最新历年高考数学试题(命题与逻辑)

合集下载

2024年高考数学贝叶斯统计与推理历年真题

2024年高考数学贝叶斯统计与推理历年真题

2024年高考数学贝叶斯统计与推理历年真题2024年高考数学真题第一题:(3分)已知事件A与事件B独立,且P(A)=0.6,P(B)=0.4。

求P(A|B)。

解答:根据贝叶斯定理,有P(A|B) = (P(B|A) * P(A)) / P(B)。

由于事件A与事件B独立,所以P(B|A) = P(B)。

代入已知条件,P(A|B) = (P(B) * P(A)) / P(B) = P(A) = 0.6。

第二题:(4分)某医院进行乳腺癌筛查,根据历年数据统计,该筛查方法的阳性率为85%,同时,已知乳腺癌的发病率为1%。

对于新来的患者,她的筛查结果为阳性,请问她真的患有乳腺癌的概率是多少?解答:设事件A为患有乳腺癌,事件B为筛查结果为阳性。

根据贝叶斯定理,求解P(A|B)。

已知P(B|A) = 0.85,P(A) = 0.01,求P(A|B)。

根据贝叶斯定理,有P(A|B) = (P(B|A)*P(A)) / P(B),代入已知条件进行计算,得到P(A|B) = (0.85*0.01) / (0.85*0.01 + 0.15*0.99) ≈ 0.053。

第三题:(5分)某机场对通过安检的旅客进行毒品筛查。

根据统计数据,已知在旅客中约0.5%携带毒品,而安检机器能够正确识别携带毒品的旅客的概率为90%,不携带毒品的旅客有10%的概率被识别为携带毒品。

现在,有一位旅客被安检机器识别为携带毒品,请问他实际携带毒品的概率是多少?解答:设事件A为旅客携带毒品,事件B为安检机器识别结果为携带毒品。

根据贝叶斯定理,求解P(A|B)。

已知P(B|A) = 0.90,P(A) = 0.005,求P(A|B)。

根据贝叶斯定理,有P(A|B) = (P(B|A)*P(A)) / P(B),代入已知条件进行计算,得到P(A|B) = (0.90*0.005) / (0.90*0.005 + 0.10*0.995) ≈0.043。

高三数学命题及其关系试题答案及解析

高三数学命题及其关系试题答案及解析

高三数学命题及其关系试题答案及解析1.下列命题中是真命题的是()A.,均有B.若为奇函数,则C.命题“”为真命题,命题“”为假命题,则命题“”为假命题D.是函数的极值点【答案】C【解析】当=0时,则=1-,对不成立,故A错;对B,为奇函数,则=,,故B不成立.对C,因为“”为真命题,则是假命题,又因为“”为假命题,则命题“”为假命题,故C 成立.考点:2.已知命题p:∀x∈(1,+∞),log2x<log3x;命题q:∃x∈(0,+∞),2-x=lnx.则下列命题中为真命题的是()A.p∧q B.(p)∧q C.p∧(q)D.(p)∧(q)【答案】B【解析】函数y=log2x与y=log3x的图象如图(1)所示,函数y=2-x与y=lnx的图象如图(2)所示.如图可知,p假q真,故选B.3.已知函数f(x)在区间(-∞,+∞)上是增函数,a,b∈R.(1)求证:若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中命题的逆命题是否正确,并证明你的结论.【答案】(1)见解析(2)逆命题是真命题,见解析【解析】解:(1)由a+b≥0,得a≥-b.由函数f(x)在区间(-∞,+∞)上是增函数,得f(a)≥f(-b),同理,f(b)≥f(-a),所以f(a)+f(b)≥f(-b)+f(-a),即f(a)+f(b)≥f(-a)+f(-b).(2)对于(1)中命题的逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0,此逆命题为真命题.现用反证法证明如下:假设a+b≥0不成立,则a+b<0,a<-b,b<-a,根据f(x)的单调性,得f(a)<f(-b),f(b)<f(-a),f(a)+f(b)<f(-a)+f(-b),这与已知f(a)+f(b)≥f(-a)+f(-b)相矛盾,故a+b<0不成立,即a+b≥0成立,因此(1)中命题的逆命题是真命题.4.下列结论中正确的是(填上所有正确结论得序号)①对于函数,若,使得,则函数关于直线对称;②函数有2个零点;③若关于的不等式的解集为,则;④已知随机变量服从正态分布且,则;⑤等比数列的前项和为,已知,则【答案】③④⑤【解析】①中,,使得,只是表示在两个特殊值处的函数值相等,不一定关于直线对称,故①错;②中,当时,或,又因不在定义域范围内,所以函数有一个零点,为故②错;③中,因为关于的不等式的解集为,所以,为关于的方程,即两根,代入解得,故③正确;④中,,故④正确;⑤中,设等比数列公比为,,又,所以,化简得,因为,所以,故⑤正确;故答案为③④⑤【考点】命题的真假判断.5.已知c>0,设命题p:函数y=c x为减函数.命题q:当x∈时,函数f(x)=x+>恒成立.如果p或q为真命题,p且q为假命题,求c的取值范围.【答案】【解析】解:由命题p为真知,0<c<1,由命题q为真知,2≤x+≤,要使此式恒成立,需<2,即c>,若p或q为真命题,p且q为假命题,则p、q中必有一真一假,当p真q假时,c的取值范围是0<c≤;当p假q真时,c的取值范围是c≥1.综上可知,c的取值范围是.6.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是________________________.【答案】若f(x)不是奇函数,则f(-x)不是奇函数【解析】否命题既否定题设又否定结论.7.如果命题“綈(p∧q)”是真命题,则()A.命题p、q均为假命题B.命题p、q均为真命题C.命题p、q中至少有一个是真命题D.命题p、q中至多有一个是真命题【答案】D【解析】命题“綈(p∧q)”是真命题,则命题“p∧q”是假命题,则命题p、q中至多有一个是真命题,故选D.8.已知命题,使为偶函数;命题,则下列命题中为真命题的是()A.B.C.D.【答案】C【解析】当时,函数是偶函数,故命题是真命题;,故命题是假命题,故选C.【考点】复合命题的真假判断.9.给出下列三个结论:(1)若命题为假命题,命题为假命题,则命题“”为假命题;(2)命题“若,则或”的否命题为“若,则或”;(3)命题“”的否定是“ ”.则以上结论正确的个数为( )A.B.C.D.【答案】D【解析】∵命题为假命题,∴命题q是真命题,∴命题“”为真命题,所以第一个结论错误;命题“若,则或”的否命题为“若,则且”,所以第二个结论错误;命题“”的否定是“”,所以第三个结论错误;所以综上得:结论都错误.【考点】1.命题的真假;2.否命题;3.命题的否定.10.下列命题中的真命题是()A.对于实数、b、c,若,则B.x2>1是x>1的充分而不必要条件C.,使得成立D.,成立【答案】C【解析】解:因为当时,,所以A项是假命题;因为由得:或;所以是的必要不充分条件,所以B项是假命题;因为,所以存在,使得成立.所以C项是真命题.当 ,等式两边均无意义,等式不成立,所以,D项是假命题.故选C.【考点】1、不等式的性质;2、充要条件;3、两角和与差的三角函数.11.若命题,;命题,. 则下面结论正确的是()A.是假命题B.是真命题C.是假命题D.是真命题【答案】D【解析】由得,,所以,是真命题;又恒成立,所以,是真命题;因此,是真命题,故选.【考点】简单逻辑联结词,存在性命题,全称命题.12.在命题p的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,正确命题的个数记为f(p),已知命题p:“若两条直线l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0平行,则a1b2-a2b1=0”.那么f(p)=________.【答案】2【解析】若两条直线l1:a1x+b1y+c1=0与l2:a2x+b2y+c2=0平行,则必有a1b2-a2b1=0,但当a1b2-a2b1=0时,直线l1与l2不一定平行,还有可能重合,因此命题p是真命题,但其逆命题是假命题,从而其否命题为假命题,逆否命题为真命题,所以在命题p的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,有2个正确命题,即f(p)=2.13.若命题“存在实数x0,使x+ax+1<0”的否定是真命题,则实数a的取值范围为________.【答案】[-2,2]【解析】该命题的否定为“x∈R,x2+ax+1≥0”,则Δ=a2-4≤0,-2≤a≤2.14.对于以下判断:(1)命题“已知”,若x2或y3,则x+y5”是真命题.(2)设f(x)的导函数为f'(x),若f'(x0)=0,则x是函数f(x)的极值点.(3)命题“,e x﹥0”的否定是:“,e x﹥0”.(4)对于函数f(x),g(x),f(x)g(x)恒成立的一个充分不必要的条件是f(x)min g(x)max.其中正确判断的个数是()A.1B.2C.3D.0【答案】A【解析】对(1),原命题与逆否命题等价,原命题不易判断故考查该命题的逆否命题.因为若,则且是假命题,所以“已知”,若x2或y3,则x + y5”也是假命题.(1)错.(2)设f(x)的导函数为f' (x),若f' (x0)=0,x不一定是函数f(x)的极值点.比如,就不是的极值点.(2)错. (3)命题“,e x﹥0”的否定是:“,e x<0”.所以(3)错.(4)对于函数f(x),g(x),当f(x)min g(x)max时f(x)g(x)恒成立;f(x)g(x)恒成立时,不一定有f(x)min g(x)max,比如,.所以(4)正确.【考点】逻辑与命题.15.下列说法中正确的是()A.“”是“”必要条件B.命题“,”的否定是“,”C.,使函数是奇函数D.设,是简单命题,若是真命题,则也是真命题【答案】B【解析】A.“”应该是“”充分条件.故A错.B.全称命题:“”的否定为“”.所以,命题“,”的否定是“,”,正确.C.不论为何值,函数都不可能是奇函数.故C错.D.若是真命题,那么中有可能一真一假,这样是假命题.所以D错.【考点】逻辑与命题.16.集合,,若命题,命题,且是必要不充分条件,求实数的取值范围。

