发电厂的回热加热系统

合集下载

热力发电厂课后习题问题详解

热力发电厂课后习题问题详解

热力发电厂课后习题答案第一章热力发电厂动力循环及其热经济性1、发电厂在完成能量的转换过程中,存在哪些热损失?其中哪一项损失最大?为什么?各项热损失和效率之间有什么关系?能量转换:化学能—热能—机械能—电能(煤)锅炉汽轮机发电机热损失:1)锅炉热损失,包括排烟损失、排污热损失、散热损失、未完全燃烧热损失等。

2)管道热损失。

3)汽轮机冷源损失: 凝汽器中汽轮机排汽的气化潜热损失;膨胀过程中的进气节流、排气和部损失。

4)汽轮机机械损失。

5)发电机能量损失。

最大:汽轮机冷源热损失中的凝汽器中的热损失最大。

原因:各项热损失和效率之间的关系:效率=(1-损失能量/输入总能量)×100%。

2、发电厂的总效率有哪两种计算方法?各在什么情况下应用?1)热量法和熵方法(或火用方法或做功能力法)2)热量法以热力学第一定律为基础,从燃料化学能在数量上被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定量分析。

熵方法以热力学第二定律为基础,从燃料化学能的做工能力被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定性分析。

3、热力发电厂中,主要有哪些不可逆损失?怎样才能减少这些过程中的不可逆损失性以提高发电厂热经济性?存在温差的换热过程,工质节流过程,工质膨胀或压缩过程三种典型的不可逆过程。

主要不可逆损失有1) 锅炉有温差换热引起的不可逆损失;可通过炉打礁、吹灰等措施减少热阻减少不可逆性。

2) 锅炉散热引起的不可逆损失;可通过保温等措施减少不可逆性。

3) 主蒸汽管道中的散热和节流引起的不可逆性;可通过保温、减少节流部件等方式来减少不可逆性。

4)汽轮机中不可逆膨胀引起的不可逆损失;可通过优化汽轮机结构来减少不可逆性。

5)凝汽器有温差的换热引起的不可逆损失;可通过清洗凝汽器减少热阻以减少不可逆性。

4、发电厂有哪些主要的热经济性指标?它们的关系是什么?主要热经济性指标有:能耗量(汽耗量,热耗量,煤耗量)和能耗率(汽耗率,热耗率,煤耗率)以及效率。

热力发电厂课后习题答案

热力发电厂课后习题答案

热力发电厂课后习题答案第一章热力发电厂动力循环及其热经济性1、发电厂在完成能量的转换过程中,存在哪些热损失?其中哪一项损失最大?为什么?各项热损失和效率之间有什么关系?能量转换:化学能—热能—机械能—电能(煤)锅炉汽轮机发电机热损失:1)锅炉热损失,包括排烟损失、排污热损失、散热损失、未完全燃烧热损失等。

2)管道热损失。

3)汽轮机冷源损失:凝汽器中汽轮机排汽的气化潜热损失;膨胀过程中的进气节流、排气和内部损失。

4)汽轮机机械损失。

5)发电机能量损失。

最大:汽轮机冷源热损失中的凝汽器中的热损失最大.原因:各项热损失和效率之间的关系:效率=(1-损失能量/输入总能量)×100%。

2、发电厂的总效率有哪两种计算方法?各在什么情况下应用?1)热量法和熵方法(或火用方法或做功能力法)2)热量法以热力学第一定律为基础,从燃料化学能在数量上被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定量分析。

熵方法以热力学第二定律为基础,从燃料化学能的做工能力被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定性分析。

3、热力发电厂中,主要有哪些不可逆损失?怎样才能减少这些过程中的不可逆损失性以提高发电厂热经济性?存在温差的换热过程,工质节流过程,工质膨胀或压缩过程三种典型的不可逆过程。

主要不可逆损失有1)锅炉内有温差换热引起的不可逆损失;可通过炉内打礁、吹灰等措施减少热阻减少不可逆性。

2)锅炉散热引起的不可逆损失;可通过保温等措施减少不可逆性。

3) 主蒸汽管道中的散热和节流引起的不可逆性;可通过保温、减少节流部件等方式来减少不可逆性。

4)汽轮机中不可逆膨胀引起的不可逆损失;可通过优化汽轮机结构来减少不可逆性。

5)凝汽器有温差的换热引起的不可逆损失;可通过清洗凝汽器减少热阻以减少不可逆性.4、发电厂有哪些主要的热经济性指标?它们的关系是什么?主要热经济性指标有:能耗量(汽耗量,热耗量,煤耗量)和能耗率(汽耗率,热耗率,煤耗率)以及效率.能耗率是汽轮发电机生产1kW。

