超声波焊接技术
超声波焊接技术

1.超声焊接2. 振动焊接振动焊接是摩擦焊接过程,其间被焊接的制件在压力下磨擦到一起直到生成的磨擦和剪切热量使接触面达到充分熔融状态。
一旦熔融膜已经形成渗入到足够深的沓接区域,相对运动停止,在压力作用下焊缝冷却并固化。
振动焊接的材料因素与超声焊接类似3. 旋转焊接旋熔式塑胶熔接是将塑胶工件相互摩擦所产生之热力,使塑胶工件接触面产生熔解,在靠外在压力、驱动促使上下工件旋转凝固为一体,而定位旋熔是在设定时间旋转,瞬间停在设定的位置上,成为永久性的熔合。
旋转熔接机对于超音波范围以外圆形塑胶,适用于不易熔接塑胶,且韧性较高之圆形产品,如:脱水容器,汽机车滤油杯,喷水接头,热水瓶气胆,保温杯,球状玩具,油漆筒,保温锅,过滤心,浮标等。
藉高速振动旋转磨擦生热原理,使塑胶加工物熔接表面熔解而达到熔接的效果。
旋转焊接用来连接具有旋转对称接合表面的制件,它属磨擦焊接工艺。
是连接可大可小的圆柱形热塑性塑料制件的最有效的工艺。
用旋转焊接技术组装的制件常常具有与周边垂直的连接板等特征。
它的生要加工变量是相对剪切速率、焊接压力和焊接时间。
旋转焊接的接头强度取决于材料、接头设计和所用的加工条件;多数热塑性塑料可达到强的气密封接焊缝。
旋转焊接对透射性能不好的材料特别合适。
4. 热板焊接主要通过一个由温度控制的加热板来焊接塑料件。
焊接时,加热板置于两个塑料件之间,当工件紧贴住加热板时,塑料开始熔化。
在一段预先设置好的加热时间过去之后,工件表面的塑料将达到一定的熔化程度,此时工件向两边分开,加热板移开,随后两片工件并合在一起,当热板停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能超越于原材料强度,整个焊接过程完成。
5. 感应焊接电磁焊接(电感焊接)是利用能达到熔化温度的电感能量连接热塑性制件的方法。
也被称作特种插入焊接,此间磁致旋光聚合插入物被一个高频电磁场加热。
6. 接触(电阻)焊电导线或条带被直接放入接头界面,电线连接在电路中且用电阻损失直接加热。
超声波焊接技术

超声波金属焊接技术详解定义:超声波金属焊接利用高频振动波传递到需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合。
原理:超声波金属焊接是利用超声频率的机械振动能量,连接同种金属或异种金属的一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将机械能转变为内能、形变能及有限的温升。
两母材达到再结晶温度下发生的固相焊接。
在超声焊接过程中,换能器把高频电信号转化为超声振动信号,高频振动通过焊接工具头传递到待焊金属表面,界面金属氧化膜在一定的压力和超声振动的剧烈摩擦作用下破碎,界面洁净金属接触并在摩擦和超声软化的共同作用下,进一步产生塑性流动和扩散使连接面积逐渐增大最终形成可靠的连接。
系统组成:一套超声波焊接系统的主要组件包括超声波发生器/换能器/变幅杆/焊头三联组/模具和机架。
超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40KHz电能。
被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。
焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将需要焊接的部件区域熔化。
焊接过程:过渡阶段为清除焊件表面膜和氧化物的短暂过程,稳定阶段为界面产生相互扩散并使相互扩散稳定的过程。
在过渡阶段,焊件表面氧化物膜由于强烈磨擦作用破碎,此时磨擦为主要热源,工件温度升高使工件材料屈服强度降低,有利于工件表面氧化膜破碎及发生塑性变形,对接头形成有重要作用。