2024年高考数学真题分类汇编01:集合与常用逻辑用语

2024年高考数学真题分类汇编01:集合与常用逻辑用语

A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
二、填空题
10.(2024·上海)设全集 = {1,2,3,4,5},集合 = {2,4},则 = .
1.A
参考答案:
【分析】化简集合 ,由交集的概念即可得解.
【解析】因为 = | − √5 < < √5 , = {−3, −1,0,2,3},且注意到1 < √5 < 2, 从而 A I B {−1,0}.
者互为充要条件.
故选:C.
10.{1,3,5}
【分析】根据补集的定义可求 .
【解析】由题设有 = {1,3,5},
故答案为:{1,3,5}
A.p 和 q 都是真命题
B.¬ 和 q 都是真命题
C.p 和¬ 都是真命题
D.¬ 和¬ 都是真命题
3.(2024·全国甲卷文)集合 = {1,2,3,4,5,9}, = { | + 1 ∈ },则 ∩ =( )
A.1, 2,3,4
B.{1,2,3}
C.{3,4}
D.{1,2,9}
4.(2024·全国甲卷理)集合 = {1,2,3,4,5,9}, = √ ∈ ,则∁ ( ∩ ) =( )
件分析判断.
【解析】因为 ⃗ + ⃗ ⋅ ⃗ − ⃗ = ⃗ − ⃗ = 0,可得 ⃗ = ⃗ ,即| ⃗| = ⃗ ,
可知 ⃗ + ⃗ ⋅ ⃗ − ⃗ = 0等价于| ⃗| = ⃗ ,
rr r r 若 a b 或 a b ,可得| ⃗| =
⃗ ,即 ⃗ + ⃗

⃗− ⃗
= 0,可知必要性成立;
3.A 【分析】根据集合 的定义先算出具体含有的元素,然后根据交集的定义计算.

历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习(附答案)

历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习(附答案)

[答案解析]因为
1 ,所以

|
2
C. |3

16
|0

16 ;因为
4 ,所以
}.所以 ∩
|
A.
1 ,2
|0
B. 1 ,2

1|
1 ,得 1
2 ,所以 ∩
9. [2022 北京,4 分]已知全集
1 ,则∁
A.
2,1
16
|3
| |
1|
(B)
[答案解析]由|
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习
考点: 集合
一、选择题
2 , 1 ,0,1,2 ,
1. [2023 新高考卷Ⅰ,5 分]已知集合
6
A.
0 ,则 ∩

(C)
2 , 1 ,0,1
B. 0 ,1,2
2
C.
|
[答案解析]解法一因为

|

6
0
1 ,3 ,
1 ,2,4 ,则
C. 1 ,2,4
D. 1 ,2,4,5
1 ,2,4 ,所以∁
3 ,5 ,又
1 ,3 ,
1 ,3,5 .故选A .
4. [2023 全国卷甲,5 分]设全集

0 .当
(A)
A. 1 ,3,5
|
2
1 ,0,1 ,满足 ⊆ .所以
3. [2023 天津,5 分]已知集合
2 ,故选A .
2 ,4,6 ,则 ∪
B. 1 ,2
C. 2 ,4,6
[答案解析]由集合并集的定义,得 ∪
7. [2022 新高考卷Ⅰ,5 分]若集合