第四章 发电厂的热力系统(第1--3节)

第四章    发电厂的热力系统(第1--3节)

3、工作过程:
(1)高压的排污水通过连续排污扩容器扩容蒸发,产 生品质较好的扩容蒸汽,回收部分工质和热量; (2)扩容器内尚未蒸发的、含盐浓度更高的排污水, 通过表面式排污水冷却器再回收部分热量。
4、锅炉连续排污利用系统(图4-2)
(a)单级扩容系统;(b)两级扩容系统
5、锅炉连续排污利用系统的平衡计算 扩容器的物质平衡: D bl D f D bl
减压至7#低加 轴封汽 减温器 至凝汽器
至5#低加抽汽
高压缸主汽门、调节汽门 中压缸主汽门、调节汽门
轴封加热器
凝结水
(三)辅助蒸汽系统
1、启动阶段: 将正在运行的相邻机组的蒸汽引入本机组的蒸汽 用户(若是首台机组启动则由启动锅炉供汽)。 2、正常运行: 提供自身辅助蒸汽用户的需要,同时也可向需要 蒸汽的相邻机组提供合格蒸汽 。 3、辅助蒸汽用汽原则: (1)尽可能用参数低的回热抽汽; (2)汽轮机启动和回热抽汽参数不能满足要求时, 要有备用汽源; (3)疏水一般应回收。
化学补充水引入回热系统(a)高参数热电厂补充水引 入系统;(b)中、低参数热电厂补充水的引入;(c) 高参数凝汽式电厂补充水的引入
二、工质回收及废热利用系统
工质回收的意义:回收发电厂排放、泄漏的工质和废
热,既是节能提高经济性和管理水平的一项重要工
作,同时对保护环境具有重要意义。
(一)汽包锅炉连续排污利用系统
1、汽包锅炉连续排污的目的:控制汽包内锅炉水水 质在允许范围内,从而保证锅炉蒸发出的蒸汽品质 合格。
2、汽包锅炉正常的排污率不得低于锅炉最大 连续蒸发量的0.3%,同时不宜超过锅炉额定 蒸发量的下列数值:
(1)以化学除盐水为补给水的凝汽式电厂为 1%; (2)以化学除盐水或蒸馏水为补给水的热电 厂为2%; (3)以化学除盐水为补给水的热电厂为5%。

回热循环过程

回热循环过程

回热循环过程
回热循环过程,也称为再热循环,是一种常见的热力学循环过程,用于提高热能转化系统(如蒸汽发电厂)的热效率。

在回热循环中,蒸汽在高压段进行了一次膨胀后,部分再热,然后再次膨胀至较低的压力级。

下面是回热循环的基本步骤和原理:
1.压缩:水从锅炉中加热并蒸发,形成高压蒸汽。

高压蒸汽被压
缩至更高的温度和压力,通常在蒸汽涡轮机的第一级中进行。

2.膨胀:压缩后的蒸汽通过蒸汽涡轮机进行膨胀,用于驱动发电
机产生电能。

在第一级膨胀后,蒸汽温度和压力会降低,但仍
在高温高压状态下。

3.再热:部分膨胀后的蒸汽经过再热器,在再热器中再次加热。

再热使蒸汽温度升高,增加了进入下一级膨胀的热能。

4.再次膨胀:再热的蒸汽进入蒸汽涡轮机的下一级,再次膨胀。

在这一级中,蒸汽继续释放热能,转动涡轮并驱动发电机。

通过这种回热循环的过程,系统可以更充分地利用热能,提高热效率。

再热过程使蒸汽温度增加,减少了热损失,并且增加了蒸汽在涡轮机中的能量输出。

这样,系统能够在一定程度上提高热能的利用效率,从而获得更多的电力输出。

回热循环被广泛应用于蒸汽发电厂等能源转换系统中。

电厂回热系统的工作流程

电厂回热系统的工作流程

电厂回热系统的工作流程
电厂回热系统主要用于提高热效率,其工作流程简述如下:
1. 发电机组运行时,汽轮机做功后的蒸汽(低温低压排汽)经管道进入回热加热器;
2. 在回热加热器中,此低温排汽将热量传递给锅炉产生的水蒸气之前各阶段的过热蒸汽或饱和蒸汽,使得这些蒸汽进一步加热升温;
3. 经过多次回热加热后的蒸汽温度和压力得到提升,再送回锅炉的过热器继续加热,最终产生高温高压蒸汽供给汽轮机做功;
4. 回热系统的应用显著减少了冷凝过程中蒸汽的热量损失,从而提高了整个热力循环的效率。