稳定阶段,金属接触表面变得平滑后摩擦作用减弱,热量由于产生塑性变形而在焊接界面聚集,在此过程中的热量是由工件的塑性变形过程产生,工具头施加的压力致使界面原子之间产生作用力而形成的金属连接过程。
工艺参数的影响:超声金属焊接过程的主要工艺参数有焊接压力、焊接能量/时间、工具头振幅和工具、头齿纹与尺寸等。
超声波焊接

超声波焊接超声波焊接是一种应用超声波技术进行焊接的方法,它具有高效、可靠、环保等特点,广泛应用于工业生产中。
本文将从超声波焊接的原理、设备、应用领域以及优势等方面进行介绍。
超声波焊接是利用超声波振动产生的能量实现焊接材料的熔接。
超声波是一种频率超过人耳能听到的声音的机械波,其频率一般在20kHz到70kHz之间。
超声波焊接的原理主要是利用超声波振动使材料分子的间距变小,从而产生高温高压的效果,促使材料发生熔接现象。
在焊接过程中,超声波振动会穿透至焊材表面,使接触部分的温度升高,然后通过适当的加压使材料熔化并熔接在一起,最终形成焊接接头。
超声波焊接设备主要由超声波振动系统、机械系统和电气系统组成。
超声波振动系统是超声波焊接的核心部分,它由发声器和承载器组成。
发声器是将电能转化为机械振动的装置,承载器则是将振动传递给焊接件的装置。
机械系统主要包括焊接头、压力机构等部分,用于在焊接过程中施加适当的压力。
电气系统则提供了超声波发生器、控制电路、传感器等设备,用于控制焊接过程的各个参数。
超声波焊接在工业生产中有着广泛的应用。
它可以焊接各种金属材料,如铝、铜、钢等,也可以焊接塑料和纺织品等非金属材料。
超声波焊接常被运用在汽车制造、电子设备生产、包装行业等领域。
例如,在汽车制造中,超声波焊接被应用于制造车灯、排气管和电池等零部件;在电子设备生产中,它被用于焊接电子元件和连接导线等;在包装行业中,超声波焊接可用于封口、划线和熔接等工作。
超声波焊接具有许多优势。
首先,它的焊接速度快,能够在短时间内完成焊接工作,提高生产效率。
其次,超声波焊接的焊接接头牢固可靠,具有较高的拉伸强度和密封性能。
再次,它适用于焊接的材料种类广泛,包括金属、塑料和纺织品等。
此外,超声波焊接过程不需要使用焊接剂和填料,所以它是一种环保、无污染的焊接方法。
总结起来,超声波焊接是一种高效、可靠、环保的焊接方法,广泛应用于多个行业中。
随着技术的不断进步,超声波焊接设备的性能和效果也在不断提高,为我们的生产和生活带来了许多便利和效益。
超声波焊接技术概述

超声波焊接技术概述超声波焊接是一种常用于塑料焊接的先进技术。
这种技术通过高频振动的超声波,将焊接部分的塑料材料加热至临界温度,然后使其迅速冷却固化,从而实现材料的焊接。
超声波焊接的原理是利用超声波振动产生的高频机械能,将其转化为热能。
具体来说,焊接部分的塑料材料放置在焊接头之间,然后施加一定的振动频率和振幅。
当超声波通过焊接头传递到塑料材料时,振动会使塑料分子摩擦碰撞,从而生成热量。
热量的积累会使温度升高,直至达到塑料的熔融温度。
此时,超声波停止振动,焊接头压力使熔化的塑料材料迅速冷却并固化,形成一个坚固的焊接接头。
超声波焊接技术具有许多优点。
首先,焊接速度快。
相比传统的热板焊接或热空气焊接,超声波焊接的热量传递更快,焊接时间更短,从而提高了生产效率。
其次,焊接过程中无需使用明火或显著增加材料温度,减少了焊接部分的变形和热损伤。
此外,超声波焊接具有良好的焊接强度和密封性,能够实现高质量的焊接效果。
超声波焊接技术广泛应用于各种塑料制品的生产过程中。
例如,塑料容器、电子产品外壳、汽车零部件等。
此外,超声波焊接还可以用于不同材料的焊接,例如塑料与金属的焊接。
