平移和旋转中心对称练习题
图形的对称、平移和旋转专项训练题

图形的对称、平移和旋转专项训练题一.选择题(共9小题)1.以下是几所知名大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列图形中,既是轴对称图形也是中心对称图形的有()A.4个B.3个C.2个D.1个3.如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕AD.将△ABC再次折叠,使BC边落在BA边上,展开后得到折痕BE,BE,AD交于点O.则以下结论一定成立的是()A.AO=2OD B.S△ABO=S四边形ODCEC.点O到△ABC三边的距离相等D.点O到△ABC三个顶点的距离相等4.下列各式中,是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.6.把点P(2,﹣5)向上平移3个单位后再关于原点对称的点的坐标是()A.(5,﹣5)B.(﹣2,2)C.(﹣5,5)D.(2,﹣2)7.如图,△ABC的周长为30cm,将△ABC沿CB向右平移得到△DEF,若平移的距离为4cm,则四边形ACED的周长是()cm.A.34B.36C.38D.408.“会飞的饺子皮”刷爆朋友圈,卡塔尔世界杯吉祥物“拉伊卜”刷爆网络!下面是“拉伊卜”的形象图片,在下面的四个图形中,能由左图经过平移得到的图形是()A.B.C.D.9.通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点B C.点C D.点D二.填空题(共8小题)10.“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B'处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB'于点P.若BC=12,则MP+MN=.11.如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则sin∠ADF的值为.12.如图,将△ABC绕点C顺时针旋转30°得到△DEC,边ED,AC相交于点F,若∠A=32°,则∠EFC的度数为°.13.如图,在△ABC中,BC=7,把△ABC沿射线AB方向平移4个单位至△EFG处,EG与BC交于点M.若CM=3,则图中阴影部分的面积为.14.在平面直角坐标系中,将点(1,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是.15.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE交CD于点H,且DH=EH,则AH的长为.16.等腰直角△ABC中,BAC=90°,AB=5,点D是平面内一点,AD=2,连接BD,将BD绕D点逆时针旋转90°得到DE,连接AE,当DAB=(填度数)度时,AE 可以取最大值,最大值等于.17.如图,矩形ABCD的边AD的长为6,将△ADC沿对角线AC翻折得到△AD′C,CD′与AB交于点E,再以CD′为折痕,将△BCE进行翻折,得到△B′CE,若两次折叠后,点B′恰好落在△ADC的边上,则AB的长为.三.解答题(共3小题)18.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位长度,再向下平移2个单位长度,画出△ABC平移后的图形△A1B1C1;(2)以点A为旋转中心,将△ABC按逆时针方向旋转90°,得到△AB2C2,请画出△AB2C2.19.已知O是坐标原点,的坐标分别为(3,1),(2,﹣1).(1)画出绕点O顺时针旋转90°后得到的,并写出A1的坐标为;(2)在y轴的左侧以O为位似中心作的位似图形,使新图与原图相似比为2:1;(3)若点D(a,b)在线段OA上,直接写出变化(2)后点D的对应点D2的坐标为.20.如图,在正方形网格中,△ABC各顶点都在格点上,点A,B,C的坐标分别为(﹣5,1),(﹣5,4),(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1,点A,B,C的对应点分别是A1、B1、C1.(2)画出△ABC关于原点O对称的△A2B2C2,点A,B,C的对应点分别是A2、B2、C2.。
五年级数学图形的平移旋转与对称试题

五年级数学图形的平移旋转与对称试题1.画出下面图形的所有对称轴.【答案】见解析【解析】解:【点评】解答此题的主要依据是:轴对称图形的概念及特征,找出各个图形的对称轴条数即可解答问题.2.风扇扇叶的转动是平移现象..(判断对错)【答案】×【解析】解:据分析可知:风扇扇叶的转动是旋转现象,所以题干的说法是错误的.故答案为:×.【点评】此题是考查对平移与旋转的理解及在实际当中的运用.3.这个图案是从纸张上剪下来的.()A.B.C.D.【答案】D【解析】根据所给小花形状得出:有2个突出的弧线,上面凹进一个地方,据此选择即可.解:由分析得出:这个图案是从纸张上剪下来的.故选:D.【点评】本题是考查图形的组拼,相似的要注意观察细微部位.4.先观察图,再填空.(1)图A绕点“O”顺时针旋转90°到达图的位置;(2)图B绕点“O”顺时针旋转度到达图D的位置;(3)图C绕点“O”逆时针旋转180°到达图的位置.【答案】D,180,A.【解析】在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角,旋转不改变图形的大小和形状.解:(1)图A绕点“O”顺时针旋转90°到达图 D的位置;(2)图B绕点“O”顺时针旋转 180度到达图D的位置;(3)图C绕点“O”逆时针旋转180°到达图 A的位置.故答案为:D,180,A.【点评】旋转作图的方法是:①先找出图形中的关键点;②分别作出这几个关键点绕旋转中心旋转后的位置;③按原来位置依次连接各点即得要求下旋转后的图形.5.在下面图形中,你还能画出其它对称轴吗?