电路分析第四章习题参考答案
《电路分析基础》习题参考答案

《电路分析基础》各章习题参考答案第1章习题参考答案1-1 (1) SOW; (2) 300 V、25V,200V、75V; (3) R=12.50, R3=1000, R4=37.5021-2 V =8.S V, V =8.S V, V =0.S V, V =-12V, V =-19V, V =21.S V U =8V, U =12.5,A mB D 'AB B CU =-27.S VDA1-3 Li=204 V, E=205 V1-4 (1) V A=lOO V ,V=99V ,V c=97V ,V0=7V ,V E=S V ,V F=l V ,U A F=99V ,U c E=92V ,U8E=94V,8U BF=98V, u cA=-3 V; (2) V c=90V, V B=92V, V A=93V, V E=-2V, V F=-6V, V G=-7V, U A F=99V, u c E=92V, U B E=94V, U BF=98V, U C A =-3 V1-5 R=806.70, 1=0.27A1-6 1=4A ,11 =llA ,l2=19A1-7 (a) U=6V, (b) U=24 V, (c) R=SO, (d) 1=23.SA1-8 (1) i6=-1A; (2) u4=10V ,u6=3 V; (3) Pl =-2W发出,P2=6W吸收,P3=16W吸收,P4=-lOW发出,PS=-7W发出,PG=-3W发出1-9 l=lA, U5=134V, R=7.801-10 S断开:UAB=-4.SV, UA0=-12V, UB0=-7.2V; S闭合:12 V, 12 V, 0 V1-12 UAB=llV / 12=0.SA / 13=4.SA / R3=2.401-13 R1 =19.88k0, R2=20 kO1-14 RPl=11.110, RP2=1000第2章习题参考答案2-1 2.40, SA2-2 (1) 4V ,2V ,1 V; (2) 40mA ,20mA ,lOmA 2-3 1.50 ,2A ,1/3A2-4 60 I 3602-5 2A, lA2-6 lA2-7 2A2-8 lOA2-9 l1=1.4A, l2=1.6A, l3=0.2A2-10 11=OA I l2=-3A I p l =OW I P2=-l8W2-11 11 =-lA, l2=-2A I E3=10V2-12 11=6A, l2=-3A I l3=3A2-13 11 =2A, l2=1A ,l3=1A ,14 =2A, l5=1A2-14 URL =30V I 11=2.SA I l2=-35A I I L =7.SA2-15 U ab=6V, 11=1.SA, 12=-lA, 13=0.SA2-16 11 =6A, l2=-3A I l3=3A2-17 1=4/SA, l2=-3/4A ,l3=2A ,14=31/20A ,l5=-11/4A12-18 1=0.SA I l2=-0.25A12-19 l=1A32-20 1=-lA52-21 (1) l=0A, U ab=O V; (2) l5=1A, U ab=llV。
第四章(习题答案)

§4-3 戴维宁定理和诺顿定理
(一)戴维宁定理的证明
设流过端口以外的电路中的电流为 i,则据替代定 ,则据替代定 理,外电路可以用一个电流为 i的电流源 iS替代,如图(a)所 替代,如图(a) (a)所 示;则又据 叠加定理,得其相应的分电路 (b),(c): 示;则又据叠加定理 ,得其相应的分电路(b) (c): 叠加定理,得其相应的分电路 (b),
:在线性 线性电路中,任一支路的电流或电 叠加定理 :在 线性 电路中,任一支路的电流或电 压是电路中各个独立电源(激励) 单独作用 时在 压是电路中各个独立电源(激励)单独作用 单独作用时在 该支路中产生的电流或电压的 代数和. 该支路中产生的电流或电压的代数和 代数和.