这种多功能性使得超声波焊接成为许多行业的首选焊接方法。
然而,超声波焊接技术也存在一些限制和挑战。
首先,焊接部分的形状和尺寸对焊接质量有较大影响。
较复杂的形状和较大的尺寸可能会导致焊接接头不均匀或焊接强度不足。
其次,不同塑料材料的焊接特性不同,需要根据具体材料进行合适的超声波焊接参数设置。
最后,由于超声波焊接设备和工艺的高成本,适用于小批量或高要求产品的生产。
总体而言,超声波焊接技术凭借其高效、高强度和高质量的优点,在各个领域得到广泛应用。
随着科技的不断进步和发展,超声波焊接技术有望进一步改进和完善,以满足不同产业对于焊接质量和效率的需求。
超声波焊接技术

超声波焊接技术大全n ewmaker超声波焊是一种快捷,干净,有工工国效的装配工艺,用来装配处理热塑性塑料配件,及一些合成构件的方法。
目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!它取代了溶剂粘胶机械坚固及其它的粘接工艺是一种先进的装配技术!超声波焊接不但有连接装配功能而且具有防潮、防水的密封效果。
超声波的优点:1,节能2,无需装备散烟散热的通风装置3,成本低,效率咼4,容易实现自动化生产!超声波焊接机的工作原理!超声波焊接装置是通过一个电晶体功能设备将当前50/60HZ的电频转变成20KHZ或40KHZ的电能高频电能,供应给转换器。
转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。
焊头是将机械振动能直接传输至需压合产品的一种声学装置。
振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!!焊接:指的是广义的将两个热塑性塑料产品熔接的过程。
当超音停止振动时,固体材料熔化,完成焊接。
其接合点强度接近一整块的连生材料,只要产品的接合面设计得匹配,完全密封是绝对没有什么问题的,碟合:熔化机械锁形成一个材质不同的塑料螺栓的过程。
嵌入:将一个金属无件嵌入塑料产品的预留孔内。
具有强度高,成型周期短安装快速的优点!!类似于模具设计中的嵌件!11Ultrasonic WeldingHatt jitint itiretw(nti J ildltCilYf ( pWelding Technique• Poor but joint design< Eicesske M6l (9 timff f E?(強睜钊叫 汕卑「gy * £xlidtng nielt re suds in a visual defect♦ Improved bull J G I nt design• Reduced w»ld tlnw * R^uc&d w&ld &n@rgy • Exuding 12雷H (/Isible) • FE?»sh 俪 |p jddwd* R&ductlanln wflIM ar«a • Exiting mol( not mult In a visual defect♦ Step joint design# Fwprcv^d -sneM f«si$nnce • Exiting nt< does nor mult in a visual dated♦ Assist in locaiiftg 因厲昂Ultras onic Weldi ng 1W elding TechniquesUltrasonic WeldingAirorplious polymerSeml-crystalhie polymer Ditn” Small part Largs part Small part L 白 ”g 电 part hS3 - 0405 *0.605 - 070.1 ・ to0 60° (0 9Q D90®rypiattdimlttr di tin ■» > in/! \iiHiUimt ^7 s/Ultras onic Weldi ng2Welding TechniquesUltrasonic WeldingUltras onic Weldi ng 3Welding TechniquesUltrasonic Weldinga严surrounding energy directorI —Ultras onic Weldi ng 4.