如果能,请画出来.【答案】【解析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可进行解答.解:如图所示,就是图形的对称轴:.【点评】解答此题的主要依据是轴对称图形的意义及特征和其对称轴的条数.6.五角星是轴对称图形,它只有1条对称轴..【答案】×【解析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可判断五角星的对称轴条数.解:根据轴对称图形的定义可知:五角星是轴对称图形,它有5条对称轴,所以原题说法错误.故答案为:×.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴的条数的灵活应用.7.长方形有条对称轴,正方形有条对称轴,等腰梯形有条对称轴,等边三角形有条对称轴,圆有条对称轴.【答案】2,4,1,3,无数.【解析】根据轴对称图形的定义计算出图形的对称轴的条数,然后填空则可.解:长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,等边三角形形有3条对称轴,圆有无数条对称轴.故答案为:2,4,1,3,无数.【点评】考查了轴对称图形的对称轴的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线就是它的对称轴.8.平行四边形是轴对称图形..(判断对错)【答案】×【解析】依据轴对称图形的定义即可作答.解:因为平行四边形无论沿哪一条直线对折,对折后的两部分都不能完全重合,所以平行四边形不是轴对称图形.答:平行四边形是轴对称图形,这种说法是错误的.故答案为:×.【点评】此题主要考查轴对称图形的定义.9.下面各图形中,()不是轴对称图形.A. B. C.【答案】A【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:根据轴对称图形的意义可知:B、C中的图形是轴对称图形,而A中的图形不是轴对称图形;故选:A.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.10.画出小鱼先向左平移6格,再向下平移4格后的图形.【答案】【解析】根据平移的特征,把图中“小鱼”的各顶点分别向左平移6格,依次连结即得到向左平移6格后的图形;用同样的方向即可再把平移后的图形向下平移4格.解:画出小鱼先向左平移6格(图中红色部分),再向下平移4格(图中绿色部分)后的图形:【点评】平移作图要注意:①方向;②距离.整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.。
平移旋转轴对称经典题目

平移旋转轴对称经典题目平移旋转轴对称是几何中的基本概念,它在解决许多问题时都发挥了重要作用。
下面将介绍一些经典的与平移旋转轴对称相关的题目。
平移对称1. 问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。
试证明F是矩形ABCD的一个对称点。
问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。
试证明F是矩形ABCD的一个对称点。
问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。
试证明F是矩形ABCD的一个对称点。
证明:首先,连接BD并延长到交G于G点。
我们注意到BC是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。
因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。
首先,连接BD并延长到交G于G点。
我们注意到BC是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。
因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。
首先,连接BD并延长到交G于G点。
我们注意到BC 是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。
因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。
2. 问题:给定梯形ABCD,其中AD平行于BC。
点M是AB 的中点,点N是CD的中点。
试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。
问题:给定梯形ABCD,其中AD平行于BC。
点M是AB的中点,点N是CD的中点。
试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。
问题:给定梯形ABCD,其中AD平行于BC。
点M是AB的中点,点N是CD的中点。
试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。
证明:因为M是AB的中点,N是CD的中点,所以MN平行于AD。
另外,由于MN是平移MC得来的,所以MN的中点也是平移梯形ABCD的中线AD得来的,即MN的中点是梯形ABCD的一个对称点。
初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。
(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。
(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。
猜想:S1与S2有怎样的数量关系?并证明你的猜想。
