
超声波熔接结构设计—— 导熔线
导熔线的优点主要有:
1.增加熔接强度
2.减少溢胶
3.减少熔接时间
4.需要较小的振幅
超声波熔接应避免以下的设计
焊很头容与易超工导声件致的表波接面触伤熔面痕接积。越设大越计好中, 如应果小注于意熔接的区域问的题面积, 会
超声波熔接设计中应注意的问题
远场与近场熔接 近场熔接指的是熔接面距离焊头接触面的位置在
6.356mm以内, 大于6.356mm的称为远场熔接。一般尽 可能避免远场熔接
导熔线的设计主要有以下几种:
阶梯型导熔线-Step Joint
阶梯型导熔线主要用于外观上需要精确对位以及不溢 胶的设计
沟槽型导熔线- Tongue & Groove
沟槽型导熔线主要用于双边不溢胶且能提供对位的功 能设计, 其也具备一定的防水功能。
十字交叉型导熔线-Criss-Cross
十字间交断叉式型导熔线是一组导熔线相互垂连直续交式叉, 能缩 短熔接时间, 减少熔接功率, 增加熔接强度, 但是容 易产生段差及溢胶
2020年(塑料橡胶材料)超声波焊接塑料件的设计

(塑料橡胶材料)超声波焊接塑料件的设计超声波焊接塑料件的设计代注塑方式能有效提供比较完美的焊接用塑胶件。
光我们决定用超声波焊接技术完成熔合时,塑料件的结构设计必须首先考虑如下几点:1焊缝的大小(即要考虑所需强度)2是否需要水密、气密3是否需要完美的外观4避免塑料熔化或合成物的溢出5是否适合焊头加工要求焊接质量可能通过下几点的控制来获得:1材质2塑料件的结构3焊接线的位置和设计4焊接面的大小5上下表面的位置和松紧度6焊头和塑料件的妆触面7顺畅的焊接路径8底模的支持为了获得完美的、可重复的熔焊方式,必须遵循三个主要设计方向:1最初接触的俩个表面必须小,以便将所需能量集中,且尽量减少所需要的总能量(即焊接时间)来完成熔接。
2找到适合的固定和对齐的方法,如塑料件的接插孔、台阶或齿口之类。
3围绕着连接界面的焊接面必须是统壹而且相联系互紧密接触的。
如果可能的话,接触面尽量在同壹个平面上,这样可使能量转换时保持壹致。
下面就对塑料件设计中的要点进行分类举例说明:整体塑料件的结构1.1塑料件的结构塑料件必须有壹定的刚性及足够的壁厚,太薄的壁厚有壹定的危险性,超声波焊接时是需要加压的,壹般气压为2-6kgf/cm2。
所以塑料件必须保证在加压情况下基本不变形。
1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成壹些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时能够罐状顶部做如下考虑○1加厚塑料件○2增加加强筋○3焊头中间位置避空1.3尖角如果壹个注塑出来的零件出现应力非常集中的情况,比如尖角位,在超声波的作用下会产生折裂、融化。
这种情况可考虑在尖角位加R角。
如图2所示。
1.4塑料件的附属物注塑件内部或外部表面附带的突出或细小件会因超声波振动产生影响而断裂或脱落,例如固定梢等(如图3所示)。
通过以下设计可尽可能减小或消除这种问题:○1在附属物和主体相交的地方加壹个大的R角,或加加强筋。
○2增加附属物的厚度或直径。
塑料超声波焊接技术 下
张胜玉 · 塑料超声波焊接技术(下)
图 19 带间断导能筋的剪切接头
图 20 焊瘤阱
图 21 剪切接头的变体形式
图 22 改进型接头
5.3 斜接接头
图 23 中的斜接接头通常用于包含圆形或椭
2015年 第41卷
图 23 斜接接头
圆形设计零件的高强度密封,尤其用于结晶性塑 料。斜接接头要求两零件的角度均在 30°~60° 之 间,相差值在 1.5° 以内。如果壁厚为 0.63 mm 或 更 小, 角 度 应 为 60°。 如 果 壁 厚 大 于 等 于 1.52 mm 角度应为 30°。壁厚在 0.63~1.52 mm 之间,推荐用中间角度。斜面外刃处壁厚至少 为 0.76 mm 以防止焊接过程中裂口或熔透侧壁。 由于难以保持零件同心度和尺寸公差,斜接接 头并不常用。但在有限壁厚使应用剪切(或改 进型)接头行不通时,高度推荐采用斜接接头。
厚。为了获得良好的剪切接头,必须满足下述 条件 :
(1)剪切接头需刚性侧壁支撑以防止焊接 过程中产生弯曲。接头处底面侧壁必须受到紧 密符合零件外部形状的夹紧装置的支撑。
(2)下部零件应有足够的结构完整性以承 受内部弯曲。同理,下零件应至少有 2 mm 的 壁厚以防止弯曲。