历年(2019-2023)全国高考数学真题分项(集合与常用逻辑用语)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(集合与常用逻辑用语)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(集合与常用逻辑用语)汇编考点一 元素与集合关系的判断1.(2023•上海)已知{1P =,2},{2Q =,3},若{|M x x P =∈,}x Q ∉,则(M = ) A .{1}B .{2}C .{3}D .{1,2,3}考点二 集合的包含关系判断及应用2.(2023•新高考Ⅱ)设集合{0A =,}a -,{1B =,2a -,22}a -,若A B ⊆,则(a = ) A .2B .1C .23D .1-3.(2021•上海)已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--…,}x R ∈,则下列关系中,正确的是( ) A .A B ⊆B .R RA B ⊆痧C .A B =∅D .A B R=考点三 并集及其运算4.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}5.(2020•山东)设集合{|13}A x x =剟,{|24}B x x =<<,则(A B = ) A .{|23}x x <…B .{|23}x x 剟C .{|14}x x <…D .{|14}x x <<考点四 交集及其运算6.(2023•新高考Ⅰ)已知集合{2M =-,1-,0,1,2},2{|60}N x x x =--…,则(M N = ) A .{2-,1-,0,1} B .{0,1,2}C .{2}-D .{2}7.(2022•上海)若集合[1A =-,2),B Z =,则(A B = ) A .{2-,1-,0,1} B .{1-,0,1}C .{1-,0}D .{1}-8.(2022•新高考Ⅰ)若集合{4}M x =<,{|31}N x x =…,则(M N = ) A .{|02}x x <…B .1{|2}3x x <…C .{|316}x x <…D .1{|16}3x x <…9.(2022•新高考Ⅱ)已知集合{1A =-,1,2,4},{||1|1}B x x =-…,则(A B = ) A .{1-,2}B .{1,2}C .{1,4}D .{1-,4}10.(2021•新高考Ⅰ)设集合{|24}A x x =-<<,{2B =,3,4,5},则(A B = ) A .{2,3,4}B .{3,4}C .{2,3}D .{2}11.(2021•浙江)设集合{|1}A x x =…,{|12}B x x =-<<,则(A B = ) A .{|1}x x >-B .{|1}x x …C .{|11}x x -<<D .{|12}x x <…12.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(P Q = ) A .{|12}x x <…B .{|23}x x <<C .{|34}x x <…D .{|14}x x <<13.(2021•上海)已知{|21}A x x =…,{1B =-,0,1},则A B = .14.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则A B = . 15.(2019•上海)已知集合(,3)A =-∞,(2,)B =+∞,则A B = .考点五 交、并、补集的混合运算16.(2021•新高考Ⅱ)若全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4},则 (U A B = ð )A .{3}B .{1,6}C .{5,6}D .{1,3}17.(2019•浙江)已知全集{1U =-,0,1,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B = ð )A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}考点六 命题的真假判断与应用18.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足: ①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则S T 有6个元素 C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则S T 有4个元素考点七 充分条件与必要条件19.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件20.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件21.(2019•浙江)若0a >,0b >,则“4a b +…”是“4ab …”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件22.(2019•上海)已知a 、b R ∈,则“22a b >”是“||||a b >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件参考答案考点一 元素与集合关系的判断1.(2023•上海)已知{1P =,2},{2Q =,3},若{|M x x P =∈,}x Q ∉,则(M = ) A .{1}B .{2}C .{3}D .{1,2,3}【详细解析】{1P = ,2},{2Q =,3},{|M x x P =∈,}x Q ∉, {1}M ∴=. 故选:A .考点二 集合的包含关系判断及应用2.(2023•新高考Ⅱ)设集合{0A =,}a -,{1B =,2a -,22}a -,若A B ⊆,则(a = ) A .2B .1C .23D .1-【详细解析】依题意,20a -=或220a -=,当20a -=时,解得2a =,此时{0A =,2}-,{1B =,0,2},不符合题意; 当220a -=时,解得1a =,此时{0A =,1}-,{1B =,1-,0},符合题意. 故选:B .3.(2021•上海)已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--…,}x R ∈,则下列关系中,正确的是( ) A .A B ⊆B .R RA B ⊆痧C .A B =∅D .A B R =【详细解析】已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--…,}x R ∈, 解得{|2B x x =…或1x -…,}x R ∈,{|1R A x x =-…ð,}x R ∈,{|12}R B x x =-<<ð;则A B R = ,{|2}A B x x = …, 故选:D .考点三 并集及其运算4.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【详细解析】{1A = ,2},{2B =,4,6}, {1A B ∴= ,2,4,6},故选:D .5.(2020•山东)设集合{|13}A x x =剟,{|24}B x x =<<,则(A B = ) A .{|23}x x <…B .{|23}x x 剟C .{|14}x x <…D .{|14}x x <<【详细解析】 集合{|13}A x x =剟,{|24}B x x =<<, {|14}A B x x ∴=< ….故选:C .考点四 交集及其运算6.(2023•新高考Ⅰ)已知集合{2M =-,1-,0,1,2},2{|60}N x x x =--…,则(M N = ) A .{2-,1-,0,1} B .{0,1,2}C .{2}-D .{2}【详细解析】260x x -- …,(3)(2)0x x ∴-+…,3x ∴…或2x -…, (N =-∞,2][3- ,)+∞,则{2}M N =- . 故选:C .7.(2022•上海)若集合[1A =-,2),B Z =,则(A B = ) A .{2-,1-,0,1} B .{1-,0,1} C .{1-,0} D .{1}-【详细解析】[1A =- ,2),B Z =, {1A B ∴=- ,0,1},故选:B .8.(2022•新高考Ⅰ)若集合{4}M x =<,{|31}N x x =…,则(M N = ) A .{|02}x x <…B .1{|2}3x x <…C .{|316}x x <…D .1{|16}3x x <…4<,得016x <…,{4}{|016}M x x x ∴=<=<…, 由31x …,得13x …,1{|31}{|}3N x x x x ∴==厖,11{|016}{|}{|16}33M N x x x xx x ∴=<=< 剠?. 故选:D .9.(2022•新高考Ⅱ)已知集合{1A =-,1,2,4},{||1|1}B x x =-…,则(A B = ) A .{1-,2}B .{1,2}C .{1,4}D .{1-,4}【详细解析】|1|1x -…,解得:02x 剟, ∴集合{|02}B x x =剟{1A B ∴= ,2}.故选:B .10.(2021•新高考Ⅰ)设集合{|24}A x x =-<<,{2B =,3,4,5},则(A B = ) A .{2,3,4}B .{3,4}C .{2,3}D .{2}【详细解析】 集合{|24}A x x =-<<,{2B =,3,4,5}, {2A B ∴= ,3}.故选:C .11.(2021•浙江)设集合{|1}A x x =…,{|12}B x x =-<<,则(A B = ) A .{|1}x x >-B .{|1}x x …C .{|11}x x -<<D .{|12}x x <…【详细解析】因为集合{|1}A x x =…,{|12}B x x =-<<,所以{|12}A B x x =< …. 故选:D .12.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(P Q = ) A .{|12}x x <…B .{|23}x x <<C .{|34}x x <…D .{|14}x x <<【详细解析】集合{|14}P x x =<<,{|23}Q x x =<<, 则{|23}P Q x x =<< . 故选:B .13.(2021•上海)已知{|21}A x x =…,{1B =-,0,1},则A B = . 【详细解析】因为1{|21}{|}2A x x x x ==剟,{1B =-,0,1}, 所以{1A B =- ,0}. 故答案为:{1-,0}.14.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则A B = . 【详细解析】因为{1A =,2,4},{2B =,4,5}, 则{2A B = ,4}. 故答案为:{2,4}.15.(2019•上海)已知集合(,3)A =-∞,(2,)B =+∞,则A B = . 【详细解析】根据交集的概念可得(2,3)A B = . 故答案为:(2,3).考点五 交、并、补集的混合运算16.(2021•新高考Ⅱ)若全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4},则(U A B = ð ) A .{3}B .{1,6}C .{5,6}D .{1,3}【详细解析】因为全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4}, 所以{1U B =ð,5,6}, 故{1U A B = ð,6}. 故选:B .17.(2019•浙江)已知全集{1U =-,0,1,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B = ð)A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}【详细解析】{1U A =- ð,3},()U A B ∴ ð{1=-,3}{1-⋂,0,1}{1}=- 故选:A .考点六 命题的真假判断与应用18.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足: ①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则S T 有6个元素 C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则S T 有4个元素【详细解析】取:{1S =,2,4},则{2T =,4,8},{1S T = ,2,4,8},4个元素,排除C . {2S =,4,8},则{8T =,16,32},{2S T = ,4,8,16,32},5个元素,排除D ;{2S =,4,8,16}则{8T =,16,32,64,128},{2S T = ,4,8,16,32,64,128},7个元素,排除B ; 故选:A .考点七 充分条件与必要条件19.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【详细解析】对于命题1q :当()f x 单调递减且()0f x >恒成立时, 当0a >时,此时x a x +>, 又因为()f x 单调递减,所以()()f x a f x +< 又因为()0f x >恒成立时, 所以()()f x f x f <+(a ), 所以()()f x a f x f +<+(a ), 所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 当00a x =<时,此时x a x +<,f (a )0()0f x ==, 又因为()f x 单调递增, 所以()()f x a f x +<, 所以()()f x a f x f +<+(a ), 所以命题2p ⇒命题p , 所以1q ,2q 都是p 的充分条件, 故选:C .20.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【详细解析】空间中不过同一点的三条直线m ,n ,l ,若m ,n ,l 在同一平面,则m ,n ,l 相交或m ,n ,l 有两个平行,另一直线与之相交,或三条直线两两平行.而若“m ,n ,l 两两相交”,则“m ,n ,l 在同一平面”成立. 故m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的必要不充分条件, 故选:B .21.(2019•浙江)若0a >,0b >,则“4a b +…”是“4ab …”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【详细解析】0a > ,0b >,4a b ∴+厖,2∴4ab ∴…,即44a b ab +⇒剟,若4a =,14b =,则14ab =…, 但1444a b +=+>, 即4ab …推不出4a b +…,4a b ∴+…是4ab …的充分不必要条件故选:A .22.(2019•上海)已知a 、b R ∈,则“22a b >”是“||||a b >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 【详细解析】22a b > 等价,22||||a b >,得“||||a b >”, ∴ “22a b >”是“||||a b >”的充要条件,故选:C .。

