(完整word)合并同类项经典提高练习题

合集下载

【专业文档】合并同类项练习题.doc

【专业文档】合并同类项练习题.doc

合 并 同 类 项A1. 找下列多项式中的同类项:(1)5253432222+++--xy y x xy y x (2)b a b a b a 2222132+- (3)322223b ab b a ab b a a +-++- (4)13243222--+--+x x x x x x2. 合并下列多项式中的同类项:(1)b a b a 22212+; (2)b a b a 222+-(3)b a b a b a 2222132-+; (4)322223b ab b a ab b a a +-+-+3. 下列各题合并同类项的结果对不对?若不对,请改正。

(1)、422532x x x =+(2)、xy y x 523=+(3)、43722=-x x(4)、09922=-ba b aB1.求多项式13243222--++-+x x x x x x 的值,其中x =-2.2. 求多项式322223b ab b a ab b a a +-++-的值,其中a =-3,b=2.C1.填空:(1) 如果23k x y x y -与是同类项,那么k = .(2) 如果3423x y a b a b -与是同类项,那么x = . y = .(3) 如果123237x y a b a b +-与是同类项,那么x = . y = .(4) 如果232634k x y x y -与是同类项,那么k = .(5) 如果k y x 23与2x -是同类项,那么k = .2.已知213-+b a y x 与252x 是同类项,求b a b a b a 2222132-+的值。

情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。

合并同类项计算题(可编辑修改word版)

合并同类项计算题(可编辑修改word版)

合并同类项计算题1.a-(a-3b+4c)+3(-c+2b)2 .(3x2-2xy+7)-(-4x2+5xy+6)3.3ab-4ab+8ab-7ab+ab=. 4.7x-(5x-5y)-y=.5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=. 6.-7x2+6x+13x2-4x-5x2=.7.2y+(-2y+5)-(3y+2)=.11.(2x2-3xy+4y2)+(x2+2xy-3y2)=.12.2a-(3a-2b+2)+(3a-4b-1)=.13.-6x2-7x2+15x2-2x2=.14.2x-(x+3y)-(-x-y)-(x-y)=.16.2x+2y-[3x-2(x-y)]=.17.5-(1-x)-1-(x-1)=.18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=.22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=.23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为.25.一个多项式减去 3m4-m3-2m+5 得-2m4-3m3-2m2-1,那么这个多项式等于.26.-(2x2-y2)-[2y2-(x2+2xy)]=.27.若-3a3b2 与5ax-1by+2 是同类项,则x=,y=.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是.30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).31.3a-(2a-3b)+3(a-2b)-b=.32.化简代数式x-[y-2x-(x+y)]等于.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.34.3x-[y-(2x+y)]=.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于.36.已知x≤y,x+y-|x-y|=.37.已知x<0,y<0,化简|x+y|-|5-x-y|=. 38.4a2n-an-(3an-2a2n)=. 39.若一个多项式加上-3x2y+2x2-3xy-4 得2x2y+3xy2-x2+2xy,则这个多项式为.40.-5xm-xm-(-7xm)+(-3xm)=.41.当 a=-1,b=-2 时,[a-(b-c)]-[-b-(-c-a)]=.43.当a=-1,b=1,c=-1 时,-[b-2(-5a)]-(-3b+5c)=.44.-2(3x+z)-(-6x)+(-5y+3z)= .45.-5an-an+1-(-7an+1)+(-3an)=.46.3a-(2a-4b-6c)+3(-2c+2b)=.48.9a2+[7a2-2a-(-a2+3a)]=.50.当2y-x=5 时,5(x-2y)2-3(-x+2y)-100=.(三)化简70.(4x2-8x+5)-(x3+3x2-6x+2).72.(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2). 73.-{2a2b-[3abc-(4ab2-a2b)]}. 74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b). 75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).77.(4a-2b-c)-5a-[8b-2c-(a+b)].78.(2m-3n)-(3m-2n)+(5n+m).79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab). 80.xy-(2xy-3z)+(3xy-4z).81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).83.3x-(2x-4y-6x)+3(-2z+2y).84.(-x2+4+3x4-x3)-(x2+2x-x4-5).85.若 A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算 A+B.86.已知 A=3a2-5a-12,B=2a2+3a-4,求 2(A-B).87.2m-{-3n+[-4m-(3m-n)]}.88.5m2n+(-2m2n)+2mn2-(+m2n).89.4(x-y+z)-2(x+y-z)-3(-x-y-z).90.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).92.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).94.4x-2(x-3)-3[x-3(4-2x)+8].(四)将下列各式先化简,再求值97.已知 a+b=2,a-b=-1,求 3(a+b)2(a-b)2-5(a+b)2×(a-b)2 的值.98.已知 A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.99.求(3x2y-2xy2)-(xy2-2x2y),其中 x=-1,y=2.101.已知|x+1|+(y-2)2=0,求代数式 5(2x-y)-3(x-4y)的值.106.当P=a2+2ab+b2,Q=a2-2ab-b2 时,求 P-[Q-2P-(P-Q)].107.求 2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中 x=-3.110.当 x=-2,y=-1,z=3 时,求 5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.113.已知 A=x3-5x2,B=x2-6x+3,求A-3(-2B). (五)综合练习115.去括号:{-[-(a+b)]}-{-[-(a-b)]}.116.去括号:-[-(-x)-y]-[+(-y)-(+x)].117.已知 A=x3+6x-9,B=-x3-2x2+4x-6,计算 2A-3B,并把结果放在前面带“- ”号的括号内.118.计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y).123.合并同类项:7x-1.3z-4.7-3.2x-y+2.1z+5-0.1y.124.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn. 126.去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].127.化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.128.化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.129.计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).130.化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3).131.将 x2-8x+2x3-13x2-2x-2x3+3 先合并同类项,再求值,其中 x=-4.132.在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.133.在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-( )][y+( )]. 134.在括号内填上适当的项: (3x2+xy-7y2)-( )=y2-2xy-x2. 135.在括号内填上适当的项: (1)x2-xy+y-1=x2-( );(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.136.计算 4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.137.化简:138.用竖式计算(-x+5+2x4-6x3)-(3x4+2x2-3x3-7).139.已知 A=11x3+8x2-6x+2,B=7x3-x2+x+3,求 2(3A-2B).140.已知 A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C).141.已知 A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A.150.已知(x-3)2+|y+1|+z2=0,求 x2-2xy-5x2+12xz+3xy-z2-8xz-2x2 的值.。