【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.3.如图,在平面直角坐标系中,,,.(1)求出的面积.(2分)(2)在图中作出绕点B顺时针旋转90度得到的.(2分)(3)写出点的坐标.(2分)【答案】(1)S△ABC =7.5;(2)图形见解析;(3).【解析】(1)由A、B的坐标,易求得AB的长,以AB为底,C到AB的距离为高,即可求出△ABC的面积;(2)找出将△ABC绕点B顺时针旋转90°的三角形各顶点的对应点,然后顺次连接即可;(3)根据图形写出即可.试题解析:(1)根据题意,得:AB=5﹣0=5;∴S △ABC =AB•(|x C |﹣1)=×5×3=7.5;(2)如图:(3)根据图形可得:.【考点】作图-旋转变换.4. 下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A .2B .3C .4D .5【答案】C .【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C .【考点】轴对称图形.5. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是______________【答案】10.【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.试题解析:如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称,∴PB=PD , ∴PB+PE=PD+PE=DE . ∵BE=2,AE=3BE , ∴AE=6,AB=8,∴DE=.故PB+PE 的最小值是10.【考点】1.轴对称-最短路线问题;2.正方形的性质.6. 如图1,将矩形纸片沿虚线AB 按箭头方向向右对折, 再将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为( )【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.7.下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形【答案】B.【解析】 A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.【考点】轴对称的性质.8.正九边形绕它的旋转中心至少旋转°后才能与原图形重合.【答案】400.【解析】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与原来的图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.要与原来的正九边形重合.可用一个圆周角的度数(即360度)除以9,便可知道至少要旋转多少度才能和原来的九边形重合.因为3600÷9=400,故填400.【考点】旋转对称图形.9.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.将△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形向x轴负方向平移了1个单位【答案】C【解析】根据题意可得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称.解:△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称,故选:C.点评:此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.14.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN 交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是( )A.10cmB. 20cmC. 在10cm和20cm之间D.不能确定【答案】B【解析】根据轴对称的性质可得ME=PE,NF=PF,再结合△PEF的周长即可求得结果.∵点M、N分别是点P关于直线OA、OB的对称点∴ME=PE,NF=PF∵△PEF的周长=PE+EF+PF=20cm∴ME+EF+NF=20cm,即MN=20cm故选B.【考点】轴对称的性质点评:本题属于基础应用题,只需学生熟练掌握轴对称的性质,即可完成.17.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A1 _____________,B1______________,C1______________【答案】(1)如图所示:(2)A1(1,-2),B1(3,-1),C1(-2,1)【解析】(1)分别作出的三个顶点关于轴对称的对称点,再顺序连接即可.(2)根据(1)中所作的图形即可作出判断.(1)如图所示:【考点】基本作图,点的坐标点评:解题的关键是熟练掌握轴对称变换的作图方法,正确找到关键点的对称点.18.(本题满分6分)如下图,直线L是一条河,A,B是两个村庄。
初三数学图形的对称平移与旋转试题

初三数学图形的对称平移与旋转试题1.下面四个标志属于中心对称的是()A.B.C.D.【答案】A【解析】根据中心对称图形的概念对各选项分析判断后利用排除法求解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选A.【考点】中心对称图形.2.如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D=________.【答案】【解析】∵∠A=30°,AC=10,∠ABC=90°,∴∠C=60°,BC=BC′=AC=5,∴△BCC′是等边三角形,∴CC′=5,∵∠A′C′B=∠C′BC=60°,∴C′D∥BC,∴DC′是△ABC的中位线,∴DC′=BC=.3.将如图所示的图案通过平移后可以得到的图案是()【答案】A【解析】根据平移的定义可知选A.4.图中所示的几个图形是国际通用的交通标志,其中不是轴对称图形的是()【答案】C.