总的来说,电厂回热系统就是通过回收汽轮机排汽余热,重复利用于加热锅炉产生的工作介质,以提高能源利用率。

发电厂的回热加热系统

发电厂的回热加热系统
优点:减少本级端差,提高最终给口水温度;换热面积 大,热经济性可提高0.3% ~ 0.5%;布置方式灵 活
缺点:造价高
3、蒸汽冷却器的连接方式
水侧连接方式: (1)内置式蒸汽冷却器:
串联连接(顺序连接)
(2)外置式蒸汽冷却器: 串联连接:全部给水流经冷却器
并联连接:只有一部分给水进入冷却器
图2-13 内置蒸汽冷却器单级串联
疏水逐级自流方式
(2)疏水泵方式
——由于表面式加热器汽侧压力远小于水 侧压力(特别是高压加热器),借助疏水泵 将疏水与水侧的主水流汇合,汇入点常为该 加热器的出口水流中
2.两种疏水方式的热经济性分析 热量法: 考虑对高一级与低一级抽汽量的影响; 做功能力法:考虑换热温差和相应的火用损变化
(1)疏水泵方式 疏水与主水流混合后,↓端差,↑热经济性
2、计算的基本公式 回热(机组)原则性热力系统计算的主要内容为:
①通过加热器热平衡式来求各抽汽量(∑Dj 或 ∑αj); ②通过物质平衡式求凝汽量(Dc 或αc); ③通过汽轮机功率方程式求Pe(定流量计算时)或 D0(定功率计算时)。
为此,热平衡式、物质平衡式和汽轮机的功率方 程式就称为回热(机组)原则性热力系统计算的三 个基本公式。
h
w(
j1)(hwj
hw(
j1) )
hwj
wj
hj
j
hw(j+1)
w( j1)
(2)表面式加热器
(h h' ) (h h )
jj j
wj wj w( j1)
或 (h h' ) (h h ) wj j j j h wj wj w( j1)
或 (h' h' ) (h h ) hwj