高考数学真题分项汇编专题12 简易逻辑与推理(理科)(解析版)

高考数学真题分项汇编专题12  简易逻辑与推理(理科)(解析版)

十年(2014-2023)年高考真题分项汇编—简易逻辑与推理 目录题型一:四种命题与简单的逻辑连接词 ............................................... 1 题型二:充要条件 ................................................................................ 2 题型三:全称命题与特称命题 ............................................................ 12 题型四:简单的推理 (13)题型一:四种命题与简单的逻辑连接词一、选择题1.(2014高考数学陕西理科·第8题)原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假【答案】B解析: 原命题为“若12,z z 互为共轭复数,则12z z =”为真,故逆否命题为真逆命题为“若12z z =,则12,z z 互为共轭复数”为假,反例: 复数1212,2z i z i =+=+模相等,但不是共轭复数.否命题也为假.故选B .2.(2014高考数学重庆理科·第6题)已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是“"2"x >的充分不必要条件,则下列命题为真命题的是 ( ) A .q p ∧ B .q p ¬∧¬C .q p ∧¬D .q p ¬∧【答案】D解析:根据复合命题的判断关系可知,命题为真,命题为假,所以只有为真。

3.(2014高考数学辽宁理科·第5题)设,,a b c是非零向量,已知命题P :若0a b •= ,0b c •= ,则0a c •= ;命题q :若//,//a b b c,则//a c ,则下列命题中真命题是( ) A .p q ∨ B .p q ∧ C .()()p q ¬∧¬ D .()p q ∨¬ 【答案】A解析:若0a b •=,0b c •= ,则0a c •= ”是个假命题,理由如下:若0a b •=,0b c •= ,则a b b c •=• ,所以0a b b c •−•= ,即()0a c b −•= ,则不能说明0a c •=成立;“若//,//a b b c,则//a c ”为真命题,理由如下:若//,//a b b c ,设,a b b c λµ==(0λµ⋅≠),所以()()a c c λµλµ= ,可得//a c.则p ∨q ,为真命题,p ∧q ,(¬p )∧(¬q ),p ∨(¬q )都为假命题. 4.(2014高考数学湖南理科·第5题)已知命题:p 若y x >,则;y x −<−命题:q 若y x >,则.22y x >在p q p q ∧¬命题①q p ∧②q p ∨③()q p ¬∧④()q p ∨¬中,真命题是( )A .①③B .①④C .②③D .②④【答案】C解析:当x y >时,两边乘以1−可得x y −<−,所以命题p 为真命题,当1,2x y ==−时,因为22x y <,所以命题q 为假命题,所以②③为真命题,故选C .5.(2017年高考数学山东理科·第3题)已知命题;命题若a >b ,则,下列命题为真命题的是 ( )A .B .C .D .【答案】 B【解析】由,所以恒成立,故为真命题;令,,验证可知,命题为假,故选A .题型二:充要条件1.(2023年北京卷·第8题)若0xy ≠,则“0x y +=”是“2y xx y+=−”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 解析:解法一: 因为0xy ≠,且2x y y x+=−, 所以222x y xy +=−,即2220x y xy ++=,即()20x y +=,所以0x y +=. 所以“0x y +=”是“2x yy x+=−”的充要条件. 解法二:充分性:因为0xy ≠,且0x y +=,所以x y =−, 所以112x y y yy x y y−+=+=−−=−−, 所以充分性成立; 必要性:因为0xy ≠,且2x yy x+=−, 所以222x y xy +=−,即2220x y xy ++=,即()20x y +=,所以0x y +=. :p (),ln 10x x ∀+>0>:q 22a b >p q ∧p q ∧¬p q ¬∧p q ¬∧¬011x x >⇒+>ln(1)0x +>p 1a =2b =−q所以必要性成立.所以“0x y +=”是“2x yy x+=−”的充要条件. 解法三:充分性:因0xy ≠,且0x y +=, 所以()2222222222x y xy x y x y x y xy xy xyy x xy xy xy xy+−+++−−+=====−,所以充分性成立;必要性:因为0xy ≠,且2xy y x+=−, 所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+−++++−+====−=−, 所以()20x y xy+=,所以()20x y +=,所以0x y +=, 所以必要性成立.所以“0x y +=”是“2xy y x+=−”的充要条件. 故选:C2.(2023年天津卷·第2题)“22a b =”是“222a b ab +=”( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B解析:由22a b =,则a b =±,当0a b =−≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b −=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B3.(2023年新课标全国Ⅰ卷·第7题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】C为的解析:方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +−−=+=+=+−−=+, 因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++−+−−==+++为常数,设为t ,即1(1)n nna S t n n +−=+,则1(1)n n S na t n n +=−⋅+,有1(1)(1),2n n S n a t n n n −=−−⋅−≥,两式相减得:1(1)2nn n a na n a tn +=−−−,即12n n a a t +−=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2nn n S na d −=+, 则11(1)222n S n d d a d n a n −=+=+−,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+−==+−+, 即1(1)n S nS n n D =+−,11(1)(1)(2)n S n S n n D −=−+−−,当2n ≥时,上两式相减得:112(1)n n S S S n D −−=+−,当1n =时,上式成立, 于是12(1)n a a n D =+−,又111[22(1)]2n n a a a nD a n D D +−=+−+−=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C4.(2023年全国甲卷理科·第7题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B解析:当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=; 当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=−+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,甲是乙的必要不充分条件. 故选:B5.(2021年高考全国甲卷理科·第7题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B解析:由题,当数列2,4,8,−−− 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.6.(2020年浙江省高考数学试卷·第6题)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B解析:依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m nA m lB n lC ∩=∩=∩=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B 7.(2022年浙江省高考数学试题·第4题)设x ∈R ,则“sin 1x =”是“cos 0x =”( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A解析:因为22sin cos 1x x +=可得: 当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立;所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件.为的故选,A .8.