【解析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.A、B、D都是轴对称图形,而C不是轴对称图形.故选C.【考点】轴对称图形.5.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形C.菱形D.正方形【答案】D.【解析】A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.考点: 轴对称图形.6.下列食品商标中不是轴对称图形的是()【答案】B.【解析】根据轴对称图形的概念对各选项分析判断即可得出答案.A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、轴对称图形,故本选项正确;故选B.考点: 轴对称图形.7.如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是 .【答案】平行四边形【解析】∵DE是△ABC的中位线,∴DE CA。
初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形【答案】B【解析】正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.【考点】1、中心对称图形;2、轴对称图形2.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于.【答案】70【解析】∵∠ACB=90°,∠A=35°,∴∠ABC=90°﹣35°=55°,∵以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,∴∠DEC=∠ABC=55°,∠ACD=∠BCE=θ°,CB=CE,∴∠CBE=∠BEC=55°,∴∠BCE=180°﹣∠CBE﹣∠BEC=70°,∴θ值为70.故答案为:70.【考点】旋转的性质3.下列图形:①线段;②等边三角形;③平行四边形;④等腰梯形;⑤长方形;⑥圆。
其中既是轴对称图形,又是中心对称图形的有(填序号)【答案】①⑤⑥.【解析】根据轴对称图形与中心对称图形的概念求解.试题解析:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③不是轴对称图形,是中心对称图形;④是轴对称图形,不是中心对称图形;⑤是轴对称图形,也是中心对称图形;⑥是轴对称图形,也是中心对称图形.故选答案为:①⑤⑥.【考点】1.中心对称图形;2.轴对称图形.4.作图题(6分):(1)把△ABC向右平移5个方格;(2)绕点B的对应点顺时针方向旋转90°.【答案】(1)作图见解析;(2)作图见解析.【解析】(1)找出平移后的点A、B、C的对应点的位置,然后顺次连接即可;(2)找出旋转变换后的点A'、C'的对应点的位置,然后顺次连接即可.试题解析:如图所示,(1)△A′B′C′即为平移后的图形;(2)△A″B'C″即为旋转后的图形.【考点】1.作图-旋转变换;2.作图-平移变换.5.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.6.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B.【解析】图(1)、图(5)都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图(3)不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图(2)、图(4)既是轴对称图形,又是中心对称图形.故选B.【考点】1.中心对称图形2.轴对称图形.7.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.8.下列图案是我国几家银行的标志,其中是中心对称图形的为( )【答案】A【解析】根据中心对称图形的概念,观察可知,只有第1个是中心对称图形,其它三个都不是中心对称图形.故选A.【考点】1.中心对称图形;2.生活中的旋转现象.9.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.【答案】15【解析】∵点关于的对称点是,关于的对称点是,∴,.∴△的周长为.10.在平面直角坐标系中,已知△OAB,A(0,-3),B(-2,0).(1)在图1中画出△OAB关于x轴的轴对称图形;(2)将先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形;(3)点A平移后的坐标为 .【答案】(1)(2)如下图;(3)(3,-2).【解析】(1)根据轴对称的性质作出关键点的对称点,再顺次连接即可得到结果;(2)先将O、A、B分别按要求平移,然后顺次连接即可得出平移后的图形;(3)根据所作的图形即可得出平移后的点A的坐标.试题解析:(1)(2)如下图(3)点A平移后的坐标为:(3,-2).【考点】坐标与图形变化11.已知点和关于x轴对称,则的值为_________;【答案】﹣3.【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,所以a=2,b=﹣5,则a+b=﹣3.故答案为:﹣3.【考点】关于x轴、y轴对称的点的坐标.12.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.13.如图,草原上两个居民点A、B在河流L的同旁,一汽车从A出发到B,途中需要到河边加水.汽车在哪一点加水,可使行驶的路程最短?在图上画出该点.【答案】作图见试题解析.【解析】作点A关于l的对称点A',连接A'B交l于C,点C即为所求.试题解析:①作A关于直线l的对称点A′;②连接A′B交直线l于点C,则点C即为所求点.汽车在C点加水,可使行驶的路程最短.【考点】1.轴对称-最短路线问题;2.