上海市七宝中学2019-2020学年高二下学期期末数学试题

合集下载

上海市七宝中学2018-2019学年高二下学期期末考试数学试题

上海市七宝中学2018-2019学年高二下学期期末考试数学试题

七宝中学2018-2019学年高二期末数学试卷一.填空题 1.将参数方程122x ty t=+⎧⎨=-⎩(t R ∈,t 为参数)化为普通方程______2.已知椭圆22194x y +=,直线2180x y ++=,则椭圆上点到这条直线的最短距离是______3.123101011111111111392733C C C C -+-+-⋯-+除以5的余数是______ 4.如右图为某几何体的三视图,则其侧面积为______2cm5.甲、乙、丙、丁4名同学被随机地分到A B C 、、三个社区参加社会实践,要求每个社区至少有一名同学,则甲、乙两人被分在同一个社区的概率是______6.在侧棱长为V ABC -中,40AVB BVC CVA ︒∠=∠=∠=,若过点A 的截面AEF ,交VB 于E ,交VC 于F ,则截面AEF 周长的最小值是______7.长方体1111ABCD A B C D -内接于球O ,且2AB BC ==,1AA =则A B 、两点之间的球面距离为______8.已知从装有1n +个球(其中n 个白球,1个黑球)的口袋中取出m 个球,0m n <<,,m n N ∈,共有1mn C +种取法,在这1mn C +种取法中,可以分成两类:一类是取出的m 个球全部为白球,另一类是取出1个黑球和(1)m -个白球,共有01111m m n n C C C C -+种取法,即有等式11m m mn n n C C C -++=成立,试根据上述思想,化简下列式子:1122m m m k m kn k n k n k n C C C C C C C ---+++⋯+=______(1,,,)k m n k m n N ≤<≤∈9.已知平行六面体ABCD A B C D ''''-中,4AB =,3AD =,5AA '=,90BAD ︒∠=,60BAA DAA ︒''∠=∠=,则AC '的长为_______10.的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为______11.数列{}n a 共有13项,10a =,134a =,且11k k a a +-=,1,2,,12k =⋯,满足这种条件不同的数列个数为______12.如图,在底面半径和高均为1的圆锥中,AB CD 、是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到其准线的距离为_______二.选择题13.若x y 、满足约束条2,22x y x y ≤≤⎧⎨+≥⎩,则2z x y =+的取值范围是( )A.[2,6]B.[2,5]C.[3,6]D.[3,5]14.某中学高二年级的一个研究性学习小组拟完成下列两项调查:①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;②从本年级12名体育特长生中随机选出5人调查其学习负担情况; 则该研究性学习小组宜釆用的抽样方法分别是( ) A.①用系统抽样,②用随机抽样 B.①用系统抽样,②用分层抽样 C.①用分层抽样,②用系统抽样D.①用分层抽样,②用随机抽样15.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( ) A.2283C PB.2686C PC.2286C PD.2285C P16.如图,E F 、分别为棱长为1的正方体的棱1111A B B C 、的中点,点G H 、分别为面对角线AC 和棱1AA 上的动点,则下列关于四面体E FGH -的体积正确的是( )A.该四面体体积有最大值,也有最小值B.该四面体体积为定值C.该四面体体积只有最小值D.该四面体体积只有最大值三.简答题17.有8名学生排成一排,求分别满足下列条件的排法种数,要求列式并给出计算结果. (1)甲不在两端; (2)甲、乙相邻;(3)甲、乙、丙三人两两不得相邻; (4)甲不在排头,乙不在排尾.18.在二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式中.(1)求该二项展开式中所有项的系数和的值; (2)求该二项展开式中含4x 项的系数; (3)求该二项展开式中系数最大的项.19.如图,在直三棱柱111ABC A B C -中,1CC AC BC ==,90ACB ︒∠=,P 是1AA 的中点,Q 是AB 的中点.(1)求异面直线PQ 与1B C 所成角的大小; (2)若直三棱柱111ABC A B C -的体积为12,求四棱锥1C BAPB -的体积.20.如图,圆锥的轴截面为等腰ΔRt SAB ,Q 为底面圆周上一点.(1)若QB 的中点为C ,OH SC ⊥,求证:OH ⊥平面SBQ ;(2)如果60AOQ ︒∠=,QB =(3)若二面角A SB Q --大小为,求AOQ ∠. 21.(1)集合(){12|,,,n Q x x x x x ==,0i x =或1},对于任意x Q ∈,定义1()ni i f x x ==∑,对任意{0,1,2,,}k n ∈,定义{|(),}k A x f x k x Q ==∈,记k a 为集合k A 的元素个数,求122n a a na ++⋯+的值;(2)在等差数列{}n a 和等比数列{}n b 中,112a b ==,222a b b ==+,是否存在正整数b ,使得数列{}n b 的所有项都在数列{}n a 中,若存在,求出所有的b ,若不存在,说明理由; (3)已知当1||2x <时,有21124(2)12n x x x x =-+-⋯+-+⋯+,根据此信息,若对任意1||2x <都有()201231(12)n n x a a x a x a x x x =+++⋯++⋯-+,求10a 的值. 参考答案一.填空题1.250x y +-= 3.3 4.4π 5.16 6.6 7.23π 8.mn k C +10.4 11.495 二.选择题13.A 14.D 15.C 16.D三.解答题17.(1)77630240P ⋅=;(2)77210080P ⋅=; (3)535614400P P =;(4)76876230960sP P P -+=;18.(1)123;(2)841227920C =;(3)()3933241212112640C xx x ⎛⎫= ⎪⎝⎭; 19.(1)2π;(2)14;20.(1)略;(2)83π;(3)3π;21.(1)kk n a C =,11222n n a a na n -++⋯+=⋅;(2)b 为正偶数;(3)455-;。

上海市2019-2020学年高二第二学期期末数学检测试题

上海市2019-2020学年高二第二学期期末数学检测试题

同步练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数()g x x=的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 2.在复平面内,复数221z i i=+-+所对应的点在第几象限( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若不等式2xln x≥-x 2+ax -3对x∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(-∞,0)B .(-∞,4]C .(0,+∞)D .[4,+∞)4.已知()23()f x x x R =+∈,若|()1|f x a -<的必要条件是|1|(,0)x b a b +<>,则a ,b 之间的关系是( ) A .2a bB .2a b <C .2b aD .2b a >5.设函数()x f x xe =,则( ) A .1x =为()f x 的极大值点 B .1x =为()f x 的极小值点 C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点6.已知复数z 满足(1i)2z ⋅+=,则z =( )A .1BC .2D .37.已知函数22()1x f x e ax bx =-+-,其中,a b ∈R ,e 为自然对数的底数,若(1)0f =,'()f x 是()f x 的导函数,函数'()f x 在区间(0,1)内有两个零点,则a 的取值范围是( )A .22(3,1)e e -+B .2(3,)e -+∞C .2(,22)e -∞+D .22(26,22)e e -+8.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,59.已知二项式2(*)nx n N x ⎛-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-10.复数22cos sin 33z i ππ=+在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限11.平面内平行于同一直线的两直线平行,由类比思维,我们可以得到( ) A .空间中平行于同一直线的两直线平行 B .空间中平行于同一平面的两直线平行 C .空间中平行于同一直线的两平面平行 D .空间中平行于同一平面的两平面平行 12.若()()()()9290129111x a a a x a x a x +=+++++++,若684a =,则实数a 的值为( )A .1B .2C .2-D .3-二、填空题:本题共4小题 13.已知函数()f x 的导函数为'()f x ,且满足()2'()ln f x xf e x =+,则()f e =__________.14.《左传.僖公十四年》有记载:“皮之不存,毛将焉附?"”这句话的意思是说皮都没有了,毛往哪里依附呢?比喻事物失去了借以生存的基础,就不能存在.皮之不存,毛将焉附?则“有毛”是“有皮”的__________条件(将正确的序号填入空格处).①充分条件②必要条件③充要 条件④既不充分也不必要条件15.已知33210n n A A =,那么n =__________.16.已知函数1y x =的图象的对称中心为()0,0,函数111y x x =++的图象的对称中心为1,02⎛⎫- ⎪⎝⎭,函数11112y x x x =++++的图象的对称中心为()1,0-.由此推测,函数12202012019x x x y x x x +++=+++++的图象的对称中心为________.三、解答题:解答应写出文字说明、证明过程或演算步骤。