合并同类项的练习题

合并同类项的练习题

合并同类项的练习题问题一:合并以下代数表达式的同类项:3x - 2y + 4x + 5y - 7x + 3y解答一:首先,我们需要确定哪些项是可以合并的同类项。

在这个表达式中,变量的幂次相同的项才可以合并。

给出的表达式为:3x - 2y + 4x + 5y - 7x + 3y首先,我们将所有的项按照变量的不同进行分类:项中包含x的有:3x,4x,-7x项中包含y的有:-2y,5y,3y现在,我们可以合并同类项:3x + 4x - 7x = 0x = 0-2y + 5y + 3y = 6y因此,合并同类项后的表达式为:0 + 0 + 0 + 6y简化后,我们得到答案:6y问题二:合并以下代数表达式的同类项:2x^2 - 3y + x^2 - 4z - 5x^2 + 2z解答二:同样地,我们首先需要确定哪些项是可以合并的同类项。

在这个表达式中,变量的幂次相同的项才可以合并。

给出的表达式为:2x^2 - 3y + x^2 - 4z - 5x^2 + 2z按照变量的不同进行分类:项中包含x^2的有:2x^2,x^2,-5x^2项中包含y的有:-3y项中包含z的有:-4z,2z现在,我们可以合并同类项:2x^2 + x^2 - 5x^2 = -2x^2-3y-4z + 2z = -2z因此,合并同类项后的表达式为:-2x^2 - 3y - 2z简化后,我们得到答案:-2x^2 - 3y - 2z通过以上两个练习题的解答,我们学习了如何合并同类项。

合并同类项是化简代数表达式的重要步骤,可以简化计算过程,使代数表达式更加简洁。

下面是更多练习题供大家巩固练习:练习题一:合并以下代数表达式的同类项:5x - 3y + 2x - 7y + 4x + y练习题二:合并以下代数表达式的同类项:3a^2 - 2b + 4a^2 - 3a - 5b - a^2练习题三:合并以下代数表达式的同类项:2m + 3n - 4m + 5n - 6m + 2n + 7n通过不断练习,相信大家能够掌握如何准确地合并同类项,进而简化代数表达式。

合并同类项专项小练习(附详细答案)

合并同类项专项小练习(附详细答案)