回热循环提高热效率的原理

回热循环提高热效率的原理

回热循环提高热效率的原理全文共四篇示例,供您参考第一篇示例:回热循环是一种重要的热力循环方式,它能够提高热能转化的效率,减少能源的浪费。

回热循环的原理可以应用于热电厂、核电站以及其他热能利用系统中。

下面将从原理、应用和优势等方面对回热循环进行详细介绍。

回热循环是基于热力学第一定律和第二定律的原理,其基本原理是通过回收余热来提高热能转化的效率。

在传统的热力循环中,燃烧或其他方式产生的热能只能被部分利用,而大部分热能会以废热的形式散失。

回热循环则通过在热力流体之间进行热交换来充分利用余热,提高热效率。

这种循环方式的核心在于将废热再次利用,从而实现能源的有效利用。

回热循环的应用范围非常广泛,其中最典型的应用是在燃气轮机联合循环和汽轮机回热等领域。

在燃气轮机联合循环中,燃气轮机首先使用燃气燃烧产生高温高压蒸汽,然后通过汽轮机提取功率。

随后,余热再次回收被用于产生更多的高温高压蒸汽,以提高能量利用率。

在汽轮机回热中,汽轮机在利用高压蒸汽产生功率后,再次利用余热对水进行回热,提高蒸汽参数,从而提高汽轮机的性能。

回热循环的优势主要体现在提高能源利用率以及减少环境污染方面。

通过回收废热,回热循环可显著提高热能的利用率,减少能源的浪费。

减少了对自然资源的消耗,有利于可持续发展。

通过减少燃烧产生的废热的排放,回热循环也降低了对环境的影响,减少了温室气体的排放,有利于环境保护。

回热循环是一种非常重要的热力学循环方式,它通过回收废热,提高了热能的利用效率,减少了能源的浪费,对于推动绿色低碳发展具有重要意义。

在未来的工业生产和能源利用中,回热循环将发挥日益重要的作用。

第二篇示例:回热循环是一种用于提高热能系统效率的重要工程技术,其原理基于在能量转化过程中充分利用废热,达到提高系统工作效率的目的。

回热循环一般应用于蒸汽动力系统、燃气轮机系统等领域,通过回收燃气排放热量,将其重新利用,实现能源的高效利用。

回热循环提高热效率的原理主要涉及燃烧过程、热力循环、热交换等多方面因素,下文将对回热循环的原理进行详细阐述。

热力发电厂ppt课件

热力发电厂ppt课件
• 用图来反映火电厂热力系统,称热力系统图。热力系统图广泛 用于设计研究和运行管理。
3

全 厂 性














锅 汽
炉 轮
本 机
体 本




主 蒸 汽 系 统












(d)带有两组重力布置方式的混合式加热器回热系统
p1
p2
p5 p4 p3
pc p7
p6
9
(e)带有部分混合式低压加热器的热力系统
1
2
3
4
H4
H1
H2
H3
5
H5
6
H6
7
H7 SG
2
8C
H8 SG
1
至 C
10
(一)混合式与表面式加热器比较 • 混合式加热器因无端差,热经济性高;便于汇集汽水和除氧; • 全由混合式加热器组成的系统,每级混合式加热器的水泵应有
4
第二节 回热(机组)原则性热力系统
• 回热系统既是汽轮机热力系统的基础,也是全厂热力系统的核心, 它对机组和电厂的热经济性起着决定性的作用。
• 回热原则性热力系统的热经济性用机组的热耗率 qo 来表征。现代
大型汽轮机组的 m、g 较高,均为 99% 左右。由式(1-30a) 机组热耗率 qo=3600/img 可知,如视m、g 为定值,则 qo= f (i)。所以本书在定性分析各局部原则性热力系统的热经济性 时,都用汽轮机绝对内效率(即实际循环热效率) I 来说明。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽汽管道压降Δpj:
p j1
pj
汽轮机抽汽口压力pj和j级回热
加热器内汽侧压力 pj 之差,即
p j p j pj
p j
twj+1 pj
twj
j+1
j
影响因素:蒸汽流速、局部阻力
tsj
一般pj不大于抽汽压力pj的10%
大容量机组取4%~6%;
二、抽汽管道压降Δpj及热经济性 抽汽管道介质流速:
(2)结构设计:汽水接触面积尽量大,热交换时间 尽量长。故将水变微细雾化和薄膜,逆向流动和多 层横向冲刷,目的增加传热量,使水出口温度达到 该级加热器蒸汽压力下的饱和温度。
(3)以除氧为主的混合式加热器,称除氧器。
(4)混汽被引至凝汽器或专设的冷却 器中。
1——加热蒸汽
t℃
2
2——汽测压力 pj下的饱和状态
tsj ——疏水温度
a
twj+1 ——进入加热器的凝结水温度
twj——离开加热器的凝结水温度
——端差: = tsj – twj
a
分析: ↓ ,热经济性↑
twj+1
tsj
1
b
Δt
A, m2
pj
1b
2
twj
分析: ↓ ,热经济性↑
(1)如加热器出口水温twj不变,端 t℃
过热蒸汽:35~60m/s; 饱和蒸汽:30~50m/s; 湿蒸汽:20~35m/s。
p j1
pj
p j
twj+1 pj
twj
分析: pj ↓ ,热经济性↑
j+1
j
tsj