(2021高考天津·第2题)已知a ∈R ,则“6a >”是“236a >”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A解析:由题意,若6a >,则236a >,故充分性成立;若236a >,则6a >或6a <−,推不出6a >,故必要性不成立; 所以“6a >”是“236a >”的充分不必要条件. 故选:A .9.(2021高考北京·第3题)已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A解析:若函数()f x 在[]0,1上单调递增,则()f x 在[]0,1上的最大值为()1f ,若()f x 在[]0,1上的最大值为()1f ,比如()213f x x=−,但()213f x x =−在10,3 为减函数,在1,13 为增函数, 故()f x 在[]0,1上的最大值为()1f 推不出()f x 在[]0,1上单调递增,故“函数()f x 在[]0,1上单调递增”是“()f x 在[]0,1上的最大值为()1f ”的充分不必要条件, 故选:A .10.(2020天津高考·第2题)设a ∈R ,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件. 故选:A .11.(2020北京高考·第9题)已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+−”是“sin sin αβ=”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】(1)当存在k Z ∈使得(1)k k απβ=+−时,若k 为偶数,则()sin sin sin k απββ=+=; 若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=−=−+−=−=; (2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12k k k m απβ=+−=或()()121kk k m απβ=+−=+,亦即存在k Z ∈使得(1)k k απβ=+−.所以,“存在k Z ∈使得(1)k k απβ=+−”是“sin sin αβ=”的充要条件.故选:C . 12.(2019·浙江·第5题)若0a >,0b >,则“4a b +≤”是“4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】解法一:当0, 0a >b >时,若4a b +≤,则4a b ≤+≤,即4ab ≤,故充分性成立;当1, =4a b 时,满足4ab ≤,但54a b +=>,必要性不成立.综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.故选A .解法二:如图所示,在平面直角坐标系中,满足条件“0a >,0b >,4a b +≤”的点(,)a b 是AOB △的内部及边界线段AB (不含端点A ,B );而满足条件“0a >,0b >,4ab ≤”的点(,)a b 是位于第一象限且在曲线4b a=的下方(或该曲线上).因为直线4a b +=与曲线4ab =相切,切点为(2,2).故由区域的包含关系可解.故选A .13.(2019·天津·理·第3题)设x ∈R ,则“250x x −<”是“11x −<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B解析:由250x x −<,得(5)0x x −<,得05x <<;由11x −<,得111x −<−<,得02x <<, 由于{|02}{|05}x x x x <<<<Ü,所以“250x x −<”是“11x −<”的必要而不充分条件14.(2019·北京·理·第7题)设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +> ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A ,B ,C 三点不共线,∴||||||||AB AC BC AB AC AB AC +>⇔+>−22||||0AB AC AB AC AB AC AB ⇔+>−⇔⋅>⇔ 与AC 的夹角为锐角.故“AB 与AC的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件,故选C .15.(2018年高考数学浙江卷·第6题)已知平面α,直线,m n 满足,m n αα⊄⊂,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A解析:由线面平行的判定定理可知,,,////m n m n m ααα⊄⊂⇒,反过来,若,m n αα⊄⊂,//m α,则m 与n 可能平行,也可能异面,所以“//m n ”是“//m α”的充分不必要条件. 16.(2018年高考数学上海·第14题)已知a ∈R ,则“1a >”是“11a<”的 ( )A .充分非必要条件B .必要非充分条件B .充要条件D .既非充分又非必要条件 【答案】A 解析:由11a <,得110a −>,即10,(1)0a a a a−>−>,解得0a <或1a >, 因为{|1}{|0a a a a >⊂<或1}a >,所以“1a >”是“11a<”的充分不必要条件. 17.(2018年高考数学天津(理)·第4题)设x ∈R ,则“1122x −<”是“31x <”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A 解析:由1122x −<,得111222x −<−<,得01x <<;由31x <得1x <,因为{|01}{|1}x x x x ⊂≠<<<,所以“1122x −<”是“31x <”的充分而不必要条件.18.(2014高考数学浙江理科·第2题)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A解析:当“1a b ==”时,“2212a bi i i +=+=()()”成立,故“1a b ==”是“22a bi i +=()”的充分条件;当“22222a bi a b abi i +=+=()﹣”时,“1a b ==”或“1a b ==﹣”,故“1a b ==”是“22a bi i +=()”的不必要条件;综上所述,“1a b ==”是“22a bi i +=()”的充分不必要条件;故选A 19.(2014高考数学天津理科·第7题)设,a b ∈R ,则“a b >”是“||||a a b b >”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C解析:构造函数()||f x x x =,则()f x 在定义域R 上为奇函数,因为22,0,(),0,x x f x x x ≥= −<所以函数()f x 在R 上单调递增,所以a b >()()||||f a f b a a b b ⇔>⇔>.故选C .20.(2014高考数学上海理科·第15题)设,a b ∈R ,则“+4a b >”是“2a >且2b >”的( ).A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B解析:由“2a >且2b >”可以推出“+4a b >”;由“+4a b >”推不出“2a >且2b >”,故选B . 21.(2014高考数学湖北理科·第3题)设U 为全集,A 、B 是集合,则“存在集合C 使得C A ⊆,CC B U ⊆是“∅=B A ”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】C解析:如图可知,存在集合C ,使A ⊆C ,B ⊆U C ,则有A ∩B =∅.若A ∩B =∅,显然存在集合C .满足A ⊆C ,B ⊆U C .故选C .22.(2014高考数学北京理科·第5题)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( )A .充分且不必要条件B .必要且不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D 解析:当10a <,1q >时,数列{}n a 递减;当10a <,数列{}n a 递增时,01q <<.故选D .23.(2014高考数学安徽理科·第2题)“0x <”是“ln(1)0x +<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B解析:当ln(1)0x +<时,有10x −<<,所以100x x −<<⇒<,反之不成立,故选B . 24.(2015高考数学重庆理科·第4题)“1x >”是“12og ()l 20x +<”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B解析:12log (2)0211x x x +<⇔+>⇔>−,因此选B .25.(2015高考数学天津理科·第4题)设,则“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A解析:,或,所以 “ ”是“ ”的充分不必要条件,故选A .26.(2015高考数学四川理科·第8题)设a ,b 都是不等于1的正数,则“331a b >>”是“log 3log 3a b <”的( )(A )充要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件 【答案】B 解析:若333a b >>,则1a b >>,从而有log 3log 3a b <,故为充分条件. 