上海市2019-2020学年数学高二下学期理数期末考试试卷D卷

上海市2019-2020学年数学高二下学期理数期末考试试卷D卷

上海市 2019-2020 学年数学高二下学期理数期末考试试卷 D 卷姓名:________班级:________成绩:________一、 选择题 (共 12 题;共 24 分)1. (2 分) (2018·杭州模拟) 已知 -1随机变量 的分布列如下:01当 增大时( )A.增大,增大B.减小,增大C.增大,减小D.减小,减小2. (2 分) 已知,且, i 为虚数单位,则复数A . 第一象限B . 第二象限C . 第三象限D . 第四象限在复平面内所对应的点位于( )3. (2 分) 已知双曲线 ﹣ =1(b>0)的离心率等于 b,则该双曲线的焦距为( ) A.2B.2 C.6 D.8第 1 页 共 13 页4. ( 2 分 ) 设 数 列 ()满足 ,满足,若,且对任意,函数, 则数列 的前 项和 为A.B.C.D. 5. (2 分) (2018·朝阳模拟) 某单位安排甲、乙、丙、丁 名工作人员从周一到周五值班,每天有且只有 人值班每人至少安排一天且甲连续两天值班,则不同的安排方法种数为( ) A. B. C. D.6. (2 分) 设函数 ()在定义域内可导,的图象如图,则导函数的图象可能为A.第 2 页 共 13 页B.C.D. 7. (2 分) 已知随机变量 的概率分布列如下表所示:56780.40.1且 的数学期望,则( )A.B.C.D.8. (2 分) (2018 高二上·沈阳期末) A . 92 B . 576 C . 192 D . 384展开式中 的系数为( )第 3 页 共 13 页9. (2 分) (2020 高三上·泸县期末) 已知定义在是偶函数,,则不等式上的可导函数的导函数为的解集为( ).,满足A.B.C.D.10. (2 分) (2018 高二上·淮北月考) 抛物线的焦点为 ,准线为 ,是抛物线上的两个动点,且满足 A.2,设线段 的中点 在 上的投影为 ,则的最大值是( )B.C. D.111. (2 分) 定义在(0, )上的函数,是它的导函数,且恒有成立,则( )A. B.C.D. 12. (2 分) 把正整数按一定的规则排成了如图所示的三角形数表.设 aij(i,j )是位于这个三角形数表 中从上往下数第 i 行、从左往右数第 j 个数,如 a42=8,a54=15,若 aij=2011,则 i 与 j 的和为第 4 页 共 13 页A . 106 B . 107 C . 108 D . 109二、 填空题 (共 4 题;共 4 分)13. (1 分) (2018 高二下·四川期中) 函数在处的切线方程为________.14. (1 分) (2017·济南模拟) 若(3﹣2x)5=a0+a1x+a2x2+…+a5x5 , 则 a0+a1+2a2+3a3+4a4+5a5=________.15. (1 分) (2018 高二下·泰州月考) 气象台统计, 6 月 1 日泰州市下雨的概率为 ,刮风的概率为 ,既刮风又下雨的概率为 ,设 为下雨, 为刮风,则________.16. (1 分) (2018·衡阳模拟) 函数 则实数 的值是________.的图象与二次函数的图象恰有两个不同的交点,三、 解答题 (共 6 题;共 55 分)17. (15 分) 已知双曲线的中心在原点,焦点在坐标轴上,离心率为 ,且过点,点在双曲线上.(1) 求双曲线方程;(2) 求证:;(3) 求△的面积.18. (10 分) (2017 高二下·洛阳期末) 第 35 届牡丹花会期间,我班有 5 名学生参加志愿者服务,服务场所 是王城公园和牡丹公园.第 5 页 共 13 页(1) 若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?(2) 每名学生都被随机分配到其中的一个公园,设 X,Y 分别表示 5 名学生分配到王城公园和牡丹公园的人 数,记 ξ=|X﹣Y|,求随机变量 ξ 的分布列和数学期望 E(ξ)19. (5 分) (2018·宁德模拟) 已知函数且是的导数.(Ⅰ)求 的值;有最大值,,(Ⅱ)证明:当,时,.20. (10 分) (2020·内江模拟) 某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运 用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高 效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取 20 名学 生的成绩进行统计,作出如图所示的茎叶图,成绩大于 70 分为“成绩优良”.附:(其中)(1) 由以上统计数据填写下面 优良与教学方式有关”?成绩优良列联表,并判断能否在犯错误的概率不超过甲班乙班第 6 页 共 13 页的前提下认为“成绩 总计成绩不优良 总计 (2) 从甲、乙两班 40 个样本中,成绩在 60 分以下(不含 60 分)的学生中任意选取 2 人,记来自甲班的人 数为 ,求 的分布列与数学期望.21. (10 分) (2015 高二上·和平期末) 已知抛物线 y2=ax 上一点 M(4,b)到焦点的距离为 6.(1) 求抛物线的方程;(2) 若此抛物线与直线 y=kx﹣2 交于不同的两点 A、B,且 AB 中点的横坐标为 2,求 k 的值.22. (5 分) (2019 高三上·和平月考) 已知函数,为的导数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)证明:在区间上存在唯一零点;(Ⅲ)设 的取值范围.,若对任意,均存在,使得,求实数第 7 页 共 13 页一、 选择题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 8 页 共 13 页16-1、三、 解答题 (共 6 题;共 55 分)17-1、17-2、17-3、18-1、第 9 页 共 13 页18-2、第 10 页 共 13 页19-1、20-1、20-2、21-1、21-2、22-1、。

上海市七宝中学2019-2020 学年度第二学期高二年级期中考数学试卷

上海市七宝中学2019-2020 学年度第二学期高二年级期中考数学试卷

七宝中学2019-2020学年度第二学期高二年级期中考数学试卷(时间:120分钟;满分:150分)2020.5一、填空题(1-6题每小题4分,7-12每小题5分,共54分)1.若直线,a b 均平行于平面α,那么a 与b 位置关系是__________;2.若1121101211(21)x a a x a x a x +=+++⋅⋅⋅+,则2202101311()()a a a a a a ++⋅⋅⋅+-++⋅⋅⋅+=___3.某学生在上学的路上要经过三个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,则这名学生在上学的路上到第三个路口时第一次遇到红灯的概率为____4.在0120的二面角内有一点P ,P 到二面角的两个半平面的距离分别为1米和3米,则P 到该二面角棱的距离为__________5.若12232113C +3C ++3C 385n n n n n n n C ---+⋅⋅⋅+=,则n =__________6.7271除以100的余数是__________7.甲、乙、丙、丁四位同学各自在五一5天小长假里选择连续两天旅游,则至少有两位同学选择时间相同的概率为__________8.设,a b 是两条不同的直线,,αβ是两个不同的平面,则下列四个命题:①若,a b a α⊥⊥,则//b α②若//,a ααβ⊥,则//a β③若,a βαβ⊥⊥,则//a α④若,,a b a b αβ⊥⊥⊥,则αβ⊥其中正确的命题序号是__________9.若y =+则y 的取值范围是__________10.从6男2女共8名学生中选出队长1人,副队长1人,普通队员3人,组成5人服务队,要求服务队中至少有1名女生,共有__________种不同的选法。

(用数字作答)11.在5月6日返校体检中,学号为(1,2,3,4,5)i i =的五位同学的体重增加量()f i 是集合{}1,1.5,2,2.5kg,3,3.5kg kg kg kg kg 中的元素,并满足f(1)≤f(2)≤f(3)≤f(4)≤f(5),则这五同学的体重增加量所有可能的情况有__________种12.设S 为一个非空有限集合,记S 为集合S 中元素的个数,若集合S 的两个子集,A B 满足:A B k =I 并且A B S =U ,则称子集{},A B 为集合的一个“k -覆盖”(其中0k S ≤≤.若S n =,则S 的“k -覆盖”个数为__________二、选择题(每小题5分,共20分)13.在一次数学测试中,高二某班40名学生成绩的平均分为82,方差为10.2,则下列四个数中不可能是该班数学成绩的是()A.100 B.85 C.65 D.5514.在正方体1111ABCD A B C D -中与1AD 成060角的面对角线的条数是()A.4条 B.6条 C.8条 D.10条15.电子钟--天显示的时间是从00:00到23:59,每一时刻都由4个数字组成,则一天中任一时刻显示的四个数字之和为22的概率为()A.1240 B.1160 C.11440 D.118016.四棱锥P ABCD -底面为正方形,侧面PAD 为等边三角形,且侧面PAD ⊥底面ABCD ,点M 在底面正方形ABCD 内运动,且满足MP MC =,则点M 在正方形ABCD 内的轨迹一定是()三、解答题(12分+14分+16分+16分+18分,共76分)17.若n 展开式中第二、三、四项的二项式系数成等差数列。