一、概念考察:1. 叫做同类项.二、类比思考:2×51+8×51=(2+8)×51=10×51=5102a+8a=(2+8)a=10a3xy2−5xy2+8xy2=(3-5+8) xy2=6 xy2总结:.合并同类项的法是: 。

三.实践应用1.下列单项式中,2a2bc , 16x2y ,−9 ,2x ,15a2b , 12xy2 ,12mn ,89nm其中是同类项的是。

2.把多项式4x2−5x2−2x+3x−6x2合并同类项后所得结果为。

3.合并下列各式的同类项:(1) −x−2x−4x(2) 4m2−6m2+12m2(3) 2a2−4ab+6b2−8ab−4b2(4) xy−23x2y2−45xy−12x2y24.已知8x m−1y与−23x5y3n是同类项,则m= , n= 。

5.先合并同类项,再求值。

3x2−8x+x3−3xy−2x2+3xy+10x+8 ,其中x=-26.已知关于x,y的多项式m x2+4xy−x−2x2+2nxy−3y合并后不含二次项,求n m的值。

一、概念考察:1. 所含字母相同,并且相同字母的指数也相同的项叫做同类项.二、类比思考:2×51+8×51=(2+8)×51=10×51=5102a+8a=(2+8)a=10a3xy2−5xy2+8xy2=(3-5+8) xy2=6 xy2总结:.合并同类项的法是: 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

三.实践应用1.下列单项式中,2a2bc , 16x2y ,−9 ,2x ,15a2b , 12xy2 ,12mn ,89nm其中是同类项的是12mn 和89nm2.把多项式4x2−5x2−2x+3x−6x2合并同类项后所得结果为−7x2+x。

3.合并下列各式的同类项:(1) −x−2x−4x解:原式=(−1−2−4)x=−7x(2) 4m2−6m2+12m2解:原式=(4−6+12)m2=10m(3) 2a2−4ab+6b2−8ab−4b2解:原式=2a2+(−4−8)ab+(6−4)b2=2a2−12ab+2b2(4) xy−23x2y2−45xy−12x2y2解:原式=( 1−45)xy+(−23−12) x2y2=15xy−76x2y24.已知8x m−1y与−23x5y3n是同类项,则m= 6 , n=13。

初一数学合并同类项优质专练合集(有答案)(可编辑修改word版)

初一数学合并同类项优质专练合集(有答案)(可编辑修改word版)