(3)上下零件之间的过盈表面应平整和彼 此相互垂直。
·11·
橡塑技术与装备(塑料版)
CHINA RUBBER/PLASTICS TECHNOLOGY AND EQUIPMENT(Plastic edition)
图 24 改进型斜接接头
图 25 包含焊瘤阱的斜接接头 ( 如 图 2 6 所 示 )。 最 低 限 度 , 所 有 角 落 或 边 缘 应
中 图 分 类 号 :T Q 3 2 0 . 6 7 4
超声波塑料焊接相容性及应用
一.超声波主要应用技术二.超声波塑料焊接的相容性和适应性:热塑性塑料,由于各种型号性质不同,造成有的容易进行超声焊接,有的不易焊接.表3.3中黑方块表示两种塑料的相容性好,容易进行超声焊接,圆圈表示在某些情况下相容,焊接性能尚可,空格表示两种塑料相容性很差,不易焊接.■-表示相容○-表示在煤屑情况下相容表中所列仅供参考,因为熟知的变化可导致结果略有差异.应用:超声波焊接的焊口设计:两个热塑性塑料零件的超声波焊接要求超声波振动通过焊接头传递到组合件的上半部,最后传至两半的结合处或界面上.在此,振动能量转换成热能,用以熔化塑料.当振动停止后,塑料在压力下固化,在结合面上产生焊接.两个结合表面的设计,对于获得最佳焊接结果来说是非常重要的.有各种各样的连接设计,每一种都有特色和优点.各种设计的使用取决于许多因素,例如塑料类型、零件几何形状、焊接的要求(即粘性、强度、密封等).夹具装置:塑料超声波焊接的一个重要因素是夹具装置.夹具装置的主要用途是固定零件,使之与焊接头对准,同时对组合件提供适当的支撑.被焊接的材料、零件几何形状、壁厚和零件的对称性均可影响能量向界面的传递,因此设计夹具时必须加以考虑.某些用途,例如铆接和嵌插,要求在焊接头接触区下面有坚硬的承托装置.铝质的夹具装置可提供必要的刚度,可以镀铬来防止零件出现疤痕和提高耐磨性.在一些用途中,夹具必须具有一定程度的弹性以保证在连结区产生异相状态.异相状态一般在最差的结合处出现,这是待焊接的范围;不过,由于某些零件材料和几何形状,结合的两半可能合成一整体,上下同时振动,如果这种状态出现,将承槽由刚性材料改为弹性材料,或者将硬度计由软性材料改为另一种材料,往往足以在连结区重新建立异相状态.简单的实验性夹具可用木料、环氧树脂或熟石膏建造.对于更精密、更长寿命的夹具将要用铝、钢、黄铜、铸塑尿烷,或其它的弹性材料.夹具设计范围广,从快速拆卸夹具到简单的金属板均有.应用的要求和生产率通常决定夹具的设计.焊接:图10表示简单的对接焊连接和有能量导向部分的理想连接的时间--温度曲线.能量导向部分允许迅速焊接,同时达到最大的强度.在导向部分的材料如图示在整个结合区内流动.图11表示焊前按要求比例设计能量导向部分改进对接焊与导致的材料流动.工件尺寸的选择应是如图示能量导向部分熔化后足够分布于结合面之间,通常,对于易焊的树脂能量导向部分最小高度为0.010英寸(0.25毫米).对于某些需要高能量的树脂,即结晶型、低刚度或高熔化温度的非晶型(例如聚碳酸酯、聚砜)树脂,需要较大的能量定向部分,其最小高度为0.020英寸(0.5毫米).在工件之间对齐的方法,例如销钉和插口,应包括在工件设计中.必须指出,为熔剂焊封所作的设计一般可以修改,以符合超声波焊接的要求.要避免:能量导向部分设计的典型错误是将结合面削成45度的斜面.图12表示这样做的结果.图13表示便于对齐的阶梯式连接.这种连接设计适合于在侧面不宜有过多的熔体或溢料之场合.榫槽连接法:(图14)主要用于焊接和防止内外烧化.不过,需要保持榫舌两侧的间隙使模制较困难.锥度可根据模塑实践经验进行修改,但必须避免在零件之间产生任何障碍.图15表示适用于超声波焊接的各种基本能量导向连接法,这些可作为典型连接部分的参考,对具体用途应稍作修改.图16表示需要严密封接时所用的剪切连接法,特别适合于晶型树脂(尼龙、聚甲醛、热塑性聚酯、聚乙烯、聚丙烯和聚苯硫).因为晶型树脂从固态到熔化改变迅速、温度范围窄、能量导向式连接就不是最佳方法,原因是来自导向部分的熔融树脂在它能与相结合的表面熔合之前会迅速凝固.剪切连接法的焊接方法是:首先熔化较小的开始接触区域,然后继续熔化沿着垂直壁的阻碍部分,使零件压在一起.为了便于自定位,需要引入端,而且必要时可设一个溢料收集点.连接强度与焊缝的垂向尺寸(焊接深度)有关,而且可以调整以满足应用的要求.对于超过零件强度的连接强度,建议深度为壁厚的1.25倍.对于连接的典型阻阻碍范围列于下表内:底部零件的壁必须用夹具支持在焊缝处,夹具必须与此零件的外部轮廓吻合,以免在焊接压力下向外挠曲.顶部零件应尽可能薄,实际上象是一个盖子,以防向内挠曲,对于中间壁连接,最好采用图17所示的榫槽连接法,这种连接对于大零件也有用.图18表示各种基本剪切连接设计.。