作图题.14.下列平面图形中,不是轴对称图形的是()【答案】A.【解析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.【考点】轴对称图形.15.点(-2,m)关于x轴的对称点的坐标为________________.【答案】(-2,-m)【解析】由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).两点关于x轴对称,横坐标互为相等,纵坐标相反数,由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).【考点】点关于x轴对称.16.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.17.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.【答案】(1)FG⊥CD ,FG=CD;(2)成立【解析】(1)延长ED交AC的延长线于M,连接FC、FD、FM,根据矩形的性质可得CM=BD,根据等腰直角三角形的性质可得ED=BD=CM,再结合∠E=∠A=45º可证得△AEM是等腰直角三角形,由F是AE的中点可证得MF⊥AE,EF=MF,∠E=∠FMC=45º,即可证得△EFD≌△MFC,则可得FD=FC,∠EFD=∠MFC,又∠EFD+∠DFM=90º即得∠MFC+∠DFM=90º,即可得到△CDF是等腰直角三角形,从而可以证得结论;(2)证法同(1).解:(1)FG⊥CD ,FG=CD;(2)延长ED交AC的延长线于M,连接FC、FD、FM∴四边形 BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形.∴ED=BD=CM.∵∠E=∠A=45º∴△AEM是等腰直角三角形.又F是AE的中点.∴MF⊥AE,EF=MF,∠E=∠FMC=45º.∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90º∴∠MFC+∠DFM=90º即△CDF是等腰直角三角形.又G是CD的中点.∴FG=CD,FG⊥CD.【考点】旋转问题的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.18.下面三图是由三个相同的小正方形拼成的图形,请你在A,B,C三图中再添加一个同样大小的小正方形,使所得的新图形分别为下列要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.【答案】(1)(2)(3)如图所示:【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.(1)(2)(3)如图所示:【考点】基本作图-轴对称图形与中心对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.19.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键20.下列各图案中,不是中心对称图形的是().【答案】B【解析】中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合,由此可知B旋转180度后不能与原图形重合【考点】中心对称图形的判断点评:中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合21.下列图案中是轴对称图形的是()【答案】D【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由图可得只有D选项符合轴对称图形的定义,故选D.【考点】轴对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.22.把图中的五角星图案,绕着它的中心旋转,旋转角至少为()时,旋转后的五角星能与自身重合A.300B.450C.600D.720【答案】D【解析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、C都错误,能与其自身重合的是D,故选D【考点】旋转对称图形点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角23.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是 _.【答案】5【解析】先作点B关于y轴的对称点,连接,交y轴于点C,根据勾股定理求得的长,即可所求.作点B关于y轴的对称点,连接,交y轴于点C由题意得,则则光线从A点到B点经过的路线长是5.【考点】轴对称的应用,勾股定理点评:本题是勾股定理的应用,同时渗透光学中反射原理,构造直角三角形是解答本题的关键.24.下列四个图形中,不能通过基本图形平移得到的是()【答案】D【解析】根据平移的基本性质依次分析各选项即可判断。
平移旋转轴对称练习题

平移旋转轴对称练习题一、选择题1. 下列图形中,哪一个图形可以通过平移得到另一个图形?A. 正方形B. 长方形C. 梯形D. 平行四边形2. 在平面直角坐标系中,点A(2, 3)经过平移后得到点B,若点B 的坐标为(5, 7),则平移向量为?A. (3, 4)B. (4, 3)C. (3, 5)D. (5, 3)3. 下列哪个图形是轴对称图形?A. 正三角形B. 正方形C. 等腰梯形D. 所有选项都是4. 下列哪个图形可以通过旋转90度得到自身?A. 正方形B. 长方形C. 等边三角形D. 圆二、填空题1. 图形平移时,对应点的连线__________。
2. 图形的旋转中心称为__________。
3. 轴对称图形的对称轴可以是__________、__________或__________。
4. 一个图形绕着某一点旋转180度后与原图形重合,这个点称为__________。