上海市七宝中学2019_2020学年高二数学9月月考试题(含解析)

上海市七宝中学2019_2020学年高二数学9月月考试题(含解析)

上海市七宝中学2019-2020学年高二数学9月月考试题(含解析)一.填空题1.若“0x <”是“x a <”的充分非必要条件,则实数a 的取值范围是________ 【答案】0a > 【解析】 【分析】“0x <”⇒ “x a <”,但是“x a <”⇏“0x <”,即可求解.【详解】“0x <”是“x a <”的充分非必要条件,故前者是后者的真子集,即可求得0a >。

【点睛】本题考查充分必要条件,是基础题2.函数0(2)()lg(3)1x f x x x -=-++的定义域是________【答案】(3,)+∞ 【解析】 【分析】结合对数的真数大于0,分母不为0以及0次幂底数不为0,即可求解。

【详解】解:3020310x x x x ->⎧⎪-≠⇒>⎨⎪+≠⎩,故原函数定义域为(3,)+∞.【点睛】本题考查定义域的求法,属于基础题。

3.已知向量(2,1)a =-r ,(3,4)b =r ,则向量a r 在向量b r方向上的投影为________【答案】25- 【解析】 【分析】a r 在向量b r方向上的投影为a b br r g r ,即可求解.【详解】向量a r 在向量b r方向上的投影为642cos ,55a b a b a a b a a b b-+<>====-r r r rr r r r g g g r r r g【点睛】a r 在向量b r 方向上的投影a b b r r g r , b r 在向量a r 方向上的投影a b ar r g r ,可以直接使用,基础题。

4.已知点P是直线12PP 上一点,且1213PP PP =-uu u r uuu r ,若212P P PP λ=uuu r uuu r ,则实数λ=________【答案】23-【解析】 【分析】利用向量的三角形加法法则,即可求解。

上海市七宝中学2019-2020学年高二下学期4月月考数学试题(解析版)

上海市七宝中学2019-2020学年高二下学期4月月考数学试题(解析版)