若log 3log 3a b <不一定有1a b >>,比如.1,33ab ==,从而333a b >>不成立.故选B . 27.(2015高考数学湖南理科·第2题)设A ,B 是两个集合,则“A B A = ”是“A B ⊆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】C .分析:由题意得,A B A A B =⇒⊆ ,反之,A B A B A =⇒⊆ ,故为充要条件,选C . 28.(2015高考数学福建理科·第7题)若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B解析:若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“l m ⊥ ”是“//l α 的必要不充分条件,故选B . 29.(2015高考数学北京理科·第4题)设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B解析:因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件,故选B .30.(2015高考数学安徽理科·第3题)设:12,:21x p x q <<>,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A解析:由0:22x q >,解得0x >,易知,p 能推出q ,但q 不能推出p ,故p 是q 成立的充分不必要条件,选A .31.(2017年高考数学浙江文理科·第6题)已知等差数列的公差为,前项和为,则“”是“”的 ( )A .充分不必要条件B .必要不充分条件x R ∈21x −<220x x +−>2112113x x x −<⇔−<−<⇔<<2202x x x +−>⇔<−1x >21x −<220x x +−>{}n a d n n S 0d >4652S S S +>C .充分必要条件D .既不充分也不必要条件 【答案】 C【解析】(定义法)在等差数列中,, 若,则,反之也成立.故选C .(公式法)因为,, 当时,有,当时,有.故选C . 32.(2017年高考数学天津理科·第4题)设,则“”是“”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】 A . 【解析】,但,不满足,所以“”是“”的充分不必要条件,故选A . 33.(2017年高考数学北京理科·第6题)设为非零向量,则“存在负数,使得”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】 A【解析】若,使,及两向量反向,夹角是,那么;若,那么两向量的夹角为,并不一定反向,即不一定存在负数,使得,所以是充分不必要条件,故选A .34.(2016高考数学天津理科·第5题)设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a −+<”的 ( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 【答案】C 解析:设数列的首项为1a ,则222122212111=(1)0n n n n na a a q a q a q q −−−−+=++<,即1q <−,故0q <是1q <−的必要不充分条件.35.(2016高考数学上海理科·第15题)设R a ∈,则“1>a ”是“12>a ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】A解析:2211,11a a a a >⇒>>⇒>或1a <−,所以是充分非必要条件,选A . 考点:充要条件【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.36.(2016高考数学北京理科·第4题)设,a b 是向量,则“||||a b = ”是“||||a b a b +=−”的( ) {}n a 4654565652()()S S S S S S S a a d +−=−+−=−=0d >4652S S S +>46111466151021S S a d a d a d +=+++=+5121020S a d =+0d >4652S S S +>4652S S S +>0d >R ∈θππ||1212θ−<1sin 2θ<ππ1||0sin 121262πθθθ−<⇔<<⇒<10,sin 2θθ<ππ||1212θ−<ππ||1212θ−<1sin 2θ<,m n λm n λ= 0m n <⋅0λ∃<m n λ=180°||||cos180||||0m n m n m n ⋅=°=−<0m n <⋅ (]90,180°°λm n λ=A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D解析:若=a b成立,则以a ,b 为边组成平行四边形,那么该平行四边形为菱形,+a b ,a b − 表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b −不一定成立,从而不是充分条件;反之,+=a b a b − 成立,则以a ,b 为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b不一定成立,从而不是必要条件.题型三:全称命题与特称命题1.(2021年高考全国乙卷理科·第3题)已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是 ( )A .p q ∧B .p q ¬∧C .p q ∧¬D .()p q ¬∨【答案】A解析:由于sin 0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题; 所以p q ∧为真命题,p q ¬∧、p q ∧¬、()p q ¬∨为假命题. 故选:A .2.(2015高考数学浙江理科·第7题)存在函数()f x 满足,对任意x ∈R 都有( )A .(sin 2)sin f x x =B .2(sin 2)f x x x =+C .2(1)1f x x +=+ D .2(2)1f x x x +=+ 【答案】D .解析:A :取0=x ,可知0sin )0(sin =f ,即0)0(=f ,再取2π=x ,可知2sin)(sin ππ=f ,即1)0(=f ,矛盾,∴A 错误;同理可知B 错误,C :取1=x ,可知2)2(=f ,再取1−=x ,可知0)2(=f ,矛盾,∴C 错误,D :令)0(|1|≥+=t x t ,∴1)()0()1(2+=⇔≥=−x x f t t t f ,符合题意,故选D .3.(2015高考数学浙江理科·第4题)命题“**,()n f n ∀∈∈N N 且()f n n ≤的否定形式是( )A .**,()n f n ∀∈∈N N 且()f n n > B .**,()n f n ∀∈∈N N 或()f n n > C .**00,()n f n ∃∈∈N N 且00()f n n > D .**00,()n f n ∃∈∈N N 或00()f n n > 【答案】D .解析:根据全称命题的否定是特称命题,可知选D .4.(2015高考数学新课标1理科·第3题)设命题:,p n ∃∈N 2n >2n,则p ¬为( )A .2,2nn n ∀∈>NB .2,2nn n ∃∈≤NC .2,2nn n ∀∈≤N D .2,2nn n ∃∈=N【答案】C解析:p ¬:2,2n n N n ∀∈≤,故选C .5.(2016高考数学浙江理科·第4题)命题“*2,,x n n x ∀∈∃∈≥R N 使得”的否定形式是( )A .*,x n ∀∈∃∈R N ,使得2n x <B .*,x n ∀∈∀∈R N ,使得2n x <C .*,x n ∃∈∃∈R N ,使得2n x <D .*,x n ∃∈∀∈R N ,使得2n x <【答案】D【命题意图】本题主要考查全称命题、特称命题的概念等知识,考查学生对基础知识的掌握情况. 解析:x ∀∈R 的否定形式是x ∃∈R ,*n ∃∈N 的否定形式是*n ∀∈N ,2n x ≥的否定形式是2n x <.故选D .6.(2014高考数学山东理科·第4题)用反证法证明命题:“已知,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是 ( )A .方程30x ax b ++=没有实根B .方程30x ax b ++=至多有一个实根C .方程30x ax b ++=至多有两个实根D .方程30x ax b ++=恰好有两个实根【答案】A解析:方程20x ax b ++=至少有一个实根的反面是方程20x ax b ++=没有实根. 二、填空题1.(2015高考数学山东理科·第12题)若“0,,tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 .【答案】1解析:若“0,,tan 4x x m π ∀∈≤ ”是真命题,则m 大于或等于函数tan y x =在0,4π的最大值 因为函数tan y x =在0,4π 上为增函数,所以,函数tan y x =在0,4π上的最大值为1,所以,1m ≥ ,即实数m 的最小值为1.所以答案应填:1.题型四:简单的推理1.(2014高考数学北京理科·第8题)有语文、数学两学科,成绩评定为“优秀”、“合格”、“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好”.现有若干同学,他们之中没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的。

