数值分析——线性方程组直接解法

合集下载

数值分析实验三 线性方程组的直接接法2

数值分析实验三  线性方程组的直接接法2

数值分析实验三 线性方程的直接解法组号 班级 学号 姓名 分数一:实验目的1、掌握求解线性方程组的不同方法。

二:实验内容及基本知识介绍本实验中利用高斯消去法和矩阵的直接三角分解法求解线性方程组。

用消去法解方程组的基本思想:是用逐次消去未知数的方法把原方程组Ax=b 化为与其等价的三角形方程组,而求解三角形方程组可用回代的方法求解。

即上述过程就是用行的初等变换将原方程组系数矩阵化为简单形式(上三角矩阵),从而将求解原方程组的问题转化为求解简单方程组问题。

或者说对系数矩阵A 施行一些做变换将其约化为上三角矩阵。

直接三角分解法的原理:在高斯消去法的基础上,高斯消去法实质上产生了一个将A 分解为两个三角形矩阵相乘的因式分解,即矩阵的LU 分解——设A 为n 阶矩阵,如果A 的顺序主子式i D ≠0(i=1,2,…n-1),则A 可分解为一个单位下三角矩阵L 和一个上三角矩阵U的乘积,且这种分解是唯一的。

将高斯消去法改写为紧凑形式,可以直接从矩阵A 的元素得到计算L,U 元素的递推公式,而不需要任何中间步骤,这就是直接三角分解法。

一旦实现了矩阵A 的LU 分解,那求解Ax=b 的问题就等价于求解两个三角形方程组 ① Ly=b,求y;② Ux=y,求x.其中用直接三角分解法解Ax=b 的分解矩阵A 的计算公式:①111111(1,2,...),/(2,3,...),i i i i i n i n u a l a u ====计算U 的第r 行,L 的第r 列元素(r=2,3,…n ).②11r ri ri rk ki k ua l u -==-∑ (i=r,r+1,…n); ③11)/(r ir ik kr rr ir k a l l u u -==-∑ (i=r+1,…,n;且r ≠n) 三:实验问题及方法、步骤分别用直接三角分解法和高斯消元法解方程组Ax=b,其中 2111339,23353A b --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。

数值分析 张铁版 第2章 解线性方程组的直接方法

数值分析 张铁版 第2章 解线性方程组的直接方法

(k )
(k )
m a x a ik
k i n
(k )
, 则 ai
(k )
0
j
a k j , bi
(k )
(k )
0
bk
(k )
, j k , , n
例2 P.17例2-1
解线性方程组列主元Gauss消去算法
若 a kk
(k )
0 , k 1, 2 , , n , A
2
1 例 3 .例 1 中 , A 1 3
2 2 2
1 3 , 将 A作 L U 分 解 。 5
解:由Gauss消去法
1 A 1 3 2 2 2 1 m 1 3 m 2 1 3 31 5 1 0 0 2 4 8 1 m 32 2 2 8 1 0 0 2 4 0 1 2 U 12
(1 )
其中
a ij
(2)
a ij
m i1 a 1 j , ( i , j 2 , 3 , , n )
bi
(2)
bi
(1 )
m i1 b1
(2)
(1 )
, ( i 2 ,3 , , n )
第二步:若 … …
a 22 0 ,
用… ….
第k步:若
a (1 ) 11
其中
a ij
bi
( k 1)
a ij
bi
(k )
m ik a kj , ( i , j k 1, , n )
m ik b k
(k )
(k )
( k 1)

解线性方程组的直接法

解线性方程组的直接法

a23x3 a33x3
a24x4 a34x4
b2 b3
a41x1 a42x2 a43x3 a44x4 b4
增广矩阵 a11 a12 a13 a14
A
a21
a22 a23
a24
a31
a32 a33
a34
a41 a42 a43 a44
b1
b2
b3
b4
32
计算3个消元因子(乘子向量)
-3x1 + x2 + 3x3 + 2x4 =6
1 2 1 4 13
1 2 1 4 13
2 0 4 3 28 4 2 2 1 20 -3 1 3 2 6
-主元行*2 -主元行*4 -主元行*-3
0 –4 2 -5 2 0 –6 –2 –15 -32 0 7 6 14 45
24
1 2 1 4 13
0 –4 2 -5 2
消元过 程
回代:x4=2,x3=4,
x2=-1,x1=3
25
有回代的高斯消去法
(Gaussian Elimination with Back Substitution)
如果A是NN非奇异矩阵(存在A-1),则存 在 线性方程组UX=Y与线性方程组AX=B等价,这 里U 是上三角矩阵,并且akk0。当构造出U和Y后, 可用回代法求解UX=Y,并得到方程组的解X。
16
➢ 高斯消元法: 思 首先将A化为上三角阵 ,再回代求解。

=
17
4 初等变换(Elementary Transformation) 下列三种变换可使一个线性方程组变换成另一
个等价的线性方程组 交换变换:对调方程组的两行 比例变换:用非零常数乘方程组的某一行 替换变换:将方程组的某一行乘一个常数再加到