弯曲性成音波将配件的一部分熔化再组成一个塑料的突起部位或塑料管或其它挤出配件。
超声波焊接作业指导书

超声波焊接作业指导书
一、引言
超声波焊接是一种高效、无污染、低能耗的金属焊接技术,在工业生产中得到了广泛应用。
本指导书旨在为操作人员提供超声波焊接作业的详细步骤和注意事项,以确保焊接质量和操作安全。
二、设备准备
1. 验证设备是否正常工作,检查超声波焊接机的电源、超声波振动头等部件是否完好。
2. 确保焊接材料的质量和准备好所需的辅助工具,如夹具、夹具垫片等。
三、超声波焊接操作步骤
1. 清洁工作区域,确保焊接材料表面干净无油污。
2. 将待焊接的两个工件放置在夹具上,确保工件位置准确。
3. 调整焊接参数:根据焊接材料的厚度和类型,设置超声波焊接机的功率、振幅、焊接时间等参数。
4. 打开超声波焊接机的电源开关,启动超声波振动头。
5. 触发超声波焊接机,开始焊接过程。
焊接头将会施加一定的
压力在工件上,同时产生超声波振动,使工件表面快速摩擦融化,
完成焊接。
6. 焊接完成后,停止超声波焊接机的振动,取下焊接好的工件。
四、注意事项
1. 在操作过程中要戴好防护手套、护目镜等个人防护装备,以
保障人员的安全。
2. 确保工件的干净和定位准确,避免焊接材料移动或偏离夹具。
3. 根据不同的焊接材料,及时调整超声波焊接机的焊接参数,
以获得最佳的焊接效果。
4. 注意超声波振动头与工件的接触情况,确保接触紧密而不会
造成过度摩擦或所需压力不足。
5. 在操作过程中,要定期检查焊接设备的工作状态,确保设备
正常运行和安全使用。
超声波焊接等级划分

超声波焊接等级划分一、一级超声波焊接一级超声波焊接是最基本的等级,焊接质量较低。
在一级超声波焊接中,焊接接头的强度和气密性较差,容易出现焊接不牢固的情况。
因此,一级超声波焊接通常应用于对焊接质量要求不高的场景,如一些非关键零部件的生产。
二、二级超声波焊接二级超声波焊接的焊接质量相对较高。
在二级超声波焊接中,焊接接头的强度和气密性较一级焊接有所提高,焊接质量更加可靠。
二级超声波焊接常应用于对焊接质量要求较高的场景,如电子设备、汽车零部件等的生产。
三、三级超声波焊接三级超声波焊接是最高等级的焊接技术,焊接质量最好。
在三级超声波焊接中,焊接接头的强度和气密性达到最高水平,焊接质量非常可靠。
三级超声波焊接通常应用于对焊接质量要求极高的场景,如航空航天领域、医疗器械等的生产。
超声波焊接等级的划分主要根据焊接接头的强度和气密性来确定。
随着等级的提高,焊接接头的强度和气密性也会相应提高,焊接质量更加可靠。
因此,在实际应用中,根据产品的具体要求和使用环境,选择合适的超声波焊接等级非常重要。
除了焊接接头的强度和气密性外,超声波焊接还具有许多其他优点。
首先,超声波焊接可以实现无损焊接,不会对焊接接头和周围材料造成热损伤。
其次,超声波焊接速度快,效率高,能够大幅度提高生产效率。
此外,超声波焊接还可以焊接不同类型的材料,具有较好的适用性。
超声波焊接是一种重要的焊接技术,根据焊接质量要求的不同可以划分为不同的等级。
每个等级的超声波焊接都有其特点和应用场景,选择合适的等级对于保证焊接质量至关重要。