§4-1 叠加定理
也就是说,只要电路存在唯一解,线性电路中 的任一结点电压,支路电压或支路电流均可表示为 以下形式: y = H 1uS1 + H 2 uS 2 + + H m uSm + K 1 iS1 + K 2 iS 2 + + K n iSn ——表示电路中独立 其中:uSk 表示电路中独立电压源的电压 独立电压源的电压
+ Req + u RL
uS1
NS
uS2
RL
口 含一 源 端
1
戴维宁定理
- -
uoc
维 宁 等 效 电 路
1' i1
RL
isc
1'
1'
u R Geq L
-
+
诺顿定理
诺 顿 等 效 电 路
1'
§4-3 戴维宁定理和诺顿定理
对外电路而言,"含源一端口NS"可以用一条含源支路 对外电路而言," 含源一端口N 可以用一条含源支路 等效替代 戴维宁等效电路和诺顿等效电路称为一端口的等效发电机 戴维宁等效电路和诺顿等效电路称为一端口的等效发电机
《电路分析基础》第一章~第四章练习题

1、电路;2、理想器件;3、电路模型;4、电路模型;5、集总参数元件;6、几何尺寸;7、用来描述电路性能;8、i u q ψ;9、正电荷;10、参考方向;11、电位差;12、电流参考方向与电压降的选择一致;13、P(t)=dW(t)/ dt;14、吸收功率产生功率;15、能量传输;16、任意选取;17、任意选取;18、一条支路;19、支路电压;20、支路电流;21、节点;22、回路;23、网孔;24、网络;25、拓扑约束;26、元件约束;27、拓扑约束元件约束;28代数和;29、支路电流;30、电压降;31、路径;32、线性;33、原点;34、电导;35、线性电阻非线性电阻;36、P=UI;37电源;38、外电路;39、外电路;40、串联;41、并联;42、分压;43、分流;44、控制受控;45、控制量;46、n-1 b-n+1;47、线性电路;48、线性含源;49、完备性独立性;50、假设;51、网孔分析法;52、KVL;53、独立节点;54、单口网络;55、端口电压与电流的伏安关系等效电路;56、外接电压源外接电流源;57、外接电路;58、非线性电路;59、伏安特性曲线;60、网络内部;61、理想电压源;62、理想电流源;63、一个理想电压源uS;64、一个理想电流源iS;65、大小相等且极性一致;66、大小相等且方向一致;67、线性含源单口网络;68、uOC/iSC;69、外加电源法开路短路法;70、负载RL应与戴维南等效
三、计算分析题
1、电路如图1所示,已知us 12V,试求u2和等效电阻Rin。
2、电路如图2所示,试求电流i和电压u。
3、电路如图3所示,试用叠加定理求电压U和电流I。
4、电路如图4所示,试用叠加定理求电压U。
5、电路如图5所示,试用叠加定理求电压U和电流I。
电路与电子技术基础第四章习题答案

解:本题是求零输入响应,即在开关处于 a 时,主要是电感储能,当开关投向 b 后, 讨论由电感的储能所引起的响应。所以对图(a)t≥0 时的电路可列出 di L L + Ri L = 0 t≥0 dt 及 iL(0)=i(t)=10(mA) 其解为: i L (t ) = 10e
而
t≥0
i R (t ) = −i L (t ) = −10e −10 t (mA)
7
t≥0
其波形图见图(b)、图(c)所示。 4-5 电路如题图 4-4 所示,开关接在 a 端为时已久,在 t=0 时开关投向 b 端,求 3Ω电 1Ω a b 阻中的电流。 i (t ) 解:因为 u c (0) = 3 × 2 = 6(V ) (注意:当稳态以后电容为开路,所以流过 1 3A Ω和电容串联支路的电流为零, 因此电容两端的电 压就是并联支路 2Ω支路两端的电压) 当开关投向 b 时电流的初始值为
S 12Ω + 24V iL 4H 6Ω
题图 4-1
习题 4-2 电路
解:由于电路原已达稳态,电感两端电压为 0,合上开关 S 后,加在 6Ω电阻两端电压也为 0,该电阻中电流为 0,电路直接进入稳态,故电感电流为合上开关 S 前的稳态电流,即: iL(t)=24V/12Ω=2A。 用三要素公式可以得到同样的结果,电感电流初始值 iL(0+)=2A,稳态值 iL(∞)=2A,时间常 数τ=L/R=4/(12//6)=1s,所以:
当 t=0 时,开关打开,由于电感电流、电容电压均不跃变,有: i L (0 + ) = i L (0 − ) = 0.03( A) 1k u c (0 + ) = u c (0 − ) = 120(V ) 当 t≥0 时,根据基尔霍夫定律有
电路分析第四章习题参考答案

4-2 试用外施电源法求图题4-2 所示含源单口网络VCR ,并绘出伏安特性曲线。
解:图中u 可认为是外加电压源的电压。
根据图中u 所示的参考方向。
可列出(3)(6)(5)20(9)50u i i A VA i V=Ω+Ω++=+4-5试设法利用置换定理求解图题4-5所示电路中的电压0u 。
何处划分为好?置换时用电压源还是电流源为好?解:试从下图虚线处将电路划分成两部分,对网路N 1有(节点法)1111967(11)uu u u i ⎧⎛⎫+-=⎪⎪+⎝⎭⎨⎪-++=-⎩ 整理得:1511714u i =- 对网络2N 有251133u i i i =⨯+⨯=解得3i A =,用3A 电流源置换N 1较为方便,置换后利用分流关系,可得:()121031V 1V u +=⨯⨯=4-9 求图题4-7所示电路的输入电阻R i ,已知0.99α=解: 施加电源t u 于输入端可列出网孔方程:12335121(25100)100 (1)100(100100101010)100.990(2)t i i u i i i +-=-++⨯+⨯-⨯=将(2)代入(1)得135ti u R i ==Ω4-14求图题4-10所示各电路的等效电路。
解解: 图(a):因电压的计算与路径无关,所以[5(1)]4(13)4ad ac cd ad ab bd u u u V V u u u V V=+=---=-=+=--=-图(b): 流出a 点的电流(521)8a i A =++=,流入b 点多的电流(541)8b i A =+-=。
所以ab 之间的等效电路为8A 的电流源,电流从b 端流出。
图(c):导线短接。
4-23 电路如图题4-15 所示,已知非线性元件A 的VCR 为2u i =。
试求u ,i ,i 1.解: 断开A ,求得等效内阻:1o R =Ω 开路电压a u 所满足的方程:()(11)12111/21c a c a u u u u +-⨯=⎧⎪⎨-⨯++=⎪⎩ 求得2a u V =,最后将A 接到等效电源上,如上图所示。
电路分析基础第四版课后习题答案

i
i1
+ 1V −
2Ω
i3
i2
1Ω
2i
+ 2V −
解:在图中标出各支路电流,可得
(1 − 2)V (1 − 2)V = −0.5A, i2 = = −1A 2Ω 1Ω 受控源提供电流 = 2i = −1A i=
p2 Ω = i 2 × 2 = 0.5W
为确定 R,需计算 i4 ,
uce = ucd + ude = 0 ⇒ ude = −ucd = −10u1 = −10V
故
i3 =
udc = −2.5A, i4 = is − i3 = (−3.5 + 2.5)A = −1A 4 R = 0Ω 由此判定
1-33
试用支路电流法求解图题所示电路中的支路电流 i1 , i2 , i3 。
又受控源控制量 i 与网孔电流的关系为 i = i1 − i2
⎧25i1 − 20i2 − 5i3 = 50 ⎪ 代入并整理得: ⎨−5i1 + 9i2 − 4i3 = 0 解得 ⎪−5i − 4i + 10i = 0 2 3 ⎩ 1
受控源电压 受控源功率
⎧i1 = 29.6A ⎨ ⎩i2 = 28A
i2
3Ω
i3
gu
2−5
解
设网孔电流为 i1 , i2 , i3 ,则 i3 = − gu A = −0.1u A ,所以只要列出两个网孔方程
27i1 − 18i2 = 42 −18i1 + 21i2 − 3(−0.1u A ) = 20
因 u A = 9i1 ,代入上式整理得
−15.3i1 + 21i2 = 20
电路分析练习题含答案和经典例题

答案第一章 电路模型和电路定律【题1】:由U AB =5V 可得:I AC .=-25A :U DB =0:U S .=125V 。
【题2】:D 。