七宝中学2019学年第二学期高二4月考试数学试卷一、填空题(本大题共有12题,满分54分)1.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________. 【答案】分层抽样. 【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样 故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题. 2.若事件E 与F 相互独立,且1()()4P E P F ==,则()P E F I 的值为_______(用最简分数表示). 【答案】116【解析】 【分析】直接利用公式()=()()P E F P E P F I 计算即可.【详解】因为事件E 与F 相互独立,所以111()=()()4416P E F P E P F =⨯=I . 故答案为:116【点睛】本题考查独立事件同时发生的概率,考查学生的基本计算能力,是一道基础题.3.12x⎛+ ⎝的二项式展开式中的常数项为________(用数值作答).【答案】495 【解析】 【分析】由二项式定理可得12x⎛+ ⎝展开式的通项为3122112rr r T C x -+=,再令31202r -=得8r =,再代入通项计算即可.【详解】由已知,12x ⎛+ ⎝展开式的通项为31212211212r r r r r r T C x C x --+==,令31202r -=, 得8r =,所以常数项为812495C =.故答案为:495【点睛】本题考查求二项展开式中的特定项,考查学生的运算能力,是一道容易题.4.计算:103237n nn n C C -+++=________(用数值作答)【答案】46 【解析】 【分析】由已知,1001023037n n n n n -≥⎧⎪-≤+⎨⎪≤≤+⎩,解不等式组可得3n =,再代入原式计算即可.【详解】由已知,1001023037n n n n n -≥⎧⎪-≤+⎨⎪≤≤+⎩,解得7732n ≤≤,又n N ∈,所以3n =,所以10379237910361046nnn n C C C C -+++=+=+=. 故答案为:46【点睛】本题考查组合数公式的计算,要注意题目中隐含的条件,考查学生的基本计算能力,是一道容易题.5.从总体中抽取6个样本:4,5,6,10,7,4,则总体方差的点估计值为________. 【答案】133【解析】 【分析】先算出6个样本数据的平均数,然后再利用方差公式计算即可. 【详解】6个样本的平均数456107466x +++++==,所以方差22222221[(46)(56)(66)(106)(76)(46)]6s =-+-+-+-+-+-261363==. 故答案为:133【点睛】本题主要考查方差的计算,考查学生的运算能力,是一道容易题.6.从正方体的6个面中取3个,其中有2个面不相邻的概率为________(用最简分数表示). 【答案】35【解析】 【分析】利用间接法,先找到所取3个面都相邻的种数,并求出其概率,利用对立事件的概率计算公式计算即可. 【详解】从正方体的6个面中取3个共有36C 种不同结果,从8个顶点出发,3个面都相邻 共有8种不同结果,而其中有2个面不相邻的对立面是3个面都相邻, 故2个面不相邻的概率为3681231205C -==. 故答案为:35【点睛】本题考查古典概型的概率计算问题,正面情况较多可以考虑其对立事件,是一道容易题.7.直线1x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数,t R ∈)与曲线2sin cos sin cos x y θθθθ=⎧⎨=-⎩(θ为参数,[0,2)θπ∈)的公共点的坐标为________. 【答案】()1,0 【解析】 【分析】直接利用参数方程与普通方程互化的方法分别得到直线与曲线的普通方程,解方程组即可.【详解】由15x y t⎧=+⎪⎪⎨⎪=⎪⎩消去t ,得210x y --=①,2sin cos sin cos x y θθθθ=⎧⎨=-⎩消去参数θ,得21,(11)y x x =--≤≤②,由①②解得10x y =⎧⎨=⎩或32x y =-⎧⎨=-⎩(舍),所以公共点的坐标为()1,0. 故答案为:()1,0【点睛】本题主要考查参数方程与普通方程的互化,涉及到解方程组,考查学生的计算能力,是一道容易题.8.在5(231)x y -+在展开式中,不含y 的所有项的系数和为________(用数值作答). 【答案】243 【解析】 【分析】先将问题转化为5(21)x +各项的系数之和,再通过赋值法即可得到答案.【详解】5(231)x y -+=5(213)x y +-,其展开式的通项为515(21)(3)rrr r T C x y -+=+-,不含y 的项的系数和等于5(21)x +各项的系数之和,令1x =,得53243=. 故答案为:243【点睛】本题考查二项展开式的通项公式,考查学生的数学运算能力,本题可以直接令1,0x y ==得到答案,是一道中档题.9.从集合{}23|1,nM z z i i i i n N ==+++++∈L ________(用最简分数表示). 【答案】13【解析】 【分析】先化简集合M ,再利用古典概型的概率计算公式计算即可.【详解】由已知,123111n ni z i i i i i+-=+++++=-L ,当4,n k k N =∈时,41411()111n n i i iz i i+--⋅===--;当41,n k k N =+∈时,424211()21111n n i i i z i i i i +--⋅====+---;当42,n k k N =+∈时,434311()1111n n i i i iz i i i i +--⋅+====---;当43,n k k N =+∈时,444111()011n n i i z i i++--===--;所以{}0,1,,1M i i =+,故从M 中任取2个元素相加有246C =种不同结果,{1,1}i +,{,1}i i +共2种不同结果,根据古典概型的概率计算公式可得所求的概率为2163=. 故答案为:13【点睛】本题考查古典概型的概率计算问题,涉及到复数的运算,考查学生的运算求解能力,是一道中档题.10.已知袋中有()*82,n n n N+≥∈个大小相同的编号球,其中黄球8个,红球n 个,从中任取两个球,取出的两球是一黄一红的概率为n P ,则n P 的最大值为________(用最简分数表示). 【答案】815【解析】 【分析】先求出11828165615n nn C C C n n P +⋅==++,只需求出56n n+的最小值即可,结合对勾函数的性质即可得到答案. 【详解】由已知,11822816161656(8)(7)155615n n n C C n n C n n n n n nP +⋅====++++++,又易知函数56y x x =+在上单调递减,在)+∞上单调递增,因为78<<, 所以56n n +的最小值应在7n =或8n =处取得,又5656781578+=+=, 所以min 56()15n n +=,118281616856301515n n n C C C n nP +⋅==≤=++. 故答案为:815【点睛】本题考查古典概型的概率计算问题,涉及到利用对勾函数的性质求函数的最值问题,考查学生的运算求解能力,是一道中档题.11.已知关于x 的实系数方程2220x x +=-和2210x mx ++=的四个不同的根在复平面内对应的点共圆.则m 取值的集合是______. 【答案】3112m m m ⎧⎫-<<=-⎨⎬⎩⎭或【解析】【详解】易知方程2220x x -+=的两根为11x i =+,21x i =-.当2440m ∆=-<,即11m -<<时,方程2210x mx ++=有两个共轭的虚根34x x 、,且34x x 、的实部为1m -≠,此时,12x x 、对应的点在以34x x 、对应的点为直径端点的圆上,该圆的方程为()()2340x x x x y --+=,即()2234340x y x x x x x +-++=.将342x x m +=-,341x x =及12x x 、对应点的坐标()1,1±代入方程,得32m =-. 故m 的取值范围是3112m m m 或⎧⎫-<<=-⎨⎬⎩⎭.12.假设一个随机数发生器一次只能从1,2,3,…,9这九个数学中等可能地选一个数,则该随机数发生器完成了(1)n n >次选择后,选出的n 个数的乘积能被10整除的概率为________(用含n 的代数式示).【答案】85419n n nn+-- 【解析】 【分析】由题意n 个数中,至少有一次选择了5,至少有一次选择了偶数2、4、6、8之一,设事件A 表示没有一次选择了5,事件B 表示没有一次选择了偶数,则所求概率是1()P A B -U ,再利用加法公式()()()()P A B P A P B P A B ⋃=+-⋂计算即可.【详解】为使选出的n 个数的乘积能被10整除,其中至少有一次选择了5,并且至少有一次选择了 偶数2、4、6、8之一,设事件A 表示没有一次选择了5,事件B 表示没有一次选择了偶数, 则所求概率是1()P A B -U ,从而1()1()()()P A B P A P B P A B -=--+U I8541()()()999n n n =--+=85419n n nn+--. 故答案为:85419n n nn+-- 【点睛】本题考查古典概型的概率计算以及概率的加法公式,考查学生的逻辑推理能力,是一道中档题.二、选择题(本大题共有4题,满分20分)13.若虚数1z ,2z 满足12=z z ,则“1z 与2z 互为共轭复数”是“12z z R ⋅∈”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 即不充分也不必要条件【答案】A 【解析】 【分析】利用定义法判断即可.【详解】当1z 与2z 互为共轭复数,则12z z =,所以1221||z z z R =⋅∈, 令121,1z z ==-,满足12z z R ⋅∈,但1z 与2z 不互为共轭复数, 所以1z 与2z 互为共轭复数是12z z R ⋅∈的充分非必要条件. 故选:A【点睛】本题考查充分条件、必要条件的判断,涉及到共轭复数的相关知识,考查学生的逻辑推理能力,是一道容易题.14.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A. 56B. 60C. 140D. 120【答案】C 【解析】【详解】试题分析:由题意得,自习时间不少于22.5小时的频率为(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的频率为0.7200140⨯=,故选C. 考点:频率分布直方图及其应用.15.某个比赛安排4名志愿者完成6项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式有多少种( ) A. 7200种 B. 4800种 C. 2640种 D. 1560种【答案】D 【解析】 【分析】分两类,第一类,4人完成的工作数是3,1,1,1,第二类,4人完成的工作数是2,2,1,1,再将工作分组,进行分配即可. 【详解】由题意,分两类:第一类,当4人完成的工作数是3,1,1,1时,首先将6项工作分成4组,一组3项,另外三组各1项,共有3111632133C C C C A 种不同方式,再分配给4个人共311146321433480C C C C A A = 种不同方式;第二类,当4人完成的工作数是2,2,1,1时,首先将6项工作分成4组,两组2项,另外两组各1项,共有221164212222C C C C A A 种不同方式,再分配给4个人共221146421422221080C C C C A A A = 种不同方式;综上,共有1560种不同安排方式. 故选:D【点睛】本题考查排列与组合的综合应用问题,涉及到部分均匀分组问题,考查学生的逻辑推理能力,是一道中档题.16.空间内有三条直线,其中任意两条都不共面但相互垂直,直线l 与这三条直线所成角皆为θ,则tan θ=( )A.B.C. 1D. 直线l 不存在【答案】B 【解析】 【分析】在正方体中,设,,AB a AD b AE c ===,直线l 为AC ,由已知,BAC EAC CAD θ∠=∠=∠=,可得a b c ==,从而tan tan BC BAC AB aθ=∠==,代入a b c ==即可得到答案. 【详解】由题意,可将问题放入长方体中研究,设,,AB a AD b AE c ===,直线l 为AC ,由已知,BAC EAC CAD θ∠=∠=∠=,易得AB ⊥平面BCF ,所以222cos AB BAC AC a b c∠==++,同理可得 222cos AE EAC AC a b c ∠==++,222cos AD CAD AC a b c∠==++, 所以222a b c =++222a b c ++222a b c =++,即a b c ==,所以22tan tan 2BC c b BAC AB aθ+=∠===.故选:B【点睛】本题考查求空间中直线所成的角,考查学生的空间想象能力、数学运算能力,是一道中档题.三、解答题(本大题共有5题,满分76分)17.从A ,B ,C 等8人中选出5人排成一排. (1)A 必须在内,有多少种排法? (2)A ,B ,C 三人不全内,有多少种排法?(3)A ,B ,C 都在内,且A ,B 必须相邻,C 与A ,B 都不相邻,都多少种排法? (4)A 不允许站排头和排尾,B 不允许站在中间(第三位),有多少种排法? 