2018-2019 学年度苏科版数学合并同类项1.下列各组的两项中,不是同类项的是()A.2x2y3,﹣3y3x2B.23,32C.a2,b2D.﹣3ab,3ab2.下列各组整式中,是同类项的是()A.3a2b 与5ab2 B.5ay2 与2y2 C.4x2y 与5y2x D.nm2 与m2n3.若﹣2a m b4与5a2b2+n是同类项,则m n的值是()A.2 B.0 C.4 D.14.下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn 与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2 A.1组B.2 组C.3 组D.4 组5.计算x2y﹣3x2y 的结果是()A.﹣2 B.﹣2x2y C.﹣x2y D.﹣2xy26.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x7.下面是小林做的4 道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2 分,则他共得到()A.2分B.4 分C.6 分D.8 分8.若2b2n a m与﹣5ab6的和仍是一个单项式,则m、n 值分别为()A.6, B.1,2 C.1,3 D.2,39.已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A.﹣6 B.6 C.5 D.1410.合并同类项m﹣3m+5m﹣7m+…+2013m 的结果为()A.0 B.1007mC.m D.以上答案都不对11.若3x n y m 与x4﹣n y n﹣1 是同类项,则m+n= .12.若单项式2a x+1b 与﹣3a3b y+4是同类项,则x y= .13.任写一个与﹣a2b 是同类项的单项式.14.当k= 时,﹣3x2y3k与4x2y6是同类项.15.若单项式与﹣2x b y3的和仍为单项式,则其和为.16.计算:3a2b﹣a2b= .17.若单项式2x m y3与单项式﹣5xy n+1的和为﹣3xy3,则m+n= .18.把(x﹣y)看作一个整体,合并同类项:5(x﹣y)+2(x﹣y)﹣4(x﹣y)= .三.解答题(共4 小题)19.下列各题中的两项哪些是同类项?(1)﹣2m2n 与﹣m2n;(2)x2y3与﹣x3y2;(3)5a2b 与5a2bc;(4)23a2与32a2;(5)3p2q 与﹣qp2;(6)53与﹣33.20.合并同类项:(1)7a+3a2+2a﹣a2+3;(2)3a+2b﹣5a﹣b;(3)﹣4ab+8﹣2b2﹣9ab﹣8.21.已知﹣a2m b n+6与是同类项,求m、n 的值.22.如果﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,求(m﹣n)(2a﹣b)的值.参考答案一.选择题(共10 小题)1.C.2.D.3.C.4.C.5.B.6.C.7.C.8.C.9.B.10.B.二.填空题(共8 小题)11.3.12..13.a2b 14.2.15.﹣x2y3.16.2a2b.17.3.18.3(x﹣y).三.解答题(共4 小题)19.解:(1)是同类项;(2)相同的字母的指数不同;(3)所含的字母不同;(4)是同类项;(5)是同类项;(6)是同类项.答:(1)、(4)、(5)、(6)是同类项;(2)、(3)不是同类项.20.解:(1)原式=2a2+9a+3;(2)原式=﹣2a+b;(3)原式=﹣2b2﹣13ab.21.解:由﹣a2m b n+6与是同类项,得,解得.22.解:∵﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,∴a=5,a+1=b﹣1=n,﹣4+m=3,解得a=5,b=7,n=6,m=7,则(m﹣n)(2a﹣b)=3.§3.4 合并同类项第三份练习答案:参考答案1.B 2.C 3.C 4.A 5.B 6.D 7.-4xy2 -3m 9.24x 72 10.1 2 -3 11.0 12.n2xy 13.(1) 9a + x 1x2 y 8.1 3 6(2) -10a2 +14ab-2 (3)1721-b2 (4) 3x3 + 2x + 3 (5) 7(m + n)2+(m + n)a3 3 12+ ab2(6) 9a n-9a n+1 14.(1) -4a3-2a2 + 16a-3 7(2) x3-y3,-72 15.原式=(m-2)3 4 12x3+(3n—1) xy2+y,因为结果中不含有三次项,所以m=2,3n=1,因而2m+3n=2×2+1=5.16.由已知得m 1 =6,n2=4,即m-1=6 或m-1=-6,n=±2,∴m=7 或m=-5,n=±2.17.m=3,原式=-4.⎨⎨⎨⎨【基础巩固】1.计算:2x -3x =.7 上 3.4 合并同类项2. 当 m =时,-x 3b 2m与 1 x 3b 是同类项. 43. 写出-2x 3y 2的一个同类项 .4.若单项式 3x 2y n 与-2x m y 3是同类项,则 m +n = .1 a +ba -14 35. 单项式- x +y 3与 5x y 是同类项,则 a -b 的值为.6.下列各组中两个单项式为同类项的是 ( )A . 2 x 2-y 与-xy 2B .0.5a 2b 与 0.5a 2c3C .3b 与 3abcD .-0.1m 2n 与 1 nm 227.下列合并同类项正确的是 ( ) A .2x +4x=8x 2B .3x +2y =5xyC .7x 2-3x 2=4D .9a 2b -9ba 2=01 a +2 33 2b -18. 