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。

线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。

线性方程组的解法包括直接解法和迭代解法两种方法。

一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。

这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。

1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。

这种方法可以减少计算量,提高计算效率。

1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。

它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。

Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。

二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。

Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。

2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。

它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。

Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。

2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。

它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。

SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。

三、总结线性方程组解法是数值分析中的一个重要内容。

直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。

数值分析实验报告

数值分析实验报告
end
%消元过程
fori=k+1:n
m=A(i,k)/A(k,k);
forj=k+1:n
A(i,j)=A(i,j)-m*A(k,j);
end
b(i)=b(i)-m*b(k);
end
det=det*A(k,k);
end
det=det*A(n,n);
%回代过程
ifabs(A(n,n))<1e-10
flag='failure';return;
*x=(x0,x1….,xn),插值节点
*y=(y0,y1,…,yn);被插函数f(x)在插值节点处的函数值
*t求插值函数Pn(x)在t处的函数值
*返回值 插值函数Pn(x)在t处的函数值
*/
procedureNewton
forj=0to n
d1jyj;
endfor
forj=1to n
fori=j to n
[n,m]=size(A);nb=length(b)
%当方程组行与列的维数不相等时,停止计算,并输出出错信息
ifn~=m
error('The row and columns of matrix A must beepual!');
return;
end
%当方程组与右端项的维数不匹配时,停止计算,并输出错误信息
clear
fprintf('gauss-seidel迭代法')
x1_(1)=0;
x2_(1)=0;
x3_(1)=0;
fori=1:9
x1_(i+1)=7.2+0.1*x2_(i)+0.2*x3_(i);