【答案】(1)4200种;(2)5520;(3)240;(4)4440 【解析】 【分析】(1)只需从余下的7人中选4人出来排列即可; (2)采用间接法;(3)先从余下5人中选2人有25C 种不同结果,由于A ,B 必须相邻,C 与A ,B 都不相邻,利用捆绑法、插空法即可解决;(4)分所选的5人无A 、B ,有A 、无B ,无A 、有B ,有A 、B 四种情况讨论即可.【详解】(1)由题意,先从余下的7人中选4人共有47C 种不同结果,再将这4人与A 进行全排 列有55A 种不同的排法,故由乘法原理可知共有45754200C A =种不同排法;(2)从8人中任选5人排列共有58A 种不同排法,A ,B ,C 三人全在内有2555C A 种不同排 法,由间接法可得A ,B ,C 三人不全在内共有58A -25555520C A =种不同排法; (3)因A ,B ,C 都在内,所以只需从余下5人中选2人有25C 种不同结果,A ,B 必须 相邻,有22A 种不同排法,由于C 与A ,B 都不相邻,先将选出的2人进行全排列共有22A 种不同排法,再将A 、B 这个整体与C 插入到选出的2人所产生的3各空位中有23A 种不同 排法,由乘法原理可得共有22225223240C A A A =种不同排法; (4)分四类:第一类:所选的5人无A 、B ,共有56720A =种排法;第二类:所选的5人有A 、无B ,共有4146341080C C A =种排法; 第三类:所选的5人无A 、有B ,共有4146441440C C A =种排法; 第四类:所选5人有A 、B ,若A 排中间时,有3464C A 种排法,若A 不排中间时,有31136233C C C A 种排法,共有3411364233()1200C A C C A +=种排法; 综上,共有4440种不同排法.【点睛】本题考查排列与组合的综合应用,求排列与组合的应用题的主要方法有:1.优先法,2.捆绑法,3.插空法,4.间接法,5.先整体后局部,考查学生的逻辑推理能力,是一道中档题.18.某工厂生产A ,B ,C 三种纪念品,每种纪念品均有普通型和精品型两种,某一天产量如下表(单位:个):现采用分层抽样的方法在这一天生产的纪念品中抽取100个,其中有A 种纪念品40个.(1)若再用分层抽样的方法在所有B 种纪念品中抽取一个容量为13的样本.将该样本看成一个总体,从中任取2个纪念品,求至少有1个精品型纪念品的概率(用最简分数表示);(2)从C 种精品型纪念品中抽取6个,其某种指标的数据分别如下:4,7,x ,y ,8,5.把这6个数据看作一个总体,其均值为7、方差为6,求x y -的值. 【答案】(1)1126;(2)【解析】 【分析】(1)先由抽样比算出n ,进一步得到13个样本中精品型的个数,再利用古典概型的概率计算公式计算即可;(2)利用平均数、方差可得18x y +=,22176x y +=,进一步得到2148xy =,代入x y -.【详解】(1)由已知,10040(800200)800200150500350n =+⨯+++++,解得500n =,B 种纪念品中抽取一个容量为13的样本中,精品型有131503150500⨯=+个, 从13个纪念品中任取2个有213C 中不同结果,无精品型有210C 种不同结果,所以至少有1个精品型纪念品的概率为210213151126C C -=-=1126. (2)由题意,1(4785)76x y +++++=,所以18x y +=, 又2222221[(47)(77)(7)(7)(87)(57)]66x y -+-+-+-+-+-=, 所以22(7)(7)22x y -+-=,即2214()9822176x y x y +=+-+=, 所以2222()()148xy x y x y =+-+=,故x y -=.【点睛】本题考查统计与概率的简单应用,涉及到分层抽样、平均数、方差的计算,考查学生的运算能力,是一道容易题.19.如图所示,某街道居委会拟在EF 地段的居民楼正南方向的空白地段AE 上建一个活动中心,其中30AE =米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形ABCD ,上部分是以DC 为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE 不超过2.5米,其中该太阳光线与水平线的夹角θ满足3tan 4θ=.(1)若设计18AB =米,6AD =米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB 与AD 的长度,可使得活动中心的截面面积最大?(注:计算中π取3)【答案】(Ⅰ)能(Ⅱ)20AB =米且5AD =米 【解析】 【分析】 (1)以点A坐标原点,AB 所在直线为x 轴,建立平面直角坐标系.设太阳光线所在直线方程为y=34x+b ,利用直线与圆相切,求出直线方程,令x=30,得EG=1.5米<2.5米,即可得出结论;(2)欲使活动中心内部空间尽可能大,则影长EG 恰为2.5米,即可求出截面面积最大. 【详解】解:如图,以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系.(1)因为AB =18米,AD =6米, 所以半圆的圆心为H (9,6),半径r =9. 设太阳光线所在直线方程为y =-34x +b , 即3x +4y -4b =02227+24-4b 3+4=9,解得b =24或b =32(舍). 故太阳光线所在直线方程为y =-34x +24, 令x =30,得EG =1.5<2.5. 所以此时能保证上述采光要求. (2)设AD =h 米,AB =2r 米,则半圆的圆心为H(r,h),半径为r.方法一设太阳光线所在直线方程为y=-34x+b,即3x+4y-4b=0,r,解得b=h+2r或b=h-r2(舍).故太阳光线所在直线方程为y=-34x+h+2r,令x=30,得EG=2r+h-452,由EG≤52,得h≤25-2r.所以S=2rh+12πr2=2rh+32×r2≤2r(25-2r)+32×r2=-52r2+50r=-52(r-10)2+250≤250.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大.方法二欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,则此时点G为(30,2.5),设过点G的上述太阳光线为l1,则l1所在直线方程为y-52=-34(x-30),即3x+4y-100=0.由直线l1与半圆H相切,得r=3r+4h-1005.而点H(r,h)在直线l1的下方,则3r+4h-100<0,即r=-3r+4h-1005,从而h=25-2r.又S=2rh+12πr2=2r(25-2r)+32×r2=-52r2+50r=-52(r-10)2+250≤250.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大.【点睛】本题考查利用数学知识直线与圆的相切位置关系解决实际问题,考查二次函数配方法的运用和分析解决实际问题的能力,属于中档题.20.已知数列{}n a 的首项为1.记()12*12()knn n k n n n f n a C a C a C a C n N=++⋅⋅⋅+⋅⋅+∈+⋅.(1)若{}n a 为常数列,求(3)f 的值:(2)若{}n a 为公比为2的等比数列,求()f n 的解析式:(3)是否存在等差数列{}n a ,使得()1(1)2n f n n -=-对一切*n N ∈都成立?若存在,求出数列{}n a 的通项公式:若不存在,请说明理由.【答案】(1)(3)7f =(2)31()2n f n -=(3)存在等差数列{}n a 满足题意,21n a n =-【解析】 【分析】(1)根据常数列代入其值得解;(2)根据等比数列和用赋值法解决二项式展开式的相关问题求解;(3)对于开放性的问题先假设存在等差数列,再推出是否有恒成立的结论存在,从而得结论. 【详解】解:(1)∵{}n a 为常数列,∴()1n a n N +=∈.∴123333(3)7f C C C =++=(2)∵{}n a 为公比为2的等比数列,()12n n a n N -+=∈.∴1231()242n nn n n n f n C C C C -=+++L∴1223312()12222n nn n n n f n C C C C +=++++L(12)3n n +=故31()2n f n -=. (3)假设存在等差数列{}n a ,使得()1(1)2nf n n -=-对一切*n N ∈都成立,设公差为d ,则()12*12()k nn n k n n n f n a C a C a C a C n N=+++++∈L L1111()n n k n n n n k n n f n a C a C a C a C --=+++++L L相加得()()121112()2k n n n n n n n f n a a a C C C C --=++++++L L∴()11()222nn n a a f n a -+=+-()11(1)[2(2)]21n n d n d -=+-++--. ∴1()1(2)[2(2)]2(1)2n n f n d n d n --=-++-=-恒成立, 即1(2)(2)(2)20n d d n --+--=n ∈+N 恒成立,∴2d =故{}n a 能为等差数列,使得()1(1)2n f n n -=-对一切n ∈+N 都成立,它的通项公式为21n a n =- 【点睛】本题关键在于观察所求式子的特征运用二项式展开式中的赋值法的思想,属于难度题.21.已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ∠=︒,圆O 的方程是222x y b +=. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅u u u v u u u v的值; (3)过圆O 上任意一点Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,求证:||2||AB OM = 【答案】(1)2212y x -=;(2)1229PP PP ⋅=u u u r u u u r ;(3)详见解析. 【解析】 【分析】(1)222b MF b a==,根据1230MF F ∠=o可得21||2MF b =,利用双曲线的定义可得22b =从而得到双曲线的方程.(2)设点()00,P x y ,利用渐近线的斜率可以得到12,PP PP u u u v u u u v 夹角的余弦为13,利用点在双曲线上又可得12PP PP ⨯u u u v u u u v 为定值23,故可得12·PP PP u u u vu u u v 的值. (3)设1122(,),(,)A x y B x y ,切线l 的方程为:002x x y y +=,证明2AB OM =等价于证明OA OB ⊥,也就是证明 12120x x y y +=,联立切线方程和双曲线方程,消元后利用韦达定理可以证明12120x x y y +=.【详解】(1)设2,F M 的坐标分别为,0)y因为点M 在双曲线C 上,所以22021+1y b b-=,即20y b =±,所以22||MF b =,在21Rt MF F ∆中, 1230MF F ∠=o,22||MF b =,所以21||2MF b =, 由双曲线的定义可知: 212||||2MF MF b -==,故双曲线C 的方程为: 2212y x -=.(2)由条件可知:两条渐近线分别为10l y -=;20l y +=. 设双曲线C 上的点00(,)Q x y , 设1l 的倾斜角为θ,则tan θ=0,2πθ⎛⎫∈ ⎪⎝⎭,所以cos θ=, 故21cos 22cos 13θθ=-=-, 所以12,PP PP u u u v u u u v的夹角为2πθ-,且()1cos 23πθ-=. 点Q到两条渐近线的距离分别为1||PP =,2||PP =.因为00(,)Q x y 在双曲线22:12y C x -=上,所以220022x y -= ,所以12PP PP ⋅=u u u r u u ur ()2200212cos 2339x y πθ--=⋅=. (3)由题意,即证: OA OB ⊥,设1122(,),(,)A x y B x y , 切线l 的方程为: 002x x y y +=.00y ≠时,切线l 的方程代入双曲线C 中,化简得:(222000(2)4y x x x x -+20(24)0y -+=,所以01222004(2)x x x y x +=--,20122200(24)(2)y x x y x +=--. 又01021200(2)(2)x x x x y y y y --=⋅012201[42()x x x y =-+220012220082]2x x x x y x -+=-, 所以1212OA OB x x y y ⋅=+u u u r u u u r 220022220000(24)82(2)2y x y x y x +-=-+--2200220042()02x y y x -+==-. 00y =时,易知上述结论也成立.所以12120OA OB x x y y ⋅=+=u u u r u u u r.综上, OA OB ⊥,所以||2||AB OM =u u u r u u u u r.【点睛】(1)过焦点且垂直于实轴的直线与双曲线()222210.0x y a b a b -=>> 交于,A B ,则22b AB a=(通径).(2)直线与圆锥曲线的位置关系,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系式中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理证明该关系式为恒等式.。