超声波塑料焊接技术详解
超声波塑料焊接技术详解一、超声波模具架设不准确、受力不平均怎么办?在一般认为超声波作业时,产品与模具表面只要接触准确就可以得到应该的超声波焊接机焊接效果,其实这只是表面的看法,超声波既然是摩擦振,就会产生音波传导的现象.我们如果单只观察硬件(模具)的稳合程度,而忽略了整合型态的超声波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超声波焊接的作业方式是传导音波,使成振动摩擦转为热能而焊接. 这时候超声波模具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。
另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。
就这整体而言,势必产生产品焊接线焊接程度的差异。
所以也就必须作修正,如何修正,那就是靠超声波焊接机本身的水平螺丝,或是贴较薄的胶带或铝箔来克服了。
二、塑料产品材质配合不当?每一种塑料材质的熔点,各有不同,例如ABS塑料材质的熔点约115℃,耐隆约175℃、PC之145℃以上、PE约85℃为例:ABS与PE二种材质的熔点差距太大,超声波焊接势必困难。
而ABS与PC二种材质,亦有差距,但已非前项差距如此之大,是以尚可焊接,但在超声波功率相同,能量扩大相同的情况下,相异的塑料材质,绝无法比相同材质的焊接效果好。
三、超声波机台输出能量不足该怎么处理?客户在购买超声波焊接机时,通常较难预料未来产品发展的规格,所以会遇到较大产品对象超出超声波标准焊接的情形。
此时在不增加成本的预算下,只得以现有设备来作业生一、超声波模具架设不准确、受力不平均怎么办?在一般认为超声波作业时,产品与模具表面只要接触准确就可以得到应该的焊接效果,其实这只是表面的看法,超声波既然是摩擦振,就会产生音波传导的现象.我们如果单只观察硬件(模具)的稳合程度,而忽略了整合型态的超声波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超声波焊接的作业方式是传导音波,使成振动摩擦转为热能而焊接. 这时候超声波模具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。
塑胶件的超声波焊接工艺下
焊头
焊头
夹具
近场焊接
远场焊接
ห้องสมุดไป่ตู้
A 超声波焊接—近场焊接与远场焊接
有资料规定:在20KHz系统中,将焊头/上焊件 界面到焊接界面之间的距离小于6mm的称为近场焊 接;大于6mm的称为远场焊接。 当声波频率是20KHz时,由于聚合物结构差异, 声波在聚合物中的波长约为6cm~13cm。
(2)超声波焊口设计一般分为(端面式)和(剪切式)。
(3)在20KHz系统中,将焊头/上焊件界面到焊接界面之间的 距离小于6mm的称为(近场)焊接;大于6mm的称为(远场) 焊接。
2.判断题 (1)所有焊接尽量使用近场焊接。(正确) (2)聚合物的熔点越高,其焊接所需的超音波能量越 少 (。3)(半错结误晶)聚合物焊接不建议使用远场。(正确)
A 超声波焊接—近场焊接与远场焊接
近场焊接:
20kHz操作系统中,焊头与焊接面距离远小于 波长。焊接面与焊头表面的振幅几乎相等。 此类焊接质量易于控制。
远场焊接:
焊头距离焊接面距离近于或大于波长,焊接面 的振幅取决于声波在聚合物中的传输性质。 较近场焊接:耗能大、焊件伤害大。 此类焊接质量更加难以控制。
A 超声波焊接--焊接构件设计应注意的问题
设计中常见的几种现象说明
焊接终止定位:一般不建议使用结构定位 导向、定位:设计中常出现缺失 焊接方式选择:端面、剪切、端面+剪切 焊接缺陷:
假焊:材料、结构、工艺、工装 焊伤:结构、焊口设计、焊头接触面位置及面积、
工装、功率
1.填空 (1).非结晶聚合物分子排列无序,能有效传输(超音速)振 动,实现良好焊接的压力,振幅范围宽。
面质量要求较高
导融线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。