数值分析_第七章_解线性方程组的直接解方法

数值分析_第七章_解线性方程组的直接解方法

因‖R0‖<1,故lim‖R0‖k→∞2k=0.则2k‖Rk‖≤‖R0‖→0(k→∞),-1即Rk→0(k→∞).Rk=I-ACk,故当Rk→0时,Ck→A.四、习题1畅用Gauss消去法解方程组2x1+x2+x3=4,3x1+x2+2x3=6,x1+2x2+2x3=5.2畅(1)设A是对称矩阵且a11≠0,经过Gauss消去法一步后,A约化为a110证明A2是对称矩阵.(2)用Gauss消去法解对称方程组0畅6428x1+0畅3475x2-0畅8468x3=0畅4127,0畅3475x1+1畅8423x2+0畅4759x3=1畅7321,-0畅8468x1+0畅4759x2+1畅2147x3=-0畅86.3畅(1)用表达式(7畅4)证明其中aij=aij.(1)a1TA2.aij=aij-li1a1j-li2a2j-…-li,k-1ak-1,j,i,j≥k,(k)(1)(1)(2)(k-1)(r)(2)使Gauss消去法中arj=urj(j≥r),利用(1)证明urj=arj-k∑lrkukj(j=r,r+1,…,n),=1lir=(air-k∑likukr)/urr(i=r+1,…,n).=14畅设方程组x1+2x2+3x3=1,5x1+4x2+10x3=0,3x1-0.1x2+x3=2.r-1r-1318(1)试用Gauss全主元消去法求解.(2)试用Gauss列主元消去法求解.5畅设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零.2,…,n-1)时,则有6畅由Gauss消去法证明:当Δi≠0(i=1,A=LU,其中L为单位下三角阵,U为上三角阵.7畅设A为n阶矩阵,若|aii|>j∑|aij|(i=1,2,…,n),则称A=1j≠in为对角优势矩阵.试证明:设A是对角优势矩阵,又设经过Gauss消去法一步后,A具有形式a110α1TA2,则A2是对角优势矩阵.且由此推断:对于对称的对角优势矩阵,用Gauss消去法和部分(列)主元Gauss 消去法可得到同样的结论.8畅设Lk为指标是k的初等下三角矩阵,即1筹Lk=1mk+1,k…mnk1筹1.(除第k列对角元下元素外,Lk与单位阵I相同)求证当i,j>k时,L珟k=IijLkIij也是一个指标为k的初等下三角矩阵,其中Iij 为初等排列矩阵.9畅试推导矩阵A的Crout分解的计算公式:A=LU,其中L为下三角矩阵,U 为单位上三角矩阵.10畅设UX=b,其中U为三角矩阵.(1)就U为上及下三角矩阵推导一般的求解公式.(2)计算解三角形方程组UX=b的乘除法次数.319(3)设U为非奇异矩阵,试推导求U323T-1的计算公式.11畅用平方根法(Cholesky分解)解方程组2203591-2103012591701-21-2A=-4-64182x1x2x3x1x2x3001-28-16.-20,b=5=3.710=16.30110-1-112畅用LDL分解法解方程组335-2A=10013畅用追赶法解三对角方程组AX=b,其中.14畅求矩阵A的LU分解,并利用分解结果计算A.15畅下述矩阵能否分解为A=LU,其中L为单位下三角矩阵,U为上三角矩阵.若能分解,那么分解是否唯一?1A=24246370.60.10.50.31312311162515615.461,B=21,C=216畅设A=F唱范数.17畅求证:,计算A的行范数、列范数、2唱范数及(1)‖X‖∞≤‖X‖1≤n‖X‖∞,320(2)‖A‖F≤‖A‖2≤‖A‖F.n×n18畅设P∈R范数.定义且为非奇异矩阵,又设‖X‖为R上一向量‖X‖P=‖PX‖.n试证明‖X‖P是R上向量的一种范数.19畅设X∈R,X=(x1,x2,…,xn),求证:p→∞nTn20畅证明:当且仅当与Y线性相关且XY≥0时,才有Tlim(i∑|xi|=1np)1=1max|xi|=‖X‖∞.≤i≤n‖X+Y‖2=‖X‖2+‖Y‖2.21畅设A∈Rn×n,求证特征值相等λ(AA)=λ(AA).TT22畅证明:如果A=(α1,α2,…,αn)是按列分块的,则‖A‖2F=‖α1‖2+‖α2‖2+…+‖αn‖2.222-123畅证明:如果‖B‖<1,则‖I-(I-B)‖≤‖B‖.24畅证明:对任何矩阵算子范数有‖I‖=1(其中I是单位矩阵),‖A‖‖A-1‖≥1.nj≠i25畅(1)如果A是对角优势矩阵,即|aii|>j∑|aij|(i=1,2,=1…,n),证明aii≠0(i=1,2,…,n).(2)设A为对角优势矩阵,使A=DB,其中D=diag(aii),证明B=I-C,其中‖C‖∞<1,因此由定理(7畅16),A是非奇异阵.(3)证明:如果应用Gauss消去法解对角优势方程组,则所有元素akk≠0.(k)26畅设‖A‖s、‖A‖t为任意两种R明存在常数c1、c2>0,使n×n上矩阵算子范数,证n×nc1‖A‖s≤‖A‖t≤c2‖A‖s(对一切A∈R).32127畅设A=100999998,计算A的条件数cond(A)ν(ν=2,∞).28畅证明:如果A是正交阵,则Cond(A)2=1.29畅设A,B∈Rn×n且‖·‖为Rn×n上矩阵的算子范数,证明TT30畅设A为对称正定矩阵,且其分解为A=LDL=WW,其中W=L,求证:T1Cond(A·B)≤Cond(A)·Cond(B).