三、判断题1. 平移不改变图形的大小和形状。
()2. 旋转会改变图形的大小和形状。
()3. 轴对称图形的对称轴必须经过图形的中心。
()4. 平移和旋转都是刚体变换。
()四、作图题1. 请画出下列图形经过平移后的图形:(1)正方形,平移向量:(3, 2)(2)等腰三角形,平移向量:(4, 1)2. 请画出下列图形绕点O旋转90度后的图形:(1)正方形(2)等边三角形3. 请画出下列图形的对称轴:(1)正方形(2)等腰梯形五、解答题1. 请描述一个正方形绕其中心旋转180度后的位置变化。
2. 画出两个全等三角形,其中一个三角形通过平移、旋转或轴对称变换得到另一个三角形,并说明变换过程。
3. 请举例说明生活中平移、旋转和轴对称现象的应用。
六、应用题1. 在平面直角坐标系中,点P(1, 2)经过平移后到达点Q,点Q 的坐标是(4, 1)。
求平移向量,并画出平移后的图形。
2. 一个长方形的长是8厘米,宽是4厘米。
如果将这个长方形绕其一个顶点旋转90度,求旋转后长方形的面积。
图形的平移旋转与轴对称中考真题精选(部分难题有答案)

图形的平移旋转与轴对称中考真题精选(部分难题有答案)一、选择题1.(2022甘肃兰州)观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()A.1个【答案】B2.(2022湖南益阳)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.【答案】D3.(2022江苏南通)如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()AOB(第3题)B.2个C.3个D.4个图1DCB.3πcmA.4πcmC.2πcm【答案】CD.πcm4.(2022江苏盐城)以下图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.矩形【答案】B5.(2022辽宁丹东市)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()3cmC.等腰梯形D.平行四边形3cm第5题图A.(10+213)cmB.(10+13)cmC.22cmD.18cm【答案】A6.(2022山东青岛)下列图形中,中心对称图形有().【答案】C7.(2022山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2022个图案是【答案】B8.(2022四川凉山)下列图案中,只要用其中一部分平移一次就可以得到的是()A.B.C.D.【答案】B9.(2022台湾)将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图(七)所示。
最后将图(七)的色纸剪下一纸片,如图(八)所示。
若下列有一图形为图(八)的展开图,则此图为何?()图(六)【答案】B(A)图(七)(B)图(八)(C)(D)10.(2022浙江杭州)如图,在△ABC中,CAB70.在同一平面内,将△ABC绕点A旋转到△AB/C/的位置,使得CC///AB,则BAB/()A.30B.35C.40D.50【答案】C11.(2022浙江宁波)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是()(A)【答案】C12.(2022浙江义乌)下列几何图形中,即是中心对称图形又是轴对称图形的是(▲)A.正三角形B.等腰直角三角形C.等腰梯形D.正方形【答案】D13.(2022重庆)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()OOOO(B)(C)(D)图①图②图③图④…A.图①B.图②C.图③D.图④【答案】B14.(2022重庆市潼南县)如图,△ABC经过怎样的平移得到△DEF()A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位DABEC14题图F【答案】C15.(2022浙江义乌)如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥的个数是(▲)BC,下列结论中,一定正确..①BDF是等腰三角形②DE1BC2③四边形ADFE是菱形④BDFFEC2AADBFECA.1B.2C.3D.4【答案】C16.(2022江苏连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④【答案】C17.(2022山东济南)如图,ΔABC与ΔA’B’C’关于直线l对称,lCA50A'BB'30C'第17题则∠B的度数为()A.50°B.30°C.100°D.90°【答案】C18.(2022福建福州)下面四个中文艺术字中,不是轴对称图形的是()A.B.C.D.【答案】C19.(2022江苏无锡)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】B20.(2022河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是向右翻滚90°逆时针旋转90°图6-1图6-2D.2A.6【答案】BB.5C.321.(2022山东省德州)下面的图形中,既是轴对称图形又是中心对称图形的是(A)【答案】B22.(2022山东莱芜)在下列四个图案中既是轴对称图形,又是中心对称图形的是(B)(C)(D)A.B.C.D.【答案】B23.(2022广东珠海)现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()A.BCD【答案】B24.(2022福建宁德)下列四张扑克牌图案,属于中心对称的是().【答案】B25.(2022浙江湖州)一个正方体的表面展开图如图所示,则正方体中的“★”所在面的对面所标的字是()A.上B.