随着技术的不断发展,相信超声波焊接在工业生产中的应用会越来越广泛。
超声波焊接应用场景

超声波焊接应用场景
超声波焊接是一种利用超声波振动产生的热能将物体进行连接的技术。
它在多个领域有着广泛的应用,以下是一些超声波焊接的应用场景。
1. 汽车制造业:超声波焊接可以用于汽车制造业中的零部件连接,例如汽车灯罩、仪表盘、车门板等。
超声波焊接可以快速、准确地将这些零部件连接在一起,保证连接的强度和密封性。
2. 医疗器械制造:超声波焊接在医疗器械制造中有着重要的应用。
例如,超声波焊接可以用于制造各种医用塑料容器,如输液瓶、血袋等。
超声波焊接可以确保容器的密封性和抗压性能,从而保证医疗器械的安全性和可靠性。
3. 电子产品制造:超声波焊接在电子产品制造中也有着广泛的应用。
例如,超声波焊接可以用于手机、电视、电脑等电子产品的组装。
通过超声波焊接,可以将电子元件连接在一起,确保电子产品的稳定性和可靠性。
4. 塑料制品制造:超声波焊接在塑料制品制造中起着重要的作用。
例如,超声波焊接可以用于制造塑料管道、塑料容器、塑料玩具等。
超声波焊接可以快速、高效地连接塑料制品,确保连接的牢固性和密封性。
5. 包装行业:超声波焊接在包装行业中有着广泛的应用。
例如,超
声波焊接可以用于制造塑料包装袋、封口袋等。
通过超声波焊接,可以将塑料薄膜连接在一起,形成牢固的封口,保持包装的完整性和密封性。
总的来说,超声波焊接在多个领域都有着重要的应用。
它可以快速、高效地将物体连接在一起,确保连接的强度和密封性。
超声波焊接技术的应用不仅提高了生产效率,还提高了产品的质量和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨工业大学金属工艺学课程论文题目:超声波金属焊接技术的综合介绍院系:能源科学与工程学院专业:能源与动力工程班级: 1502403学号: 1150240325姓名:石嘉成超声波金属焊接技术的综合介绍石嘉成1(1.哈尔滨工业大学能源科学与工程学院)摘要:本文主要介绍特种焊接中的超声波金属焊接技术,将从超声波焊金属接技术的应用背景、工艺过程、特点及实际应用情况及最新发展等发面展开介绍。
通过文献的查阅得到了以下的结论:超声波焊接的应用越来越广泛,它具有能耗低、压力小、速度快、稳定性高、程序简便、精度高等优点,虽然对仪器的要求较高导致成本较高,但是仍不失为一种很有前景的焊接技术。
关键词:超声波焊接;金属;工艺过程;文献查阅1.超声波金属焊接技术应用背景超声波金属焊接起源于1950年的美国1。
超声波金属焊接在电子工业、电器制造、新材料的制备、航空航天及核能工业、食品包装盒、高级零件的密封技术方面都有很广泛的应用,加上其节能、环保、操作方便等突出优点,对于我国建设资源节约型、环境友好型的现代化社会,超声波金属焊接将发挥很大的促进作用2。
2.超声波焊接技术的原理及工艺过程2.1超声波金属焊接技术的原理超声波金属焊接主要过程是被夹持在一起的两块工件受到硬砧和焊接端头之间的静压力,将超声波能量传输给工件顶部,维持短暂的时间,待结合表面之间的摩擦破碎氧化膜和其它沾污,每个表面上暴露出清洁新生的金属,从而使两个表面相互结合。
一旦两表面处于一个原于间距内,就会产生金属型结合,由于超声波清理作用是连续的,就没有时间来形成阻碍原于接近的新氧化膜。
完成最终的冶金结合时,无电弧和飞溅,无焊缝金属的熔化,铸造组织无熔化,厚度变形也很小3。
2.2超声波金属焊接技术的工艺过程如图1所示,超声波焊接过程分为4个阶段:第1阶段:焊头与零件接触,施压并开始振动。
摩擦发热量熔化导能筋,熔液流入结合面。
随着两零件之间距离的减少,焊接位移量(两零件之间由于熔体流动产生的距离减小值)开始增加。