(1)cond(A)2=(cond(W)2).2(2)cond(A)2=cond(W)2·cond(W)2.31畅设对称正定矩阵A=试计算‖A-1T2-1-12,λ2,且找出b1‖2=1/λ,‖A‖2=λ2及cond2(A)=(常数)及扰动δb,使‖δb‖2‖δX‖2=cond2(A).2232畅求下面两个方程组的解,并利用矩阵的条件数估计‖δX‖.240-179240-179畅5-319240240x1x2=x1x234=,即AX=b,34,即(A+δA)(X+δX)=b.-319畅533畅已知Hilbert矩阵3221H3=11T1=b时,若H3及b有微小误‖δX‖∞.∞7畅0003-7T.(1)计算H3的条件数cond∞(H).111347(2)解方程H3X=差(取3位有效数字),估计解X的误差34畅设A=2畅0001-2-11,b=,已知方程组AX=b的精确解为X=(3,-1).(1)计算条件数cond∞(A).计算剩余r=b-AX珚.(2)若近似解X珚=(2.97,-1.01),(3)利用定理7畅20计算不等式右端,并与不等式左端比较,此结果说明什么?35畅填空题(1)X=(2,3,-4),则‖X‖1=,‖X‖2=,‖X‖∞TT=.1-32-10201,则‖A‖1=,ρ(A)=.0-1则cond2(A)=.20a,为使A可分解为A=LL,其中L为323T(2)A=-12-112(3)A=(4)设A=10a2对角线元素为正的下三角形矩阵,a的取值范围,取a=1,则L=.五、习题解答1畅解为消去第2、3两个方程中的x1,取l21=,l31=.将第2个方程减去-l21倍的第1个方程,第3个方程减去-l31倍的第1个方程,得2x1+x2+x3-=4,x2+x3=0,x2+x3=3.为消去第3个方程中的x2,取l32=-3.将第3个方程减去-l32倍的第2个方程,得三角方程组2x1+x2+x3=4,-11x2+x3=0,3x3=3.回代,算出方程组的解x3=3/3=1,x2=0-1x3(1)-1=1,x1=(4-x2-x3)/2=1.2畅解(1)记A=(aij)=(aij).经Gauss消元一步后,A2的元素为a(2)ij(1)=a(1)ij(1)i1(1)-a1j.11(1)(1)(1)因A是对称的,所以有aij=aji,ai1=aj1,于是有324a故A2是对称的.(2)ij=a(1)jij1(1)(2)-a1i=aji.11(1)(2)用Gauss消去法求解所给对称方程组,得X=(4畅586035,-0畅6315228,2畅735199).倡T 3畅解(1)因aij=aij(k)(k-1)-li,k-1ak-1,j,(k-1)而故aij=aij(k)(k-2)(1)aij(k-1)=aij(k-2)-li,k-2ak-2,j,(k-2)(k-1)-li,k-2ak-2,j-li,k-1ak-1,j=…(k-2)(1)(2)(k-2)(k-1)=aij-li1a1j-li2a2j-…-li,k-2ak-2,j-li,k-1ak-1,j,i,j≥k.(2)由(1)有urj=a又0=air由此解出(r+1)(r)rj=arj-k∑lrkakj(j=r,r+1,…,n).=1(k)r-1=air-li1u1r-li2u2r-…-lirurr.lir=likukrair-k∑=1rrr-1.4畅解(1)选主元为10,将第一行与第二行交换,第1列与第3列交换,得10x3+4x2+5x1=0,3x3+2x2+x1=1,x3-0.1x2+3x1=2.消去第2、3方程中的x3,得10x3+4x2+5x1=0,0畅8x2-0.5x1=1,-0.5x2+2.5x1=1.第2次选的主元为2畅5.将上述第2个方程与第3个方程交325换,第2列与第3列交换,得10x3+5x12畅5x1消去第3方程中的未知数x1,得10x3+5x1+4x2=0,2畅5x1-0.5x2=2,0.7x2=1.4.回代求得,x2=2,x1=1.2,x3=-1.4.得(2)列主元为5,将第1行与第2行交换,再消去x1,5x1+4x2+10x3=0,1畅2x2+x3=1,-2.5x2-5x3=2.列主元为-2.5,将第2行与第3行交换,再消去x2,得5x1+4x2+10x3=0,-2畅5x2-5x3回代求得x3=-1.4,x2=2,x1=1.2.5畅证设A、L、U的k阶顺序主子矩阵分别为Ak、Lk、Uk(k=1,2,…,n),显然Ak=LkUk.由A=LU分解的定义可知,L1U的各阶顺序主子式均不为零,即故det(Lk)=1,det(Uk)≠0.det(Ak)=det(Lk)det(Uk)≠0,k=1,…,n,=2,-1畅4x3=1畅96.+4x2=0,-0.5x2=2,-0.5x1+0.8x2=1.即A的各阶顺序主子式均不为零.(i)6畅证因Δi≠0,(i=1,2,…,n-1)(Δi是i阶顺序主子式),所以aii≠0(i=1,2,…,n-1),则Gauss消去法可进行到底,即存326在指标为i的初等下三角阵Li,使Ln-1Ln-2…L1A=U,故A=L1其中L=L1-1-1-1(2)-1…Ln-2Ln-1U=LU,-1-1…Ln-2Ln-1为下单位三角阵,U是上三角阵.aij=aij-(2)7畅证记A2=(aij),则有i1a1j.11nj≠in又A是对角优势矩阵,可知|aii|>j∑|aij|,i=1,2,…,n.故=1∑|a|=j∑j=2=2(2)ijj≠innnj≠ii1aij-a1j11≤j∑|aij|+j∑=2=2j≠i|ai1||a1j|11j≠in|aij|n∑|a1j|=j∑|aij|-|ai1|+=111j=2j≠ij≠i≤|aii|-=|aii|-≤|aii|-≤aii-ni1(|a11|-j∑|a1j|)=211j≠ini1(|a11|-j∑|a1j|+|a1i|)=211ni1|a1i|(|a11|-j∑|a1j|>0.)