【题3】:300;-100。
【题4】:D 。
【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
【题6】:3;-5;-8。
【题7】:D 。
【题8】:P US1=50 W ;P US26=- W ;P US3=0;P IS115=- W ;P IS2 W =-14;P IS315=- W 。
【题9】:C 。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:。
【题14】:3123I +⨯=;I =13A 。
【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P UI =-=-245W 。
【题17】:由图可得U EB =4V ;流过2 Ω电阻的电流I EB =2A ;由回路ADEBCA 列KVL 得U I AC =-23;又由节点D 列KCL 得I I CD =-4;由回路CDEC 列KVL 解得;I =3;代入上式,得U AC =-7V 。
【题18】:P PI I1 21 22222==;故I I1222=;I I12=;⑴ KCL:43211-=I I;I185=A;U I IS=-⨯=218511V或16.V;或I I12=-。
⑵ KCL:43211-=-I I;I18=-A;US=-24V。
第二章电阻电路的等效变换【题1】:[解答]I=-+9473A=0.5 A;U Iab.=+=9485V;IU162125=-=ab.A;P=⨯6125. W=7.5 W;吸收功率。
【题2】:[解答]【题3】:[解答] C。
电路第四版课后习题答案

电路第四版课后习题答案第一章:电路基础1. 确定电路中各元件的电压和电流。
- 根据基尔霍夫电压定律和电流定律,我们可以列出方程组来求解未知的电压和电流值。
2. 计算电路的等效电阻。
- 使用串联和并联电阻的计算公式,可以求出电路的等效电阻。
3. 应用欧姆定律解决实际问题。
- 根据欧姆定律 \( V = IR \),可以计算出电路中的电压或电流。
第二章:直流电路分析1. 使用节点电压法分析电路。
- 选择一个参考节点,然后对其他节点应用基尔霍夫电流定律,列出方程组并求解。
2. 使用网孔电流法分析电路。
- 选择电路中的网孔,对每个网孔应用基尔霍夫电压定律,列出方程组并求解。
3. 应用叠加定理解决复杂电路问题。
- 将复杂电路分解为简单的子电路,然后应用叠加定理计算总的电压或电流。
第三章:交流电路分析1. 计算交流电路的瞬时值、有效值和平均值。
- 根据交流信号的表达式,可以计算出不同参数。
2. 使用相量法分析交流电路。
- 将交流信号转换为复数形式,然后使用复数运算来简化电路分析。
3. 计算RLC串联电路的频率响应。
- 根据电路的阻抗,可以分析电路在不同频率下的响应。
第四章:半导体器件1. 分析二极管电路。
- 根据二极管的伏安特性,可以分析电路中的电流和电压。
2. 使用晶体管放大电路。
- 分析晶体管的共发射极、共基极和共集电极放大电路,并计算放大倍数。
3. 应用场效应管进行电路设计。
- 根据场效应管的特性,设计满足特定要求的电路。
第五章:数字逻辑电路1. 理解逻辑门的工作原理。
- 描述不同逻辑门(如与门、或门、非门等)的逻辑功能和电路实现。
2. 使用布尔代数简化逻辑表达式。
- 应用布尔代数的规则来简化复杂的逻辑表达式。
3. 设计组合逻辑电路。
- 根据给定的逻辑功能,设计出相应的组合逻辑电路。
第六章:模拟集成电路1. 分析运算放大器电路。
- 根据运算放大器的特性,分析电路的增益、输入和输出关系。
2. 设计滤波器电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-2 试用外施电源法求图题4-2 所示含源单口网络VCR ,并绘出伏安特性曲线。
解:图中u 可认为是外加电压源的电压。
根据图中u 所示的参考方向。
可列出
(3)(6)(5)20(9)50u i i A V A i V
=Ω+Ω++=+
4-5试设法利用置换定理求解图题4-5所示电路中的电压0u 。
何处划分为好?置换时用电压源还是电流源为好?