2019-2020学年上海市中学高二期末数学试题及答案

2019-2020学年上海市中学高二期末数学试题及答案

2019-2020学年上海市中学高二期末数学试题及答案一、单选题1.已知平面直角坐标系内的两个向量(1,2),(,32)a b m m ==-,且平面内的任一向量c 都可以唯一表示成c a b λμ=+(,λμ为实数),则实数m 的取值范围是( ) A .(,2)-∞ B .(2,)+∞ C .(,)-∞+∞D .(,2)(2,)-∞⋃+∞【答案】D【解析】根据平面向量基本定理只需,a b 不共线即可. 【详解】由题意得,平面内的任一向量c 都可以唯一表示成c a b λμ=+(,λμ为实数),则,a b 一定不共线,所以1(32)2m m ⨯-≠⨯,解得2m ≠, 所以m 的取值范围是(,2)(2,)-∞⋃+∞. 故选:D. 【点睛】此题考查平面向量基本定理的辨析,平面内一组基底必须不共线,求解参数只需考虑根据平面向量共线的坐标运算求出参数即可得解.2.椭圆22:1169x y C +=与直线:(21)(1)74,l m x m y m m R +++=+∈的交点情况是( )A .没有交点B .有一个交点C .有两个交点 D .由m 的取值而确定【答案】C【解析】先将(21)(1)74,+++=+m x m y m 转化为:()2730x y m x y +-++-=,令30,270xy x y +-=+-=,解出直线过定点()3,1A ,再将()3,1A 代入22:1169x y C +=,判断点与椭圆的位置关系. 【详解】已知(21)(1)74,+++=+m x m y m 可转化为:()2740x y m x y +-++-= ,令+-=+-=40,270xy x y ,解得3,1x y ==,所以直线过定点()3,1A ,将()3,1A 代入22:1169x y C += 可得911169+<,所以点()3,1A 在椭圆的内部, 所以直线与椭圆必相交, 所以必有两个交点. 故选:C 【点睛】本题主要考查了点与椭圆,直线与椭圆的位置关系,还考查了转化化归的思想和运算求解的能力,属于基础题.3.过点(1,1)P 作直线与双曲线2212yx -=交于,A B 两点,使点P为AB 的中点,则这样的直线( )A .存在一条,且方程为210x y --=B .存在无数条C .存在两条,且方程为2(1)0x y ±+=D .不存在 【答案】D【解析】分当直线的斜率不存在时,将直线方程为1x = 代入2212y x -=,得0y =,与双曲线只有一个交点,不符合题意;当直线的斜率存在时,设直线方程为()11y k x -=-代入2212y x -=,得()()222221320k x k k x k k ----+-=,分220k -=和22k -≠0两种情况讨论求解.【详解】当直线的斜率不存在时,直线方程为1x = 代入2212y x -=,得0y = ,与双曲线只有一个交点,不符合题意. 当直线的斜率存在时,设直线方程为()11y k x -=-,代入2212y x -=,得()()222221320k x k k x k k ----+-=,当220k -=时,直线()11y x -=-与双曲线只有一个交点,不符合题意.当22k -≠0时,因为点P 为AB 的中点, 由韦达定理得()1222122k k x x k-+==- ,解得2k = 而当2k =时,222[2(1)]4(2)(32)24160k k k k k k ∆=----+-=-<,所以直线与双曲线不相交. 故选:D 【点睛】本题主要考查了直线与双曲线的位置关系,还考查了分类讨论的思想方法,属于中档题.4.已知圆心为O ,半径为1的圆上有不同的三个点,,A B C ,其中0OA OB ⋅=,存在实数,λμ满足0OC OA uOB λ++=,则实数,λμ的关系为A .221λμ+=B .111λμ+= C .1λμ= D .1λμ+=【答案】A【解析】由题意得1OA OB OC ===,且0OA OB ⋅=.因为0OC OA uOB λ++=,即OC OA uOB λ=--.平方得:221λμ+=. 故选A.二、填空题5.直线l 的倾斜角范围是__________; 【答案】0,【解析】由直线的倾斜角定义来确定. 【详解】由直线倾斜角的定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.范围:倾斜角的取值范围是0°≤α<180°. 故答案为:0,【点睛】本题主要考查了直线倾斜角的定义及范围,还考查了理解辨析的能力,属于基础题.6.方程2214x y m+=表示焦点在y 轴上的椭圆,其焦点坐标是_________;【答案】(0,【解析】根据方程2214x y m +=表示焦点在y 轴上的椭圆,确定22,4a m b ==,再由,,a b c 的关系求出c ,写出坐标即可.【详解】因为方程2214x y m +=表示焦点在y 轴上的椭圆,所以22,4a m b == ,所以c==所以焦点坐标为:(0,.故答案为:(0,.【点睛】本题主要考查了椭圆的几何性质,还考查了理解辨析的能力,属于基础题.7.抛物线()20y ax a =<的焦点坐标为____________.【答案】10,4a ⎛⎫⎪⎝⎭【解析】将抛物线的方程化为标准方程,可得出该抛物线的焦点坐标. 【详解】抛物线的标准方程为21x y a=,因此,该抛物线的焦点坐标为10,4a ⎛⎫⎪⎝⎭. 故答案为:10,4a ⎛⎫⎪⎝⎭. 【点睛】本题考查抛物线焦点坐标的求解,解题的关键就是要将抛物线的方程表示为标准形式,考查计算能力,属于基础题. 8i -对应点的直线的倾斜角为_________; 【答案】56π【解析】先利用复数的几何意义,i -对应点的坐标,直线又经过原点()0,0,根据斜率公式求得斜率,再根据斜率与倾斜角的关系求解. 【详解】i -对应点)1- ,直线又经过原点()0,0 ,所以斜率103k ==-,所以tan α= ,又因为[0,)απ∈ , 所以56πα=.故答案为:56π.【点睛】本题主要考查了直线的斜率,倾斜角及其关系,还考查了运算求解的能力,属于基础题.9.下面四个命题:①,a b 是两个相等的实数,则()()a b a b i -++是纯虚数;②任何两个负数不能比较大小;③12,z z C ∈,且22120z z +=,则120z z ==;④两个共轭虚数的差为纯虚数.其中正确的序号为_________; 【答案】④【解析】①采用特殊值法,当,a b 都是零时来判断.②通过负数也是实数来判断.③采用特殊值法,当121,z z i ==时来判断.④根据题意,是两个共轭虚数,则虚部不为零来判断. 【详解】 当0ab 时,则()()0a b a b i -++=,不是纯虚数,故错误.②因为负数是实数,实数可以比较大小,故错误. ③当121,z z i ==时,符合12,z z C ∈,且22120z z +=,而120z z ==不成立,故错误.④因为是两个共轭虚数,所以设()0z a bi b =+≠ ,其共轭复数是()0za bib =-≠,则()20z z bi b -=≠所以是纯虚数,故正确. 故答案为:④ 【点睛】本题主要考查了复数的概念,还考查了理解辨析的能力,属于中档题.10.已知点A 为双曲线221x y -=的左顶点,点B 和点在C 双曲线的右支上,ABC ∆是等边三角形,则ABC ∆的面积为_________; 【答案】【解析】根据题意得()1,0A -,再根据双曲线和等边三角形的对称性,得到AB k =AB 的方程,求出点(B ,从而可求ABC ∆的面积. 【详解】由题意得,()1,0A - ,因为点B 和C 在双曲线的右分支上,ABC ∆是等边三角形,根据对称性得,AB k =,所以直线AB 的方程是)1y x =+ ,代入双曲线方程,得220x x --= , 解得2x = 或1x =- (舍去),所以(B , 所以1233332∆ABCS .故答案为:【点睛】本题主要考查双曲线的几何性质和三角形面积的计算,还考查了分析解决问题的能力,属于基础题.11.直线l 经过点()2,1P -,且点()1,2--A 到l 的距离为1,则直线l 的方程为______. 【答案】2x =-或4350x y ++=【解析】当直线l 斜率存在时,设出点斜式并利用点到直线的距离公式算出l 的方程为4350x y ++=;当直线与x 轴垂直时,l 方程为2x =-也符合题意.由此即可得到此直线l 的方程. 【详解】设直线l 的方程为()12y k x -=+,即210kx y k -++= ∵点()1,2--A 到l 的距离为1,1=,解之得43k =-, 得l 的方程为4350x y ++=.当直线与x 轴垂直时,方程为2x =-,点()1,2--A 到l 的距离为1,∴直线l 的方程为2x =-或4350x y ++=. 故答案为:2x =-或4350x y ++= 【点睛】本题主要考查求经过定点,且到定点的距离等于定长的直线l 方程,着重考查了直线的方程、点到直线的距离公式等知识,属于基础题. 12.直线2y k =与曲线2222918(,0)k x y k x k R k +=∈≠的公共点的个数为_________; 【答案】4个【解析】将直线方程2y k =与曲线方程2222918+=k x y k x联立得,291840xx -+= ,根据方程根的个数来判断.【详解】将直线方程2y k =与曲线方程2222918+=kx y k x 联立得,291840x x -+=,解得13x =-或13x =+,所以13x=-或13x =-或13x =+或13x=--,故直线与曲线的公共点有4个. 故答案为:4 【点睛】本题主要考查了直线与曲线的位置关系,还考查了运算求解的能力,属于基础题.13.当实数,a b 变化时,两直线1:(2)()()0l a b x a b y a b ++++-=与22:20l m x y n ++=都通过一个定点,则点(,)m n 所在曲线的方程为_________; 【答案】226n m =-【解析】将(2)()()0++++-=a b x a b y a b 变形为()()(2)()()2110++++-=++++-=a b x a b y a b x y a x y b ,令210x y ++=且10x y +-=,求得定点坐标,再代入直线2l 的方程求解. 【详解】因为()()(2)()()2110++++-=++++-=a b x a b y a b x y a x y b ,对任意的实数,a b 都成立,所以21010x y x y ++=⎧⎨+-=⎩,解得23x y =-⎧⎨=⎩,所以直线1:(2)()()0l a b x a b y a b ++++-=过定点()2,3-, 因为 2l 也通过定点()2,3-, 将()2,3-代入220++=m x y n , 得226n m =-. 故答案为:226n m =- 【点睛】本题主要考查了直线系及其应用,还考查了分析,解决问题的能力,属于基础题.14.动点P 到点(1,0)F -的距离比到它到y 轴的距离大1,动点P 的轨迹方程是_________;【答案】20,04,0x y x x >⎧=⎨-≤⎩【解析】设(),P x y 1x =+,两边平方化简,再去绝对值求解. 【详解】 设(),P x y ,1x =+, 两边平方化简整理得222y x x=- ,当0x > 时,20y =, 当0x ≤ 时,24y x =-,综上:20,04,0x y x x >⎧=⎨-≤⎩.故答案为:20,04,0x y x x >⎧=⎨-≤⎩【点睛】本题主要考查了动点轨迹方程的求解,还考查了运算求解的能力,属于中档题.15.椭圆2214x y +=的一个焦点是F ,动点P 是椭圆上的点,以线段PF 为直径的圆始终与一定圆相切,则定圆的方程是_________; 【答案】224x y +=【解析】先设1F 是椭圆的另一个焦点,M 是线段PF 的中点,根据三角形的中位线及椭圆的定义可得1111||||(2||)||222MO PF a PF a PF ==-=- ,再根据两圆的位置关系得到结论. 