2020年新高考III卷数学逻辑推理题及答案

2020年新高考III卷数学逻辑推理题及答案

2020年新高考III卷数学逻辑推理题及答案1. 题目分析与答案解析第一题:以下是一组数字序列: 1, 3, 6, 10, 15, 21...请问下一个数字是多少?解析:从第一项开始,每一项都比前一项多1,所以下一个数字是21 + 6 = 27。

答案:27第二题:某商场正在进行打折促销活动,折扣力度为7折(即商品价格打7折),购物满200元再减40元。

小明购买了一部手机,原价300元。

请问他实际需要支付多少钱?解析:首先,将商品价格打7折:300元 * 0.7 = 210元。

接着,考虑满200元再减40元的优惠。

由于小明购买的商品价格并没达到200元,所以无法再享受这个优惠。

因此,小明需要支付的金额是210元。

答案:210元第三题:某书店正在进行促销活动,原价为160元的教材打8折,折上折,再减30元。

小红购买了这本教材,请问她实际需要支付多少钱?解析:首先,将教材原价打8折:160元 * 0.8 = 128元。

接着,考虑再减30元的优惠。

小红可以享受折上折的优惠,所以需要使用优惠后的价格来计算。

128元 - 30元 = 98元。

因此,小红需要支付的金额是98元。

答案:98元2. 数学逻辑推理题讨论本卷共有三道数学逻辑推理题,涉及到计算和推论等方面的技能。

题目的答案解析已经给出,并且给出了具体计算过程,使读者能够理解和掌握解题方法。

数学逻辑推理题在高考中占有重要的一部分,考察学生的数学思维能力和逻辑推理能力。

通过做这些题目,可以培养学生的思维灵活性和解决问题的能力,同时也能提高他们的数学水平。

3. 结语通过解析2020年新高考III卷数学逻辑推理题,我们可以看到这一类题目涉及到数学计算和逻辑推理,需要学生掌握一定的数学知识和解题技巧。

希望本文的分析能对读者有所帮助,提高他们在数学逻辑推理题上的应试能力。

高三数学命题及其关系试题

高三数学命题及其关系试题

高三数学命题及其关系试题1.已知命题对任意,总有;是方程的根则下列命题为真命题的是A.B.C.D.【答案】A【解析】因为命题“对任意,总有”为真命题;命题:“是方程的根”是假命题;所以是真命题,所以为真命题,故选A.【考点】1、命题;2、充要条件.2.下列命题:①若ac2>bc2,则a>b;②若sin α=sin β,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是________.【答案】①③④【解析】对于①,ac2>bc2,c2>0,∴a>b正确;对于②,sin 30°=sin 150°⇒/ 30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④显然正确.3.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3【答案】A【解析】根据四种命题的定义,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是“若a+b+c≠3,则a2+b2+c2<3”故选A4.①若“p q”为真命题,则p、q均为真命题();②“若”的否命题为“若,则”;③“”的否定是“”;④“”是“”的充要条件. 其中不正确的命题是A.①②B.②③C.①③D.③④【答案】C【解析】①若为真命题,则不一定都是真命题,所以①不正确,②若,则的否命题为若,则,所以②正确,③,的否定是,,所以③不正确,④是的充要条件,所以④正确.【考点】命题的真假判定5.给出下列说法:①命题“若α=,则sinα=”的否命题是假命题;②命题p:∃x∈R,使sinx>1,则p:∀x∈R,sinx≤1;③“φ=+2kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;④命题p:∃x∈(0,),使sinx+cosx=,命题q:在△ABC中,若sinA>sinB,则A>B,那么命题(p)∧q为真命题.其中正确的个数是()A.4B.3C.2D.1【答案】B【解析】①中命题的否命题是“若α≠,则sinα≠”这个命题是假命题,如α=时,sinα=,故说法①正确;根据对含有量词的命题否定的方法,说法②正确;说法③中函数y=sin(2x+φ)为偶函数sin(-2x+φ)=sin(2x+φ) cosφsin2x=0对任意x恒成立cosφ=0φ=kπ+(k∈Z),所以y=sin(2x+φ)为偶函数的充要条件是φ=kπ+(k∈Z),说法③不正确;当x∈(0,)时,恒有sinx+cosx>1,故命题p为假命题,p为真命题,根据正弦定理sinA>sinB2RsinA>2RsinB a>b A>B,命题q为真命题,故(p)∧q为真命题,说法④正确.6.已知命题p:,且a>0,有,命题q:,,则下列判断正确的是A.p是假命题B.q是真命题C.是真命题D.是真命题【答案】C【解析】由基本不等式,时,,所以p:,且a>0,有,是真命题;由于,所以命题q:,是假命题,是真命题,是真命题,故选C.【考点】简单逻辑联结词,全称命题与存在性命题.7.命题“,使得”的否定为()A.,都有B.,都有C.,都有D.,都有【答案】D【解析】存在性命题的否定是全称命题,否定原结论. 命题“,使得”的否定为是:,都有,故选D.【考点】全称命题与存在性命题8.若命题;命题,若命题“”是真命题,则实数的取值范围为( )A.B.C.D.【答案】C【解析】由可得,由知,解得或,因命题“”是真命题,则均为真,故,选C.【考点】1.不等式恒成立问题;2.方程的根;3.复合命题真假判断9.命题“” 的否定是( )A.B.C.D.【答案】C【解析】所给命题是全称命题,它的否定是存在性命题,为.【考点】全称命题的否定10.命题:“若,则”的逆否命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】命题:“若,则”的逆否命题是“若,则”.【考点】四种命题.11.已知命题:方程在[-1,1]上有解;命题:只有一个实数满足不等式,若命题“p或q”是假命题,求实数a的取值范围【答案】【解析】先由命题p和命题q的条件分别求出其中的取值范围,注意条件的等价转换,然后由命题“p或q”是假命题,结合复合命题的真假判断,得出的取值范围试题解析:由,得,显然,或,,故或,只有一个实数满足不等式,即抛物线与轴只有一个交点,或所以命题“p或q”是真命题时且,又命题“p或q”是假命题,故的取值范围为【考点】1 方程的根;2 一元二次不等式;3 复合命题真假判断12.下列说法正确的是( )A.“”是“在上为增函数”的充要条件B.命题“使得”的否定是:“”C.“”是“”的必要不充分条件D.命题p:“”,则p是真命题【答案】A【解析】若,在上为增函数正确,若在上为增函数,则也正确,所以“”是“在上为增函数”的充要条件正确,其他选项错,选A.【考点】命题及其关系.13.下列选项叙述错误的是()A.命题“若x≠l,则x2-3x十2≠0”的逆否命题是“若x2-3x十2=0,则x=1”B.若命题p:x R,x2+x十1≠0,则p:R,x2+x十1=0C.若p q为真命题,则p,q均为真命题D.“x>2”是“x2一3x+2>0”的充分不必要条件【答案】C【解析】A.命题“若x≠l,则x2-3x十2≠0”的逆否命题是“若x2-3x十2=0,则x=1”正确,因为,逆否命题是原命题条件结论互换且均加以否定;B. 若命题p:x R,x2+x十1≠0,则p:R,x2+x十1=0,正确,因为,全称命题的否定是存在性命题;C. 若p q为真命题,则p,q均为真命题,不正确,因为,由真值表可知,命题“或”为真命题,p,q至少有一个为真命题;D.“x>2”是“x2一3x+2>0”的充分不必要条件,正确,由x>2可得x2一3x+2>0,但反之,由x2一3x+2>0可得x>2或x<1.故选C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考数学试题命题与逻辑一.选择题,在每小题给出的四个选择题只有一项是符合题目要求的。