解:试从下图虚线处将电路划分成两部分,对网路N 1有(节点法)
111
1
9
67
(11)u u u u i ⎧⎛⎫+-=⎪ ⎪+⎝⎭⎨⎪-++=-⎩ 整理得:
1511714u i =-
对网络2N 有
251133
u i i i =⨯+⨯= 解得3i A =,用3A 电流源置换N 1较为方便,置换后利用分流关系,可得: ()121031V 1V u +=⨯⨯=
4-9 求图题4-7所示电路的输入电阻R i ,已知0.99α=
解: 施加电源t u 于输入端可列出网孔方程:
12335121(25100)100 (1)
100(100100101010)100.990(2)
t i i u i i i +-=-++⨯+⨯-⨯=
将(2)代入(1)得135t i u R i =
=Ω
4-14求图题4-10所示各电路的等效电路。
解
解: 图(a):因电压的计算与路径无关,所以
[5(1)]4(13)4ad ac cd ad ab bd u u u V V
u u u V V =+=---=-=+=--=-
图(b): 流出a 点的电流(521)8a i A =++=,流入b 点多的电流(541)8b i A =+-=。
所以ab 之间的等效电路为8A 的电流源,电流从b 端流出。
图(c):导线短接。
4-23 电路如图题4-15 所示,已知非线性元件A 的VCR 为2u i =。
试求u ,i ,i 1.
解: 断开A ,求得等效内阻:1o R =Ω
开路电压a u 所满足的方程:
()(11)12111/21c a c a u u u u +-⨯=⎧⎪⎨-⨯++=⎪⎩
求得2a u V =,最后将A 接到等效电源上,如上图所示。
写出KVL :220i i +-=12A i A ⇒=-或
当1i A =时,1u V =,21120.5,[2(0.5)1] 1.52
i A A i A -=
=-=---= 当2i A =-时,4u V =,21421,[212]32
i A A i A -===-+= 4-25 试求图题4-17所示电路中流过两电压源的电流。
解:
4-25(1)
4-25(2)
用分解方法求解
(1) 将电路划分为两部分,如图4-25(1)(a)所示。
(2) 分别将两部分等效化简成4-25(1)(b)所示电路。
(3) 将两部分连接求出i 和u 。
(4) 用2.736A 电流源置换右侧电路后计算15V 电压源的电流i 1,如图4-25(2)(c)
所示。
列节点1的方程
111211516.58516881624.475 2.4348
u u V
u i A ⎛⎫+=-+ ⎪⎝⎭
=-==
4-30 电路如图题4-22所示。
(1) 求R 获得最大功率时的数值;
(2) 求在此情况下,R 获得的功率;
(3) 求100V 电源对电路提供的功率;
(4) 求受控源的功率;
(5) R 所得功率占电路
内电源产生功率的百分比。
解:(1) 断开R ,求出戴维南等效电路,如下图所示。
在该图中,令控制量u 1=1V 则:
111141,2,(21)32
0.5,14
3cb cd ac ac ab ab ac ab o ab i i A i A u V u V u u i A i i i A u R R i
==
===+=-===+====Ω
即R=3ohm 时可获得最大功率。
(2) 求开路电压,对上图(b)列网孔方程:
121211
1(44)4100204(444)4i i i i u u i +-=-⎧⎪-+++=⎨⎪=⎩,解得1215,10i A i A ==。
由求得的U oc =(4*10+15*6+20)=120和R o 可构成戴维南等效电路,并由最大功率传递定理可知3R =Ω时,可获得最大功率。
故得()2
120/2331200R P W =⨯⨯= (3) 设网孔电流为123,,i i i ,其中3i 即为流过R 的电流,即320i A =
121211
13(44)4100204(444)4()i i i i u u i i +-=-⎧⎪-+++=⎨⎪=-⎩1230,20i A i A ⇒==,解得P 100V =-3000W (4)1214(20)20800P u i i W =-=--⨯=-受控源
(5) 201320()20(3020)200V P i i W =-=-=,1200(3000800)31.58%η
+
== 4-32 试利用T -∏变换求解图题4-24所示电路中10V 电压源的电流i 。
解 T 型电阻网络化为∏型电路后的到如下图所示电路。
图中121051055,1891818
V V V i mA i mA k k -=
===ΩΩ,所以 1256i i i mA =+=。