=211i1(2)a1i=|aii|(i=2,…,n).11即A2也是对角优势矩阵.若A是对角优势矩阵,经Gauss消元一步后.A→A(2)=a110αTA2.由上述证明及第2题结论知,A2仍是对角优势矩阵,即|a|>j∑|aij|(i=2,…,n).=2(2)ii(2)由对称性也有327|a|>i∑|a|=i∑|aij|,(j=2,…,n).=2=2(2)jj(2)ji(2)i≠ji≠jnn这正好与Gauss顺序消去而第二步消元前所选列主元应为a22,(k)法的主元相同.以此类推第k次所选主元就是akk,所以用Gauss (2)顺序消去法和列主元消去法得到同样的结果.8畅证因1筹Lk=1mk+1,k…mnk0,1,0,…,0).故ek=(0,…,T第k列=I-lkek.筹TT其中I是单位阵,lk=(0,…,0,-mk+1,k,…,-mik,…,-mn,k),L珟k=IijLkIij=Iij(I-lkek)Iij=IijIIij-(Iijlk)(ekIij)=I-lkek′TTT仍是指标为k的初等下三角阵,其中lk=(0,…,0,-mk+1,k,…,mjk,…,-mik,…,-mnk).′T9畅解设A=LU,即a11a12…a1na21a22…a2n…………an1an2…ann根据矩阵乘法,有ai1=li1u11=li1,i=1,…,n,a1j=l11u1j,得u1j=328,j=2,…,n.11=l11l21l22……筹ln1ln2…lnn1u121…u23筹……筹筹u1nu2n…un-1,n1.现设L的前k-1列与U的前k-1行已算好,因akk-1ik=r∑=1lirurk=r∑=1lirurk+likukk(i=k,…,n,ukk=1),k-1所以lik=aik-r∑=1lirurk(i=k,…,n).同样akk-1kj=r∑=1lkrurj=r∑=1lkrurj+lkkukj(j=k+1,…,n),k-1kj所以u-r∑=1lkrurjkj=akk,j=k+1,…,n.综上,Crout分解公式li1=ai1,i=1,2,…,n,u1j=a1j/l11,j=2,…,n,lk-1ik=aik-r∑=1lirurk,i=k,…,n,uk-1kj=(akj-r∑=1lkrurj)/lkk,j=k+1,…,n.10畅解(1)设U为上三角阵,则有u11……u1nx1b1u22…u2nx2筹……=b2….unnxnbn由unnxn=bn,得xn=bn/unn.一般地,由uiixi+ui,i+1xi+1+…+uinxn=bi,得nxbi-j=∑ijxji=ui+1ii(i=n-1,n-2,…,1).当U是下三角矩阵时,有329u11u21…un1u22…un2筹…unnx1x2 (x)n=b1b2…bn.由u11x1=b1,得x1=b1/u11.一般地,由ui1x1+ui2x2+…+uiixi=bi,i=2,…,n,得xi=(bi-j∑uijxj)/uii,i=2,…,n.=1(2)乘法次数,对固定的i有n-i次,i从1到n,所以总乘法次数R(n-i)=i∑i=R=i∑=1=1除法次数D,D=n.+n故总的乘除法次数=+n=.2nn-1i-1.(3)设Uu11…筹-1=V,这里V也是上三角阵,即u1n…unn v11…筹v1n (v)nnj1=UV=1筹1.V按行计算,i=n-1,…,1,vij=-k=i+1∑uikvkjii,j=i+1,…,n.vii=,i=1,2,…,n.ii223=2>0,Δ3=232203012>0.11畅解因系数矩阵顺序主子式Δ1=3>0,Δ2=32且系数矩阵对称,故为正定方程组.按照算法(7畅9)得330l11=,l21=2/,l31=,l22=则有3232203012由2/得再由2/y1=-y1y2y35=3,7=2/-2/-.,l32=-,l33=.511,y2=-,y3=.x1x2x3=5/-1/,1/-得x3=11,x2=,x1=1.12畅解此方程组的系数矩阵为对称正定矩阵,因此可用改进的平方根法,用算式(7畅11)得到d1=a11=3,t21=a21=3,l21=d2=a22-t21l21=5-3=2,t32=a32-t31l21=9-1=8,l32=t213==1,1315=,1t31=a31=5,l31=3282==4,d3=a33-t31l31-t32l32=.23311则A=LDL=T3121115/32.15/3212/31由LY=b,即1y11011y2=16,5/321y330得y1=10,y2=6,y3=4/3.再解DLTX=Y,得x3=2,x2=-1,x1=1.13畅解设-21001u1d11-210l21u2d201-21=l 31u3001-2l41由分解公式(7畅15)计算得d1=1,d2=1,d3=1,u1=-2,l2=-1,u2=-3,l3=-2,u3=-4,l4=-3,u4=-5.由公式(7畅16)解1y11-11LY=b=痴y21-21y=30,-1y4-1得y1=1,y2=3,y3=1,y4=-1.再由公式(7畅17)解332d3.u4-2UX=Y痴1-x11-41-x2x3=131,1-x41376得x4=,x3=-,x2=-,x1=-.14畅解由矩阵的三角分解公式(7畅6),计算得1-248A=LU=21010-32.3-1100-76100-0.50畅2-0畅1369-1-1L=-210,U=0畅1-0畅04211.-511-0畅01316所以-0畅21550畅0631-0畅1369-1-1-1A=UL=0畅010550畅05789-0畅04211.0畅0653-0畅01316-0畅0131615畅解设A能分解,则有1A=LU=l21l3101l32001u1100u12u220u13u33u331=2424631.7由分解公式(7畅6)知,u11=1,u12=2,u13=3,l21=2,l31=4,u22=0,而a32=l32u22+l31u12=0+4×2=8与a32=6矛盾,故A的LU分解不能进行.