起初焊接位移量快速增加,然后在熔化的导能筋铺展并接触下零件表面时放慢增速。
在固态摩擦阶段,发热是由于两表面之间的摩擦能和零件中的内摩擦产生的。
摩擦发热使聚合物材料升温至其熔点。
发热量取决于作用频率、振幅和压力4。
第2阶段:熔化速度增加导致焊接位移量增大及两零件表面相接触。
此阶段形成薄的熔化层,由于持续发热,熔化层厚度增加。
此阶段的热量是由黏性耗散产生。
第3阶段:焊缝中溶液层厚度保持不变且伴随着恒温分布,出现稳态熔化。
第4阶段:在经过设定的时间或达到特定的能量、功率级或距离之后,电源切断,超声振动停止,开始进入第 4阶段。
压力得以保持,使部分额外熔液挤出结合面。
在焊缝冷却和凝固时达到最大位移量,并发生分子间扩散5。
3.超声波金属焊接技术的特点3.1优点超声波金属焊接是一项全新的技术,对其研究和应用还处于发展阶段,但毋庸置疑的是,它在很多方面都优越于传统的焊接技术,具体表现为以下几个方面。
3.1.1压力小、能耗低超声波金属焊接不同于传统焊接的最大优点是其压力小且能耗低,这在很大程度上节约了能量成本,并且其还能将不同种类的金属材料焊接在一起,突破了原本受技术限制而不能实现异种金属焊接的瓶颈。
另外,在金属零件快速成形的过程中,其可以埋入一些功能器件来实现智能金属基复合材料,这是传统焊接技术所不能达到的6。
3.1.2速度快、稳定性高超声波金属焊接可以通过使用点焊和连续焊,来保证焊接速度的提升,它不但能将不同物理性能的材料焊接完好,还能应用于其他技术不能达到的厚薄相差悬殊以及多层金属片之间的焊接。
由于其焊点强度非常高,导致其具有很好的稳定性。
3.1.3 程序简便、精度高超声波金属焊接技术在焊接过程中只需简洁的程序就能保障焊接成品的质量,其程序的简便之处体现在以下几点:首先,无需采用水冷和气体的保护,省去了对焊接成品的退热处理过程;其次,不用焊条,焊接的金属不被直接加热,减少能源损耗,避免加热的麻烦;最后,不需要添加焊剂,省去后期对成品的清洁处理以及环保处理超声波金属焊接还使用了一种功率电子线路,能够通过电气控制达到高密度的焊接7。
3.2 缺点超声波金属焊接在其发展过程中也产生了一些弊端,值得重视并去研究改善。
这些缺点表现为以下几个方面。
3.2.1 结合系统存在问题超声波金属焊接技术在焊接过程中,要实现多种协作系统的相互配合,形成一个紧密结合的整体系统,这个系统包括超声波发生器、声学系统和机械系统。
若整个系统的配合度和协调度不一致,就会导致系统在稳定性、可操作性以及可靠性方面存在一定的问题。
3.2.2焊机制造困难且对其机理认识不足。
由于超声波金属焊接技术能够焊接密度大、厚度高的金属以及异种金属,所以对于实现这种技术的焊机的制造要求较高。
相对于传统焊机而言,超声波金属焊机的制造过程更加困难且成本较高,并且由于影响焊接工艺参数的因素较多,不易于对焊机机理的认识和总结。
3.2.3“开敞性”较差且易出高频振动超声波金属焊机的“开敞性”比较差,其伸入尺寸被严格限定在焊接所允许的范围内,并且其接头形式仍然只限于搭接接头,还没有在技术上取得进一步的突破。
同时,超声波金属焊机在焊接过程中的焊点容易出现高频振动,可能致使成品工件的边缘受损,尤其是硬而脆的材料。
3.2.4 检测困难对于目前超声波金属焊接技术的发展情况来说,对焊接成品质量的检测还是很难做到的,与其相配套的检测设备还没有普及,而适用于传统焊接技术的检测方法又无法适用于新技术。
检测技术跟不上就为大批量的生产制造了一定的困难8。
4.超声波金属焊接的实际应用情况目前超声波金属焊接主要有四个方面的应用:点焊、滚焊、线束和封管,广泛应用于:汽车、制冷、太阳能、电池、电子等各个领域。