三、蒸汽冷却器及其热经济性分析 1、蒸汽冷却器作用 • ↓回热加热器内汽水换热的不可逆损失 • ↑加热器出口水温,↓端差,↑热经济性 2、蒸汽冷却器类型 内置式蒸汽冷却器:与加热器本体合成一体 (过热蒸汽冷却段) 外置式蒸汽冷却器:具有独立的加热器外壳,布 置灵活
差减少意味着tsj不需要原来的那 2 样高,回热抽汽压力可以降低一
1
些,回热抽汽做功比Xr增加,热 a
b
Δt
经济性变好;
(2)如加热蒸汽压力不变, tsj不 变,端差 减少意味着出口水温 twj升高,其结果是减少了压力较 高的回热抽汽做功比而增加了压
力较低的回热抽汽做功比,热经
济性得到改善。
a twj+1
(2)水室结构加热器(U形管管板式加热器)
用途:低压加热器、 中小机组高压加热器
(2)联箱结构加热器
用途:大机组高压加热器
1—给水入口联箱;2—正常水位; 3—上级疏水入口;4—给水出口联 箱;5—凝结段;6—人孔;7—安 全阀接口;8—过热蒸汽冷却段; 9— 蒸 汽 入 口 ; 10— 疏 水 出 口 ; 11—疏水冷却段;12—放水口
接触,来完成热量交换,从而提高水温。
1、混合式加热器的结构 (1)按布置方式分:卧式和立式
卧式混合式加热器
A、汽气混合物出口 B、凝结水进口
C、加热蒸汽入口 D、凝结水出口
1、外壳;2、多孔淋水盘组;3、凝结水入口;4、凝结水出口; 5、汽水混合物引出口;6、事故时凝结水到凝结水泵进口联箱的引 出管;7、加热蒸汽进口; 8、事故时凝结水往凝汽器的引出管;
tsj
A, m2
pj
1b
2
twj
表面式加热器端差的选择
端差与换热面积的关系: t℃
t
KA 1
2
e Gc p
a
换热面积↑, ↓,减少
端差是以付出金属耗量
和投资为代价。
a
无过热蒸汽冷却段: = 3~6°C twj+1
有过热蒸汽冷却段: = -1~2°C
tsj
1
b
Δt
A, m2
pj
1b
2
twj
二、抽汽管道压降Δpj及热经济性
(3)可以兼作除氧设备使用; (4)全部由混合式加热器组成的系统:安全 性可靠性低,系统投资大(每级都设置泵,才 能将饱和水压入高一级的加热器内)。
图2-1 全混合式加热器回热系统
(5)重力布置方式的混合式加热器回热系统
采用重力式回热系统布置方式的混合低压加热器 组可以解决前面的问题,同时提高热经济性。
第一节 回热加热器的型式
回热循环 :由回热加热器、回热抽汽管道、 水管道、疏水管道等组成的一个加热系统;
加热器的类型: 汽、水接触方式:
混合式加热器:汽水直接接触: 表面式加热器:汽水不接触,通过金属壁面换热
受热面布置方式: 立式加热器 卧式加热器
一、混合式加热器 混合式加热器:加热蒸汽与水在加热器内直接
图2-2 带有两组重力布置方式的混合式加热器回热系统
图2-3带有部分混合式低压加热器的热力系统
1
2
3
4
H4
H1
H2
H3
5
6
7
8C
H5
H6
H7 SG H8 SG
2
1
至C
二、表面式加热器
加热过程:加热蒸汽与水在加热器内通过金属管壁进 行传热,通常水在管内流动,加热蒸汽在管外。
疏水 —表面式加热器中加热蒸汽在管外冲刷放热后 的凝结水。 端差(上端差、出口端差)— 表面式加热器管内流 动的水吸热升温后的出口温度与疏水温度之差。
(5)在非重力式混合加热器和除氧器,应在出口设 置一定容积的集水箱,以确保其后水泵运行安全可 靠。
2、混合式加热器及其系统的特点:
(1)可以将给水加热到该级加热器压力下的饱和 温度。由于汽水直接混合,充分利用了蒸汽的能位, 热经济性比表面式的高。 (2)由于汽水直接混合,无金属传热面,结构简 单,金属耗量少,造价低。便于汇集各种不同参数 的汽、水流量,如:疏水,补充水,扩容蒸汽等。
2、表面式加热器的特点 (1)有端差存在,蒸汽能量利用率较低,热
经济性比混合式差;
(2)有金属传热,金属耗量大,内部结构复 杂,制造困难,造价高;
(3)不能除去水中的氧和其它气体,未能有 效地保护高温金属件。
(4)全部由表面式加热器组成地系统简单,运 行安全可靠,布置方便,系统投资和土建费 用少;
1、表面式加热器的结构 (1)分类:
布置方式:卧式(大容量常采用)、立式 水的引入引出方式:水室结构、联箱结构
管板—U形管束卧式高压加热器结构示意
1-U形管;2-拉杆和定距管;3-疏水冷却段端板;4-疏水冷却段进口; 5-疏水冷却段隔板;6-给水进口;7-人孔密封板;8-独立的分流隔板;9给水出口;10-管板;11-蒸汽冷却段遮热板;12-蒸汽进口;13-防冲板; 14-管束保护环; 15-蒸汽冷却段隔板;16-隔板;17-疏水进口;18-防冲板;19-疏水出口
图2-6 全表面式加热器回热系统
图2-7 实际电厂采用的典型系统:高、低加热 器为表面式的系统
(5)由于给水被加热后是送入锅炉,因此加 热器的水泵出口压力比锅炉压力高,各加 热器内水管应能承受比锅炉压力还高的水 压,导致加热器地材料价格上升。
第二节 表面式加热器及系统的热经济性
一、表面式加热器的端差
相关文档
最新文档