但A为非奇异阵,所以存在排列阵P,使PA=LU.即将A的1行与2行交换,则可分解为LU.设B=LU,则12312311=11l21l3101l32001u1100u12u220u13u23u33333.由分解公式(7畅6)知,u11=u12=u13=1,l21=2,l31=3,u22=0.而由3=l31u12+l32u22,得3=3+l32u22.故l32可任选,即B的三角分解存在且不唯一.因C的各阶顺序主子均不为0,故由定理7畅4知,C的三角分解存在且唯一.16畅解A的行范数6+0.5,0.1+0.3}=1.1.‖A‖∞=max{0.A的列范数6+0.1,0.5+0.3}=0.8.‖A‖1=max{0.‖A‖F=(0.36+0.25+0.01+0.09)AA=T1/2=0.8426.0畅330畅34.0畅60畅50畅10畅30畅60畅10畅60畅3=20畅370畅33|λI-AA|=Tλ-0畅37-0畅33-0畅33λ-0畅34=λ-0.71λ+0.0169=0.所以λmax(AA)=0.685,则‖A‖2=17畅证(1)由定义知,‖X‖∞≈0畅83.n=1max|xi|≤i∑|xi|≤i≤n=1=‖X‖1≤i∑max|xi|=n‖X‖∞,=11≤i≤n∞n从而‖X‖2∞≤‖X‖1≤n·‖X‖TT.(2)由范数定义有‖A‖2=λmax(AA)≤λ1(AA)+λ2(AA)+…+λn(AA)TT=AA的对角元之和=i∑a+i∑a+…+i∑ani=1=1=1T21i222i2nnn=j∑∑a=i∑∑aij=‖A‖F.=1i=1=1j=122nnnn又‖A‖2=λmax(AA)2T334≥=从而TTT[λ1(AA)+λ2(AA)+…+λn(AA)]12‖A‖F.‖A‖F≤‖A‖2≤‖A‖F.注:此处用到了矩阵的特征值之和等于其对角线上元素之和的概念.从所证不等式也知道,矩阵的2唱范数可由F唱范数得到控制;矩阵的2唱范数与F唱范数是等价的.18畅证只要证明‖X‖P=‖PX‖满足范数定义的(1),(2),(3).(1)因P非奇异,故对任意X≠0,PX≠0,则‖X‖P=‖PX‖>0;当X=0时,PX =0,则‖X‖(2)对任意实数α,‖αX‖P=‖PαX‖=‖αPX‖=|α|‖PX‖=|α|‖X‖(3)‖X+Y‖PPP=‖PX‖=0;当‖X‖P=‖PX‖=0时,则PX=0,即X=0..=‖P(X+Y)‖=‖PX+PY‖≤‖PX‖+‖PY‖=‖X‖P+‖Y‖P.综上所述,‖X‖P是R上的一种向量范数.19畅证因‖X‖p∞n=1max|xi|≤i∑|xi|≤n·1max|xi|=n·‖X‖≤i≤n≤i≤n=1‖X‖∞≤(i∑|xi|)=1np1/ppnppp∞,两边开p次方有≤n‖X‖∞.1而plim=1,故→∞20畅证由Cauchy不等式,有|(X,Y)|≤‖X‖2‖Y‖2,且当且仅当X、Y线性相关时,有335lim(i∑|xi|)p→∞=1pn1/p1=‖X‖∞.|(X,Y)|=‖X‖2‖Y‖2;又当且仅当XY≥0时,有|(X,Y)|=(X,Y).T故(X,Y)=‖X‖2‖Y‖2当且仅当X、Y线性相关,且XYT≥0时,所以‖X+Y‖2=(X+Y,X+Y)=(X,X)+2(X,Y)+(Y,Y)=‖X‖2+2‖X‖2‖Y‖2+‖Y‖222=(‖X‖2+‖Y‖2)2当且仅当X、Y线性相关,且X,Y≥0时,即‖X+Y‖2=‖X‖2+‖Y‖2迟痴X,Y线性相关,且XY≥0.T21畅证由于I-A及记B=μIATTOμI-AIμIAATTAμIAμIμIO22AμI-AATT,.(7畅26)(7畅27)μIOAμIμIμI-AAATOμI.对(7畅26)、(7畅27)两式两边取行列式得μdet(B)=μdet(μI-AA),nnnn22T记λ=μ≠0,故2μdet(B)=μdet(μI-AA).TTT22畅证设A=(α1α2…αn)按列分块,即αj=(α1j,α2j,…,αnj)(j =1,2,…,n),则‖αj‖=i∑αij.而=1222Tndet(λI-AA)=det(λI-AA).‖α1‖+‖α2‖22nn2ij22+…+‖αn‖=j∑‖αj‖2=1222nn22n=j∑(∑α)=j∑∑αij=‖A‖F.=1i=1=1i=123畅证因‖B‖<1,由定理7畅16知I-B可逆且‖(I-B)-1‖≤,所以336‖I-(I-B)-1‖=‖(I-B)≤‖(I-B)≤-1-1(I-B-I)‖‖‖B‖‖B‖.24畅证由矩阵算子范数定义有‖I‖=maxX≠O由矩阵范数的相容性有‖A‖‖A优势矩阵,则j=1j≠i0-1‖IX‖‖X‖=max=1.X≠O‖≥‖AA-1‖=‖I‖=1.25畅证(1)用反证法.若有某个i0使ai0i0=0,因A是对角∑|ai0j|<|ai0j0|=0.n这是不可能的.得证.(2)因A=DB,即a11A=a21…an1而1B=a2122…n1nn12111………………1n11a2n22…1=1111337…………a1na2n…anna11a22筹ann12122…n1nn a12111………………a1n112n22…1=DB.=0---a2122n1nn -12110…………-1n11=I-C.a2n220‖C‖∞=maxi∑j=1nj≠iaijii=max∑ij=1n|aij|<1i ij≠in|aij|<|aii|).所以由定理(这是因为A是对角优势矩阵,则j∑=1j≠i7畅16知,B=I-C为非奇异阵.