【详解】设1F 是椭圆的另一个焦点,M是线段PF 的中点,根据题意得,1111||||(2||)||222MO PF a PF a PF ==-=-,即以长轴长为直径的圆与以线段PF 为直径的圆相内切, 所以定圆的圆心是()0,0O ,半径r a 2== ,所以定圆的方程为224x y +=, 故答案为:224x y += 【点睛】本题主要考查了椭圆的定义及两圆的位置关系,还考查了数形结合的思想方法,属于中档题. 16.若实数x 、y 满足42x y x y -=-,则x 的取值范围是______.【答案】{}0[4,20]⋃ 【解析】【详解】 令(),0y a x y b a b =-=≥、,此时,()22x y x y a b =+-=+,且题设等式化为2242a b a b +-=. 于是,a b 、满足方程()()()222150a b a b -+-=≥、.如图,在aOb 平面内,点(),a b 的轨迹是以()1,2D 为圆心、5为半径的圆在0a b ≥、的部分,即点O 与弧ACB 并集. 故{}2202,25a b ⎡⎤+∈⋃⎣⎦.从而,{}[]2204,20x ab =+∈⋃.三、解答题17.已知x ∈R ,设22log (3)log (3)z x i x =++-,当x 为何值时: (1)在复平面上z 对应的点在第二象限? (2)在复平面上z 对应的点在直线20x y +-=上. 【答案】(1)32x -<<-;(2)5x =【解析】(1)由复平面上z 对应的点在第二象限,根据复数的几何意义,则有22log (3)0log (3)0x x +<⎧⎨->⎩求解.(2)由复平面上z 对应的点在直线20x y +-=上.,则复数对应点的坐标()22log (3),log (3)+-x x 在直线上,代入直线方程求解即可. 【详解】(1)因为复平面上z 对应的点在第二象限,所以22log (3)0log (3)0x x +<⎧⎨->⎩,所以03131x x <+<⎧⎨->⎩,解得32x -<<-.(2)因为在复平面上z 对应的点在直线20x y +-=上, 所以22log (3)(3)l 4og +-=x x ,所以3030(3)(3)4x x x x +>⎧⎪->⎨⎪+-=⎩,解得x =.【点睛】本题主要考查了复数的几何意义及对数方程和对数不等式的解法,还考查了运算求解的能力,属于中档题. 18.已知直线与抛物线交于两点.(1)求证:若直线l 过抛物线的焦点,则212y y p ⋅=-; (2)写出(1)的逆命题,判断真假,并证明你的判断. 【答案】(1)证明见解析;(2)逆命题:若212y y p =-,则直线过抛物线的焦点;真命题.见解析【解析】(1)不妨设抛物线方程为22y px = ,则焦点坐标为,02p ⎛⎫⎪⎝⎭,当直线的斜率不存在时,直线方程为2px =代入22y px =,验证.当直线的斜率存在时,设直线方程为()2py k x =- 代入22y px =,得2220ky py kp --=,再由韦达定理验证.(2)逆命题:直线l 过抛物线的焦点. 是真命题.证明:当直线的斜率不存在时,设直线方程为(),0xm m =>代入22y px =,解得12y y == ,再由212y y p ⋅=-,求解.当直线的斜率存在时,设直线方程为y kx b =+ 代入22y px =,得2220ky py pb -+= ,由韦达定理得122pby y k⋅=再由212y y p ⋅=-,求得k 与b 的关系现求解.【详解】(1)设抛物线方程为22y px = ,则焦点坐标为,02p ⎛⎫⎪⎝⎭, 两个交点()()1122,,,A x y B x y ,当直线的斜率不存在时,直线方程为2px =,代入22y px =,得1,2y p y p==- ,所以212y y p ⋅=-.当直线的斜率存在时,设直线方程为()2py k x =-, 代入22y px =, 得2220ky py kp --= ,由韦达定理得 212y y p ⋅=-.所以若直线l 过抛物线的焦点时,则212y y p ⋅=-.(2)逆命题:若212y y p ⋅=-,则直线l 过抛物线的焦点. 是真命题证明:当直线的斜率不存在时,设直线方程为(),0x m m =>代入22y px =得12y y ==因为212y y p ⋅=-,所以22p -=-,解得2pm =,所以直线过抛物线的焦点.当直线的斜率存在时,设直线方程为y kx b =+, 代入22y px =, 得2220ky py pb -+=,由韦达定理得122pby y k⋅=,又因为212y y p ⋅=-, 所以2pkb =-,所以直线的方程2p y kx b k x ⎛⎫=+=- ⎪⎝⎭, 所以直线过定点,02p ⎛⎫ ⎪⎝⎭即直线过抛物线的焦点. 【点睛】本题主要考查了直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.19.(1)若圆C 的方程是222x y r +=,求证:过圆C 上一点00(,)M x y 的切线方程为200x x y y r +=.(2)若圆C 的方程是222()()x a y b r -+-=,则过圆C 上一点00(,)M x y 的切线方程为_______,并证明你的结论.【答案】(1)证明见解析;(2)200()()()()x a x a y b y b r --+--=;证明见解析;【解析】(1)设(),P x y 为切线上任一点,则()()0000,,,PM x x y y CM x y =--=,再由点00(,)M x y 为圆上的切点,则有PM CM⊥ ,即有0PM CM ⋅=求解即可.(2)设(),P x y 为切线上任一点,则()()0000,,,PM x x y y CM x a y b =--=--由点00(,)M x y 为圆上的切点,则有PM CM⊥ ,即有0PM CM ⋅=求解即可.【详解】(1)设(),P x y 为切线上任一点, 有()()0000,,,PMx x y y CM x y =--= ,因为PM CM⊥ ,所以0PM CM ⋅= , 即()()0000,,0x x y y x y --⋅=,又点00(,)M x y 在圆上, 所以22200+=x y r 整理得200x x y y r +=.(2)设(),P x y 为切线上任一点, 则()()0000,,,PMx x y y CM x a y b =--=--,因为PMCM⊥ ,所以0PM CM ⋅= , 即()()0000,,0x x y y x a y b --⋅--=,又点00(,)M x y 在圆上, 所以22200()()-+-=xa yb r .整理得200()()()()x a x a y b y b r --+--=. 【点睛】本题主要考查了圆的切线方程问题,还考查推理论证的能力,属于中档题.20.已知双曲线2212x y -=的两焦点为12,F F ,P 为动点,若124PF PF +=.(1)求动点P 的轨迹E 方程;(2)若12(2,0),(2,0)(1,0)A A M -,设直线l 过点M ,且与轨迹E 交于R Q 、两点,直线1A R 与2A Q 交于S 点.试问:当直线l 在变化时,点S 是否恒在一条定直线上?若是,请写出这条定直线方程,并证明你的结论;若不是,请说明理由.【答案】(1)2214x y +=;(2)是,4x =【解析】(1)根据124PF PF +=,且124F F >,由椭圆的定义可知,动点P 的轨迹是以12,F F 为焦点的椭圆,再求出,a b ,写出方程.(2)先设直线的方程为1x my =+,如果存在,则对任意m 都成立,首先取特殊情况,当0m =时,探究出该直线为:4l x =,再通过一般性的证明即可. 【详解】(1)双曲线2212x y -=的两焦点为())12,F F ,设动点P (),x y , 因为124PF PF +=,且124F F > ,所以动点P 的轨迹E 是以12,F F 为焦点的椭圆.因为22,1ac b ===,所以的轨迹E 方程;2214x y +=.(2)由题意设直线的方程为1x my =+,取0m =,得,1,22R Q ⎛⎛- ⎪ ⎪⎝⎭⎝⎭, 直线1A R的方程是63y x =+,直线2A Q的方程是2y x =-交点为(1S .若1,,R Q ⎛⎛- ⎝⎭⎝⎭,由对称性可知:交点为(24,S .若点S 在同一条直线上,则该直线只能为:4l x =. 以下证明 对任意的m ,直线1A R 与2A Q 交点S 均在直线:4l x =上.由22114x my x y =+⎧⎪⎨+=⎪⎩得()224230m y my ++-= ,设()()1122,,,R x y Q x y ,由韦达定理得:12122223,44m y y y y m m +=-⋅=-++ 设直线1A R 与l 交点为()004,s y ,由011422y y x =++ ,得10162y y x =+.设直线1A R 与l 交点为()004,s y '' , 由022422y y x '=-- ,得20222y y x '=-,因为()()()12121200121246622222my y y y y y y y x x x x -+'-=-=+-+-,()()2212121244022m m m m x x ---++==+- .所以()004,s y 与()004,s y ''重合.所以当直线l 在变化时,点S 恒在直线:4l x =上. 【点睛】本题主要考查了椭圆的定义及直线与椭圆的位置关系,还考查了特殊与一般的思想,运算求解的能力,属于难题. 21.已知椭圆E 两焦点12(1,0),(1,0)F F -,并经过点. (1)求椭圆E 的标准方程;(2)设,M N 为椭圆E 上关于x 轴对称的不同两点,12(,0),(,0)A x B x 为x 轴上两点,且122x x =,证明:直线,AM NB 的交点P 仍在椭圆E 上;(3)你能否将(2)推广到一般椭圆中?写出你的结论即可.【答案】(1)2212x y +=;(2)证明见解析;(3)若椭圆22221x y a b +=,若212x x a =,则直线,AM NB 的交点P 仍在椭圆E 上; 【解析】(1)已知焦点12(1,0),(1,0)F F -,利用椭圆的定义,求得椭圆的长轴长,再求得2b ,写出方程即可.(2)设()(),,,M m n N m n -,得到直线AM 的方程为()11n y xx m x =--,直线BN的方程为()22n y x x X m=--,设设交点()00,P x y ,分别代入直线AM ,BN 的方程得()0100yn x my nx -=- ,()0200y n x my nx +=+,两式化简得到220022x y +=,说明交点在椭圆上.(3)根据(2)的论证过程,推知规律是212x x a =. 【详解】根据题意,椭圆的长轴长:2a =+,解得22a = , 又2211b a =-=,所以椭圆的方程是2212x y +=.(2)设()(),,,M m n N m n - ,则直线AM 的方程为()11n y x x m x =--①,直线BN的方程为()22ny xx X m=--②设交点()00,P x y ,代入①②得()0100y n x my nx -=-③,()0200yn x my nx +=+④,③与④两边分别相乘得()22222201200yn x x m y n x -=-,又因为2212m n +=,122x x =,所以220022x y +=,所以直线,AM NB 的交点P 的坐标适合椭圆的方程, 所以直线,AM NB 的交点P 仍在椭圆E 上.(3)若椭圆22221x y a b +=,若212x x a =,则直线,AM NB 的交点P 仍在椭圆E 上; 【点睛】本题主要考查了椭圆方程的求法,以及点与椭圆的位置关系,还考查了推理论证,运算求解的能力,属于难题.。