目前超声波金属焊接的具体应用主要有:①动力电池多层正、负极焊接;镍氢电池镍网与镍片焊接;②锂电池、聚合物电池铜箔与镍片焊接;铝箔与铝片焊接;铝片与镍片焊接;③汽车线束;电线成型;电线互焊;多条电线互焊成线结;铜、铝线转换电线、电缆与各种电子元件、接点、连接器、端子焊接;④太阳能电池、平板太阳能吸热板、铝塑复合管滚焊,铜、铝板拼接;⑤电磁开关、无熔丝开关等大电流接点、触点、异种金属片的焊接;⑥冰箱、空调等行业铜管封尾;真空器件铜、铝管焊接等9。
4.超声波金属焊接技术的最新发展超声波焊接技术有很多发展,下面对几项最新发展进行简单介绍。
4.1超声波焊接机理研究发展华南理工大学机械工程学院的杨圣文和汤勇做出了重要贡献,他们通过SEM图来观察铜片与铜管的超声波焊接,并得出结论:超声波金属焊接过程是一种包括金属键合和机械嵌合等作用的物理冶金过程。
4.2超声波焊接性能研究发展过程是一种包括金属键合和机械嵌合等作用的物理冶金过程。
其次,在超声波焊接性能的影响因素方面,江苏大学材料科学与工程学院的张春来和王粒粒通过研究表面状态、焊接材料厚度对超声波焊接性能的影响,得出以下结论:表面状态的影响较小,焊接材料厚度与焊接区域温度升高成反比;华南理工大学机械工程学院的张铱洪和马传艺通过研究推导出了焊接区域的理论温度。
最后,在焊接性能的模拟分析方面,香港科技大学Yong Ding 等人得出焊接区域的应力应变分布,并详细分析了实际焊接情况和摩擦能量与焊点强度之间的关系10。
4.3金属中迈入FBG传感器金属中埋入 FBG 传感器,以制造智能金属复合材料与结构;可通过模拟埋入过程来进一步分析其焊接机制;③以前的模拟均是从宏观角度通过热-机耦合研究超声波金属焊接温度场和应力分布,今后从细观力学的角度研究超声波振动对晶粒和织构的影响也是未来研究的一个重要方向11。
4.4最佳的超声波金属滚焊焊接工艺参数范围英国拉夫堡大学Kong等人通过大量试验分别得出了0.1 mm厚 3003与 6061这 2种铝合金薄片各自最佳的滚焊焊接工艺参数范围,并结合线性焊接密度(真实焊接连接区域占整个焊接面积的比例)与焊接试样剥离强度以及微观组织分析来评价试样的焊接质量。
5.结束语以上综述过程中,对超声波金属焊接从应用背景、工艺过程、特点及实际应用情况及最新发展等发面展开介绍,在查阅文献整理文献的过程中自己对这种焊接方式也有了较好的了解。
1徐俊辉, 刘博, 宋勇. 超声波金属焊接的现状及其发展趋势探讨[J]. 引文版:工程技术, 2015(43):282-282.2闫久春, 杨春利, 刘会杰,等. 超声复合焊接研究现状及科学问题[J]. 机械工程学报, 2015, 51(24):41-49.3李佳音. 超声波扩散焊接工艺研究[D]. 南京航空航天大学, 2007.4王宋. 超声波金属焊接机理及实验装置研究[D]. 河南理工大学, 2009.5张胜玉. 塑料超声波焊接技术(下)[J]. 橡塑技术与装备, 2015, 25(10):7-15.6居炎鹏. 超声波金属焊接的研究现状与展望[J]. 商品与质量, 2016(4).7涂益民, 邱然锋, 石红信,等. 轻金属材料超声波焊接的研究现状[J]. 轻合金加工技术, 2011, 39(1):16-20.8徐俊辉, 刘博, 宋勇. 超声波金属焊接的现状及其发展趋势探讨[J]. 引文版:工程技术, 2015(43):282-282.9刘晓兵, 李鹏, 夏慧,等. 金属超声波焊接技术及其应用[J]. 热加工工艺,2015(15):14-18.10韩建辉. 超声波金属焊接的现状及其发展趋势探讨[J]. 科技创新与应用,2015(35):110-110.11朱政强, 吴宗辉, 范静辉. 超声波金属焊接的研究现状与展望[J]. 焊接技术, 2010, 39(12):1-6.。