如 果 x 3y 与-3x y 是同类项,那么 a 、b 的值分别是( )⎧a = 1 A . ⎩b = 2⎧a = 0 B . ⎩b = 2⎧a = 2 C . ⎩b = 1⎧a = 1 D . ⎩b = 19. 计算 a 2+3a 2的结果是()A .3a 2B .4a 2C .3a 4D .4a 410.合并下列各式中的同类项:(1)-4x 2y -8xy 2+2x 2-y -3xy 2;(2) 3x 2 -1 - 2x - 5 + 3x - x 2 ;(3)-0.8a 2b -6ab -1.2a 2b +5ab +a 2b ;(4)5yx -3x 2y -7xy 2+6xy -12xy +7xy 2+8x 2y .11. 求下列多项式的值:(1) 2 a 2 - 8a - 1 + 6a - 2 a 2 + 1 ,其中 a = 1 .3 2 34 2(2) 3x2 y2 + 2xy - 7x2 y2 -3xy + 2 + 4x2 y2 ,其中 x=2,y=1.212.在 2x2y、-2xy2、3x2y、-xy 四个代数式中,找出两个同类项,并合并这两个同类项.【拓展提优】13.已知代数式2a3b n+1与-3a m-2b2是同类项,则2m+3n=.14.若-4xay+x2yb=-3x2y,则 a+b=.15.下面运算正确的是( )A.3a+2b=5ab B.3a2b-3ba2=0C.3x2+2x3=5x5D.3y2-2y2=116.已知一个多项式与3x2+9x 的和等于3x2+4x-1,则这个多项式是( )A.-5x-1 B.5x+1C.-13x-1 D.13x+117.合并同类项: (1)2(x-y)+3(x+y)2-5(x-y)-8(x+y)2-(x-y);(2)3a m-4a n+1-5a m+4a m+1-3;(3)2(a-2b)2-7(a-2b)3+3(2b-a)2+(2b-a)3;(4) 0.5a n - 0.4a n-1 - 0.1 +1a n-1 +1.2 518.已知 8x2y m与- x n+4 y39是同类项,求多项式 m3-3m2n+3mn2-n3的值.19.先化简,再求值:(1)3x2y2+3xy-7x2y2-5xy+2+4x2y2,其中 x=-2,y=-1.2 4(2)3ab2+0.5a3b-3ab2-5ab3-9a3b+5b3a,其中 a=1,b=11.2 2 220.用a 表示一个两位数十位上的数字,b 表示个位上的数字,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得的数与原数的和,这个和能被 11 整除吗?21.设 m 和n 均不为零,3x2y3和-5x2+2m+n y33m3 -m2 n + 3mn2 + 9n3是同类项,求的值.5m3 + 3m2 n - 6mn2 + 9n3【基础巩固】1.-x 2.12参考答案3.答案不唯一4.5 5.4 6.D 7.D 8.A 9.B10.(1)-2x2y-11xy2(2)2x2+x-6 (3)-a2b-ab (4)5x2y-xy 11.(1)-54 (2)3 12.略【拓展提优】13.13 14.3 15.B 16.A 17.(1)-5(x+y)2-4(x-y) (2)-2a m-3(3)5(a-2b)2-8(a-2b)3(4)a n+0.1 18.125 19.(1)214 (2)-3420.原数为 10a+b.调换位置后的数为 10b+a,两数和为 11a+11b,所以能被 11 整除.c dc 21. 5597§3.4 合并同类项1. 当 n 等于 3 时,下列各组是同类项的是( )A. x n 与 x 3 y n -1B . 2x n y n -1 与 3x 6-n y 23C .5x 2 y n -2 与 5y 2x n -2D .-2x 3 y 与 2x n -6 y32. 下列计算正确的是 ( ) A .2a + b =2ab B .3x 2-x 2=2 C .7mn -7nm =0 D .a + a =a 23. 如果单项式-x a +1y 3 与 1y b x 2 是同类项,那么 a ,b 的值分别为2( )A .a =2,b =3B .a =1,b =2C .a =1,b =3D .a =2,b =24. 把 多 项 式 2x 2- 5x + 3- x 2- 5 + x 合 并 同 类 项 后 , 新 得 到 的 多 项 式 是 ( )A. 二次三项式 B .二次二项式 C .单项式 D .一次多项式5.若-3x 2m y 3 与 2x 4 y n 是同类项,则 m - n 的值是()A .0B .1C .7D .-1 6.若 n 为正整数,那么(-1) n a + (-1) n +1a 化简的结果是( )A .2a 与-2aB .2aC .-2aD .0 7.合并合类项:(1) 3xy 2-7xy 2=;(2) -m -m -m =;(3) x 2 y - 1 x 2 y - 1x 2y2 3= .8. 若两个单项式 2a 3 b 2m 与- 3a n b n - l 的和仍是一个单项式, 则 m = , n = .9. 三角形三边长分别为 6x ,8x ,10x ,则这个三角形的周长为 ;当 x =3 cm 时,周长为 cm ·10. 已知 3x a +1 y b - 2 与 mx 2 合并同类项的结果是 0, a = , b = , m = .11. 定义 a b 为二阶行列式,规定它的运算法则为 a b d =ad -bc ,那么当 x =1 时,二阶行列 式 x +1 1 的值为 . 0 x -1 12.通过阅读下列各式,你会发现一些规律:xy =12 xy ,xy + 3xy =22 xy ,xy + 3xy + 5xy =32xy ,xy+ 3xy + 5xy + 7xy =42 xy ,…,则运用你发现的规律,解答 xy + 3xy + 5xy + 7xy +…+(2n - 1)xy = 。