由(1)aii≠0,故D非奇异.因此A=DB 非奇异.2,…,n.而a11(3)设A为对角优势阵,由(1)知aii≠0,i=1,=a 11,所以a11≠0.又设经Gauss消元一步后A具有形式:(1)(1)a110(2)(k)α1TA2.(2)由习题7知,A2也是对角优势矩阵.又由(1)知aii≠0,i=2,…,n,即有a22≠0.如此类推akk≠0.26畅证因‖A‖s=maxX≠O‖AX‖s.s对一切X都有由定理7畅10知,存在a1,a2>0,b1,b2>0,a1‖AX‖s≤‖AX‖t≤a2‖AX‖s,与b1‖X‖s≤‖X‖t≤b2‖X‖s.于是1‖AX‖s‖AX‖t2‖AX‖s≤≤.1st2s令12=c1=c2,故有12c1‖AX‖s‖AX‖t‖AX‖s≤≤c2.sts338c1maxX≠0即‖AX‖s‖AX‖t‖AX‖s2max≤max≤c.X≠0X≠0stsc1‖AX‖s≤‖AX‖t≤c2‖AX‖s.10099A-127畅解A=9998=,则-9899‖A-199-100.‖A‖∞=199,‖A-1‖∞=199,所以∞因A是对称矩阵,故cond(A)∞=‖A‖‖∞=199×199=39601.λmax(A).min=λ-198λ-1=0,2cond(A)2=由det(λI-A)=得即λ-100-99-99λ-98λ1=198畅0050503,λ2=-0畅00505035.cond(A)2=λ1=39206.2T-128畅证因A是正交阵,故A=Acond(A)2=max=min,则max=1.minmax=min-1-129畅证由条件数的定义及矩阵范数的相容性,有cond(AB)=‖AB‖‖(AB)=‖A‖‖AT-1‖‖‖A≤‖A‖‖B‖‖B‖‖‖‖B‖‖B=cond(A)cond(B).30畅证(1)因A=WW,所以cond(A)2=‖A‖2‖A2-1-1T‖2=‖WW‖2‖(WW)TT-1‖2=‖W‖2‖W‖2=(cond(W)2).22T(2)由习题21知,λ(WW)=λ(WW),则339‖W‖2=TTTmax=-T故由(1)得,cond(W)2=‖W‖2‖Wmax=‖W‖2.-1‖2=‖W‖2‖W2T‖2=cond(W)2.31畅解由cond(A)2=[cond(W)2]=cond(W)2cond(W)2.|λI-A|=λ-21=λ-4λ+3=0,2解得所以‖A设b=-1λ1=1,λ2=3.‖2=1,‖A‖2=3,cond(A)2=,δb=11,这时有λ2=3.11-1‖δX‖2‖δb‖2=cond(A)2.22事实上,设X+δX=Y,则A(X+δX)=b+δb,即2-1解得y1=又解得x1=所以δX==2-12y1y2=20,42,y2=.2-111,x2=-.-12x1x2=1-1,+==3.而cond(A)2=340‖δb‖2=cond(A)22=cond(A)2=3,故‖δX‖2‖δb‖2=cond(X)2.2232畅解记A=T240-179-319240T,δA=0-0畅5-0畅50则AX=b的解X=(4,3),而(A+δA)(X+δX)=b的解(X+δX)=(8,6).故‖X‖而A-1∞=4,‖δX‖=240179-1-1∞=4.,∞∞319240‖A‖‖δA‖‖δA‖cond∞(A)=‖A∞‖‖∞∞=626畅2,=0畅56012.=0畅5,‖A由推论7畅19畅2得‖δX‖∞∞‖δA‖∞∞0畅56012≤=≤1畅274,∞1-cond∞(A)∞∞‖δX‖∞≤1畅274‖X‖∞≤5畅10,表明估计‖δX‖∞=4略大,是符合实际的.933畅解(1)H3-1-36192-18030-180;180=-3630‖H3‖∞=所以cond∞(H3)=748.-1,‖H3‖∞=408,(2)方程组在H3及b有微小变化时为1畅000畅5000畅3330畅5000畅3330畅2500畅3330畅2500畅200x1+δx1x2+δx2x3+δx31畅83=1畅080畅783341简记为(H3+δH3)(X+δX)=b+δb,它的精确解为X+δX=(1畅089512538,0畅487967062,1畅491002798).T而H3X=b的精确解X=(1,1,1),于是δX=(0畅0895,-0畅5120,0畅4910).‖δH3‖∞‖δb‖∞-3≈0畅18×10<0畅02%,≈0畅182%3∞∞而‖δX‖∞≈51畅2%.∞这表明H3及b的相对误差不超过0畅3%,而引起解的相对误差超过50%.由推论7畅19畅2,可得‖δX‖∞≤∞≤3∞1-cond∞(H3)3∞‖δb‖∞‖δH3‖∞+3∞∞TT408((0畅0002)+0畅00182)≤0畅8974=89畅74%.这个估计结果比实际误差大是合理的.34畅解(1)先算出A于是cond∞(A)=‖A(2)r=b-AX珚==7畅0003-7-1=‖∞1000020000‖A‖-∞10000200012畅0001-2=,-1=40001×3畅0001≈120012.-110畅05-0畅05.2畅97-1畅017畅0003-7-6畅9503-6畅95∞∞(3)依定理7畅20,右端为cond∞(A)而左端为342‖r‖=120012×0畅05≤857畅192,‖X-X珚‖∞0畅03==0畅01.∞这表明当A为病态矩阵时,尽管剩余‖r‖很小,误差估计仍然较大,因此,当A病态时用‖r‖大小作为检验解的准确度是不可靠的.35畅解(1)‖X‖1=9,‖X‖2=2(3)由1120a>0,得a<3,故a的取值范围-<a<2,‖X‖∞=5.2(2)‖A‖1=4,ρ(A)=1(|λI-A|=(λ-1),λ1,2=1).0a2,取a=1时,L=10000.2343。