1.设集合A 、B 是全集U 的两个子集,则A B ⊂是()U C A B U ⋃=的( ) (A )充分不必要条件(B )必要不充分条件(C )冲要条件(D )既不充分也不必要条件 2.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件; ③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件.其中真命题的个数是( ) A .1 B .2 C .3D .43.设α、β为两个不同的平面,l 、m 为两条不同的直线,且βα⊂⊂m l ,. 有如下两个命题:①若m l //,//则βα;②若.,βα⊥⊥则m l 那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题 4.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题: ①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂其中真命题是( ) A .①和② B .①和③ C .③和④D .①和④5.“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的 (A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 6.“a =b ”是“直线相切与圆2)()(222=++-+=b y a x x y ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 7.已知直线m 、n 与平面βα,,给出下列三个命题: ①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα③若.,//,βαβα⊥⊥则m m其中真命题的个数是( ) A .0 B .1C .2D .38.已知α、β均为锐角,若q p q p 是则,2:),sin(sin :πβαβαα<++<的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.已知直线m 、n 与平面α、β,给出下列三个命题: ①若m//α,n//α,则m//n ; ②若m//α,n ⊥α,则n ⊥m ; ③若m ⊥α,m//β,则α⊥β. 其中真命题的个数是( ) A .0 B .1C .2D .310.已知q p ab q a p 是则,0:,0:≠≠的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.在△ABC 中,设命题,sin sin sin :AcC b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 12.已知βα,均为锐角,若q p q p 是则,2:),sin(sin :πβαβαα<++<的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 13.“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的 (A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 14.条件甲:“a >1”是条件乙:“a a >”的[答]( )(A)既不充分也不必要条件 (B) 充要条件 (C) 充分不必要条件 (D)必要不充分条件 15.“1=a ”是“函数||)(a x x f -=在区间),1[+∞上为增函数”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 16.给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假命题的个数是( )A.1B.2C.3D.417.设p :x 2-x -20>0,q :212--x x <0,则p 是q 的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件18.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的( ) (A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件.19.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若p 、q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(p ,q )是点M 的“距离坐标”.已知常数p ≥0,q ≥0,给出下列命题: ①若p =q =0,则“距离坐标”为(0,0)的点有且仅有1个;②若pq =0,且p +q ≠0,则“距离坐标”为(p ,q )的点有且仅有2个;③若pq ≠0,则“距离坐标”为(p ,q )的点有且仅有4个.上述命题中,正确命题的个数是( )(A )0; (B )1; (C )2; (D )3.20.“a >b >c ”是“ab <222b a +”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件21.设,a R ∈b ,已知命题:p a b =;命题222:22a b a bq ++⎛⎫≤⎪⎝⎭,则p 是q 成立的( ) A .必要不充分条件 B .充分不必要条件C .充分必要条件 D .既不充分也不必要条件22.对于平面α和共面的直线m 、,n 下列命题中真命题是(A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n 23.关于直线m 、n 与平面α、β,有下列四个命题:①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥; ③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //. 其中真命题的序号是:A. ①、②B. ③、④C. ①、④D. ②、③ 24.有限集合S 中元素个数记作card ()S ,设A 、B 都为有限集合,给出下列命题: ①φ=B A 的充要条件是card ()B A = card ()A + card ()B ; ②B A ⊆的必要条件是card ()≤A card ()B ; ③B A ⊄的充分条件是card ()≤A card ()B ; ④B A =的充要条件是card ()=A card ()B .其中真命题的序号是A. ③、④B. ①、②C. ①、④D. ②、③ 25.关于x 的方程()011222=+---k x x ,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; 1l 2l O M (p ,q )③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数是A. 0B. 1C. 2D. 3 26."等式sin(α+γ)=sin2β成立"是"α、β、γ成等差数列"的( )A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分又不必要条件27.对于直角坐标平面内的任意两点1122(,),(,)A x y B x y ,定义它们之间的一种“距离”:2121.x x y y =-+-给出下列三个命题:①若点C 在线段AB 上,则;AC CB AB += ②在ABC ∆中,若90,oC ∠=则222;ACCB AB +=③在ABC ∆中,.AC CB AB +>其中真命题的个数为(A )0 (B )1 (C )2 (D )328.设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的(A )充要条件 (B )充分而不必要条件 (C )必要而充分条件(D )既不充分又不必要条件 29.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( ) A .充分而不必要条件B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件30.设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( ) A .βαβα⊥⇒⊥⊂⊥n m n m ,, B .n m n m ⊥⇒⊥βαβα//,,//C .n m n m ⊥⇒⊥⊥βαβα//,, D .ββαβα⊥⇒⊥=⊥n m n m ,,31.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么 A.甲是乙的充分但不必要条件 B.甲是乙的必要但不充分条件C.甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件 32.关于直线m 、n 与平面α与β,有下列四个命题: ①若//,//m n αβ且//αβ,则//m n ; ②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥; ④若//,m n αβ⊥且αβ⊥,则//m n ; 其中真命题的序号是A .①②B .③④C .①④D .②③33.关于x 的方程()011222=+---k x x ,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0 B .1 C .2 D .3 34.下列四个条件中,p 是q 的必要不充分条件的是A .22:,:p a b q a b>>.46:,:22p a b q >>C .22:p ax by c +=为双曲线, :0q ab <D .22:0,:0c bp ax bx c q a x x++>++> 35.给出下列四个命题:①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行③若直线12l l ,与同一平面所成的角相等,则12l l ,互相平行 ④若直线12l l ,是异面直线,则与12l l ,都相交的两条直线是异面直线 其中假命题的个数是( ) A.1 B.2 C.3 D.436.设p ∶22,x x q --<0∶12xx +-<0,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 37.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充分必要条件 (D )既非充分又非必要条件 38.设ππ22αβ⎛⎫∈- ⎪⎝⎭,,,那么“αβ<”是“tan tan αβ<”的( ) A.充分而不必要条件B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件39.若l 为一条直线,αβγ,,为三个互不重合的平面,给出下面三个命题:①αγβγαβ⊥⊥⇒⊥,;②αγβγαβ⊥⇒⊥,∥;③l l αβαβ⊥⇒⊥,∥.其中正确的命题有( ) A.0个 B.1个 C.2个 D.3个 40.“a >0,b >0”是“ab>0”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件 41.若P 是平面α外一点,则下列命题正确的是(A )过P 只能作一条直线与平面α相交 (B )过P 可作无数条直线与平面α垂直(C )过P 只能作一条直线与平面α平行 (D )过P 可作无数条直线与平面α平行42.设11229(,),(4,),(,)5A x yBC x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是“128x x +=”的(A )充要条件 (B )必要不充分条件 (C )充分不必要条件 (D )既非充分也非必要 43.“3x >”是24x >“的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 44."tan 1"α=是""4πα=的(A )充分而不必要条件 (B )必要不而充分条件 (C )充要条件 (D )既不充分也不必要条件 45.对于平面α和共面的直线m 、,n 下列命题中真命题是(A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n 46.设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的(A )充要条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件 47.“a >0,b >0”是“ab >0”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件48.对于向量,a 、b 、cA a =0或b =0B λ=0或a =0C a =b 或a =-bD b =c49.命题“对任意的x R ∈,3210x x -+≤”的否定是(A )不存在x R ∈,3210x x -+≤ (B )存在x R ∈,3210x x -+≤ (C )存在x R ∈,3210x x -+> (D )对任意的x R ∈,3210x x -+> 50.下列各小题中,p 是q 的充要条件的是(1):2p m <或6m >;2:3q y x mx m =+++有两个不同的零点。

相关文档
最新文档