(完整版)合并同类项经典提高练习题

(完整版)合并同类项经典提高练习题

合并同类项经典练习题1.1.单项式单项式113a b a x y +--与345y x 是同类项是同类项,,求a b -的值2.x 5-y 3+4x 2y -4x +5,其中x =-1,y =-2;3.x 3-x +1-x 2,其中x =-3;4.4.已知已知622x y 和313m n x y -是同类项是同类项,,求29517m mn --的值5.5.若若22+k k y x与n y x23的和为5n y x 2,则k= k= ,,n= 6..求5xy -8x 2+y 2-1的值,其中x =21,y =4;7..若21|2x -1|+31|y -4|=0,试求多项式1-xy -x 2y 的值.的值.8.若0)2(|4|2=-+-x y x ,求代数式222y xy x +-的值。

的值。

9.求3y 4-6x 3y -4y 4+2yx 3的值,其中x =-2,y =3。

10.10.已知已知213-+b a y x与252x 是同类项,求b a b a b a 2222132-+的值。

的值。

11.求多项式13243222--++-+x x x x x x 的值,其中x =-2.12. 求多项式322223b ab b a ab b a a +-++-的值,其中a =-3,b=2.13.有理数a,b,c在数轴上的位置如图所示化简aa+bbcc----14已知:多项式6-2x2-my-12+3y-nx2合并同类项后不含有x、y,的值。

求:2m+3n-mn的值。

15.有一道题目是一个多项式减去x+14x-6,小强误当成了加法计算,,正确的结果应该是多少?结果得到2 x2-x+3,正确的结果应该是多少?。

合并同类项练习题及答案

合并同类项练习题及答案

合并同类项练习题及答案【篇一:初一合并同类项经典练习题】、典型例题代数式求值例1 当x?2,y?时,求代数式x2?xy?y2?1的值。

例2 已知x是最大的负整数,y是绝对值最小的有理数,求代数式2x3?5x2y?3xy2?15y3的值。

例3已知合并同类项例1、合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解:(1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号) =2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (及时合并同类项)=2a+8a-8b (去中括号)=10a-8b教师寄语:如果想要看得更远,那就需要站在巨人的肩膀上!1 12122?2a?b?3?a?b?2a?b的值。

??5,求代数式a?ba?b2a?b (3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6) =6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2.已知:a=3x2-4xy+2y2,b=x2+2xy-5y2求:(1)a+b (2)a-b (3)若2a-b+c=0,求c。

解:(1)a+b=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)a-b=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2a-b+c=0∴c=-2a+b=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3.计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]教师寄语:如果想要看得更远,那就需要站在巨人的肩膀上!2=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2。

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案在初一数学的学习中,合并同类项是一个重要的知识点。

为了帮助同学们更好地掌握这一内容,下面为大家汇总了一些相关的练习题,并附上详细的答案解析。

一、基础练习题1、 3x + 2x =答案:5x解析:3 个 x 加上 2 个 x 等于 5 个 x。

2、 5y 3y =答案:2y解析:5 个 y 减去 3 个 y 等于 2 个 y。

3、 2a + 3a 5a =答案:0解析:2 个 a 加上 3 个 a 等于 5 个 a,再减去 5 个 a 就等于 0。

4、 4b 2b + 3b =答案:5b解析:4 个 b 减去 2 个 b 等于 2 个 b,再加上 3 个 b 就等于 5 个 b。

5、 6x²+ 3x²=答案:9x²解析:6 个 x²加上 3 个 x²等于 9 个 x²。

6、 8y² 5y²=答案:3y²解析:8 个 y²减去 5 个 y²等于 3 个 y²。

7、 5a²+ 2a 3a²=答案:2a²+ 2a解析:5 个 a²减去 3 个 a²等于 2 个 a²,再加上 2 个 a 不变。

8、 7b² 4b²+ 5b =答案:3b²+ 5b解析:7 个 b²减去 4 个 b²等于 3 个 b²,5 个 b 不变。

二、提高练习题1、 3x²+ 2xy 5x²+ 4xy =答案:-2x²+ 6xy解析:3 个 x²减去 5 个 x²等于-2 个 x²,2 个 xy 加上 4 个 xy 等于 6 个 xy 。

2、 5y² 3y + 2y²+ 5y =答案:7y²+ 2y解析:5 个 y²加上 2 个 y²等于 7 个 y²,-3 个 y 加上 5 个 y 等于 2 个 y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档