数值分析-线性方程组的直接解法

数值分析-线性方程组的直接解法

算法 Gauss(A,a,b,n,x)
1. 消元 For k=1,2, … , n-1 1.1 if akk=0 , stop; 1.2 For i=k+1,k+2, …, n 1.2.1 l ik=aik /akk => aik 1.2.2 For j=k+1,k+2, … ,n ai j -aik ak j =>aij 1.2.3 bi -aik bk=> bi 2. 回代 2.1 bn / an=>xn; 2.2 For i=n-1,n-2, …, 2,1 2.2.1 bk => S 2.2.2 For j=k+1,k+2, … ,n S –akj xj =>S 2.2.3 S/ akk => xk a1 1 a1 2 a13 a2 1 a2 2 a23
线性方程组的直接解法
刘 斌
线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法
1.2
§2 2.1 2.2 2.3
列主元Gauss消去法
Gauss消去法的矩阵运算 Doolittle分解法 平方根法
直接三角分解方法
2.4
追赶法
引入
在科学计算中,经常需要求解含有n个未知量 的n个方程构成的线性方程组 a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 (1) an1 x1 an 2 x2 ann xn bn
(1) a12 ( 2) a22 0
(1) (1) a13 a1 n ( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。

线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。

在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。

高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。

高斯消元法的主要步骤包括消元、回代和得到方程组的解。

消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。

在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。

回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。

回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。

高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。

但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。

另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。

在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。

列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。

LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。

综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。

高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。

在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
b2
an1
an2
ann
xn
bn
2020/8/22
第五章 线性方程组的直接解法
2
若系数矩阵A非奇异,即 det (A)≠0 ,则方程组有
惟一解 x =( x1, x2, …, xn )T .
根据 Gramer(克莱姆)法则,求解方程组(7.1)时, 要计算大量的行列式,所需乘法次数大约为
Gauss消去法由消元和回代两个过程组成,先讨论 一个具体的线性方程组的求解。
2020/8/22
第五章 线性方程组的直接解法
5
一、顺序Gauss消 例去7.1法. 用Gauss消去法解方程组 用增广矩阵进行进算
2 x1 4 x2 2 x3 2
x1
2 x2
3 x3
3
3 x1 2 x2 5 x3 1
a(1) 1n
a(2) 2n
a(3) 3n
b1(1) b2( 2 )
b3( 3 )
0
0
a(3) n3
a(3) nn
bn(3)
其中
a(3) ij
a(2) ij
l
i
a(2)
2 2j
,
i, j 3,4,, n
b(3) i
b(2) i
li
b(2)
2020/8/22
第五章 线性方程组的直接解法
4
§1 Gauss消去 法
Gauss(高斯)消去法是一种规则化的加减消元法
基 本思 想
通过逐次消元计算把需求解的线性方程组转化成 上三角形方程组,也就是把线性方程组的系数矩阵转 化为上三角矩阵,从而使一般线性方程组的求解转化 为等价(同解)的上三角形方程组的求解。
an(11)
a (1) n2
a (1) n3
顺序Gauss消去法的消元过程可表述如下:
a (1) 1n
a (1) 2n
a (1) 3n
a (1) nn
b1(1) b2(1)
b3(1)
bn(1)
第一步,设 a11(1)≠ 0 ,将第一列a11(1)以下各元素消成零
即依次用
li1
a (1) i1
x 2 3 23020/8/22 x2 1 6
x 2 3 x 1 第五章 线性方程组的直接解法
3
2
3,
x2 1/ 6,
x1 2 / 3 6
这样,对于方程组
a11 x1 a12 x2 a1n xn b1 a21x1a22 x2 a2n xn b2 an1 x1 an2 x2 ann xn bn
第五章 线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法 1.2 列主元Gauss消去法
§2 直接三角分解方法 2.1 Gauss消去法的矩阵运算 2.2 Doolittle分解法 2.3 平方根法 2.4 追赶法
在科学计算中,经常需要求解含有n个未知量
的n个方程构成的线性方程组
即依次用
li2
a(2) i2
a(2) 22
(i=3,4,…,n)
乘以矩阵[A(2),b(2)]的第二行再加到第i行,得到矩阵
2020/8/22
第五章 线性方程组的直接解法
9
a01(11)
A(2) , b(2) 0
a(1) 12
a(2) 22 0
a(1) 13
a(2) 23
a(3) 33
a(2) 3n
b1(1) b2( 2 )
b3( 2 )
0
a(2) n2
a(2) n3
a(2) nn
bn(2)
其中
a(2) ij
a (1) ij
l
i
a (1)
1 1j
,
i,
j
2,3,, n
b(2) i
b(1) i
l
i
b(1)
11
,
i
2,3,, n
第二步,设 a22(2)≠ 0 ,将第二列a22(2)以下各元素消成零,
a (1) 1n
a (1) 2n
a (1) 3n
a (1) nn
b1(1) b2(1)
b3(1)
bn(1) 7
aa12((1111))
A, b A(1) , b(1) a3(11)
a (1) 12
a (1) 22
a (1) 32
a (1) 13
a (1) 23
a (1) 33
a (1) 11
(i=2,3,…,n)
乘以矩阵[A(1),b(1)]的第一行再加到第i 行,得到矩阵
2020/8/22
第五章 线性方程组的直接解法
8
a01(11)
A(2) , b(2) 0ห้องสมุดไป่ตู้
a(1) 12
a(2) 22
a(2) 32
a(1) 13
a(2) 23
a(2) 33
a(1) 1n
a(2) 2n
(7.1)
或者
Ax=b
我们用增广矩阵表示,并给出gauss消去法的具体算法
aa12((1111))
A, b A(1) , b(1) a3(11)
a (1) 12
a (1) 22
a (1) 32
a (1) 13
a (1) 23
a (1) 33
2020/8/22
第五章a线n(11性) 方程a组n(的12)直接a解n法(13)
a11 x1 a12 x2 a1n xn b1 a21x1a22 x2 a2n xn b2 an1 x1 an2 x2 ann xn bn
(7.1)
方程组还可以用矩阵形式表示为: Ax=b
a11 a12 a1n
x1
b1
A
a21
a22
a2n
,
x
x2
,
N=(n2-1)n!
当 n 较大时,这个计算量是惊人的。例 如,当 n= 20
时,约需乘法次数为 N=9.7×1020
如果用每秒一亿次的计算机来计算,需要三十万年时 间。可见Gramer法则不是一种实用的方法。
因此,必须构造出适合于计算机使用的线性方程组的求 解方法。
2020/8/22
第五章 线性方程组的直接解法
2 x1 4 x2 2 x3 2
4x2 2x3 2
8x2 8x3 4
2 4 2 2
A, b
1
2 3 3
3 2 5 1
2 4 2 2 0 4 2 2 0 8 8 1
2 x1 4 x2 2 x3 2
4x2 2x3 2
12 x3 8
2 4 2 2 0 4 2 2 0 0 12 8
3
求解线性方程组的数值方法可分为两大类:直接 方法和迭代方法。本章讨论直接方法,迭代方法将在 下一章中讨论。
直接方法的特点是,如果不考虑计算过程中的舍 入误差,运用此类方法经过有限次算术运算就能求出 线性方程组的精确解。
需要指出,由于实际计算中舍入误差的存在,用 直接方法一般也只能求得方程组的近似值。本章我们 将给出直接解法的若干算法。
相关文档
最新文档