海C.世D.博A.B.C.D.图1图2【答案】B.26.(2022浙江湖州)如图,如果甲、乙关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.【答案】C.27.(2022湖南常德)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()D.!ABC图4【答案】D28.(2022湖南怀化)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】B29.(2022江苏扬州)在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为()A.1个【答案】BB.2个C.3个D.4个30.(2022北京)美术课上,老师要求同学们将右图所示的白纸只沿虎虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是....【答案】B31.(2022四川乐山)下列图形中,是轴对称图形的是()【答案】B32.(2022山东泰安)下列图形:其中,既是轴对称图形,又是中心对称图功的个数是()A.1个【答案】B33.(2022黑龙江哈尔滨)一列图形中,是中心对称图形的是()B.2个C.3个D.4个【答案】D34.(2022江苏徐州)下列四个图案中,是轴对称图形,但不是中心对称图形的是A【答案】ABCD35.(2022江苏徐州)如图,在6某4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是A.点MB.格点NC.格点PD.格点Q【答案】B36.(2022四川内江)学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那么在图③中剪下△ABC时,应使∠ABC的度数为A.126°【答案】AB.108°C.100°D.90°37.(2022湖北襄樊)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个【答案】B38.(2022山东东营)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生......活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的......性质是()(A)对应点连线与对称轴垂直(B)对应点连线被对称轴平分(C)对应点连线被对称轴垂直平分(D)对应点连线互相平行B.3个C.2个D.1个【答案】B39.(2022四川绵阳)对右图的对称性表述,正确的是().A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【答案】B40.(2022山东淄博)如图,△A′B′C′是由△ABC经过变换得到的,则这个变换过程是(A)平移(B)轴对称(C)旋转(D)平移后再轴对称AA′BC′(第5题)B′【答案】D41.(2022天津)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为(A)(B)(C)(D)【答案】B42.(2022内蒙古包头)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B43.(2022贵州贵阳)如图3是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为(图3)(A)(B)(C)(D)【答案】C44.(2022湖北十堰)如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于()A.50°B.60°C.70°D.80°AA′B(第44【答案】A45.(2022广西玉林、防城港)下列图形中,既是轴对称图形又是中心对称图形的是:()A.等边三角形B.平行四边形C.菱形D.正五边形【答案】C46.(2022青海西宁)如图9,下列汉字或字母中既是轴对称图形,又是中心对称图形的有A.1个B.2个C.3个D.4个CB′【答案】B47.(2022广西梧州)下列图形中是轴对称图形的是()①④A.①②B.③④C.②③D.①④【答案】D48.(2022云南昭通)下列图形是轴对称图形的是()ABCD【答案】B49.(2022贵州遵义)下列图形既是中心对称图形,又是轴对称图形的是【答案】B50.(2022广东深圳)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】A51.(2022广东佛山)如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是A.对称B.平移C.相似(相似比不为1)C.旋转【答案】C52.(2022湖北宜昌)如图,正六边形ABCDEF关于直线l的轴对称图形是六边形的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(每题4分,共计28分)
l.如图12所示,△A′B′O是否AOB绕点O逆时针旋转后得到的,则图中线段AB的对应线段是 ,∠BOB′= ,△A′OB′和△AOB的形状与大小保持.
2.在U,V,W,X,Y,Z这六个大写英文字母中,是轴对称图形的是 ,是中心对称图形的是.
3.把下列图形中符合要求的图形的编号填入圈内
4.一个平面图形先向左平移1个单位长度,再向右平移2个单位长度,此时该图形在原图形的什么位置?答.若再向左平移3个单位长度又向右平移4个单位长度,我们规定象这样的左右各平移一次作为一次操作,则第2003次操作后,图形在原图形的什么位置?答.
5.如果两个图形可以通过彼此平移而得到,那么它们的周长 ,面积.
6.下列四幅图案中哪幅图案可以通过平移得到图案(1).
7.如图13,△ABC和△CDE是等边三角形,则△ACD和△BCE可以绕着点旋转得到,旋转中心是 .
二、选择题(每题4分,共计24分)
1.下列现象中不属于平移的是()
A.滑雪运动员在平坦的雪地上滑翔 B.彩票大转盘在旋转
C.大楼电梯上上下下 D.火车在笔直的铁轨上飞驰
2.如图所示,哪一个是旋转对称图形()
3.下图是我国几家银行的标志,其中是中心对称图形的是()
A.1个B.2个C.3个D.4个
4.下列图形是几种名车的标志,在这几个图形中既是中心对称图又是轴对称图形的是()
A.4个B.3个C.2个D.1个
5.下列说法正确的是()
A.旋转对称图形是中心对称图形.
B.中心对称图形是旋转对称数图形
C.中心对称图形是旋转90°后能与自身重合的图形
D.如果两个图形关于某点成中心对称,则每个图形是中心对称图形.
6.下列命题中正确命题的个数为()
①旋转对称图形是中心对称图形.
②关于某一点为中心对称的两个三角形重合
③两个重合的图形一定关于某点为中心对称
④中心对称图形一定是轴对称图形.
A.1个B.2个C.3个D.4个
三、作图题(每题8分,共计16分)
1.如图14所示,平移方格纸中的图形使点A平移到点A′处,画出平移后的图形.
2.如图15,不用量角器,在方格纸中画五边形ABCDE绕点O逆时针旋转90°后的五边形A′B′C′D′E′
五、解答题(每题8分,共计16分)
已知,如图18,点C是AB上一点,分别以AC,BC为边,在AB的同侧作等边三角形△ACD和△BCE.
(1)指出面ACE以点C为旋转中心,顺时针方向旋转60°后得到的三角形.
(2)若AE与BD交于点0,求∠AOD的度数.
【单元达纲检测】
一、填空题(每小题4分,共24分)
1.如图11-1所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=_____________.
2.如图11-2所示,Rt△A′B′C′是△ABC向右平移3cm所得,已知∠B=60°,B′C=5cm,则∠C′=______,B′C′=_____________cm.
3.如图11-3,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA_______PB+PC(填“>”、“<”或“=”).4.如图11-4,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=_____________.
5.如图11-5,O 是等边△ABC 内一点,将△AOB 绕B 点逆时针旋转,使得B 、O 两点的对应点分别为C 、D,则旋转角为_____________,图中除△ABC 外,还有等边三形是_____________.
6.如图11-6,Rt △ABC 中,P 是斜边BC 上一点,以P 为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有_____________.
二、选择题(本题共6小题,每题5分,共30分,每小题只有一个选项符合题意)
7.如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ).
①对应点连线的中垂线必经过旋转中心.
②这两个图形大小、形状不变.
③对应线段一定相等且平行.
④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.
A .1个
B .2个
C .3个
D .4个
8.如图11-7,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG 可以看成是把菱形ABCD 以A 为中心( ).
A .顺时针旋转60°得到
B .顺时针旋转120°得到
C .逆时针旋转60°得到
D .逆时针旋转120°得到
9.如图11-8,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE,AD 交CE 于F,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( ).
A .1对
B .2对
C .3对
D .4对
10.如图11-9,△ABC 中,AD 是∠BAC 内的一条射线,BE ⊥AD,且△CHM 可由△BEM 旋转而得,则下列结论中错误的是( ).
A .M 是BC 的中点
B .EH 2
1FM C .CF ⊥AD D .FM ⊥BC
四、解答题(每小题10分,共30分)
1.如图11-14,△ABC 、△ADE 均是顶角为42°的等腰三角形,BC 、DE 分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得
到?
2.等边△ABD和等边△ACE,∠BAC=90°,BE与CD交于O,△ACD绕点A旋转多少度后能与△AEB重合?CD与BE有何关系?
3.△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置。
(1)旋转中心是哪一点
(2)旋转了多少度?
(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?
4.△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,△ADE经过旋转后能与△ABC重合,请回答下列问题(1)哪一点是旋转中心?
(2)旋转了多少度?
(3)线段AD与AC相等吗?为什么?
5.如图,△COD是△AOB绕O点旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,求∠B的度数。