上海市七宝中学2019-2020学年高二下学期4月月考数学试题(原卷+解析版)

上海市七宝中学2019-2020学年高二下学期4月月考数学试题(原卷+解析版)
公式可得所求的概率为 .
故答案为:
【点睛】本题考查古典概型的概率计算问题,涉及到复数的运算,考查学生的运算求解能力,是一道中档题.
10.已知袋中有 个大小相同的编号球,其中黄球8个,红球 个,从中任取两个球,取出的两球是一黄一红的概率为 ,则 的最大值为________(用最简分数表示).
【答案】
【解析】
9.从集合 中任取两个元素相加,则所得复数的模为 的概率为________(用最简分数表示).
【答案】
【解析】
【分析】
先化简集合M,再利用古典概型的概率计算公式计算即可.
【详解】由已知, ,
当 时, ;
当 时, ;
当 时, ;
当 时, ;
所以 ,故从M中任取2个元素相加有 种不同结果,
所得复数的模为 有 , 共2种不同结果,根据古典概型的概率计算
A.56B.60C.140D.120
【答案】C
【解析】
【详解】试题分析:由题意得,自习时间不少于 小时的频率为 ,故自习时间不少于 小时的频率为 ,故选C.
考点:频率分布直方图及其应用.
15.某个比赛安排4名志愿者完成6项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式有多少种()
A.7200种B.4800种C.2640种D.1560种
【详解】为使选出的n个数的乘积能被10整除,其中至少有一次选择了5,并且至少有一次选择了
偶数2、4、6、8之一,设事件A表示没有一次选择了5,事件B表示没有一次选择了偶数,
则所求概率是 ,从而
.
故答案为:
【点睛】本题考查古典概型的概率计算以及概率的加法公式,考查学生的逻辑推理能力,是一道中档题.
二、选择题(本大题共有4题,满分20分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市七宝中学2019-2020学年高二下学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________
1.已知集合{}22(,)|1A x y x y +==,(){}|,B x y y x =
=-,则A B 中元素的个数是__________.
2.平面α外的直线a 与平面α所成的角是θ,则θ的取值范围是______.
3.已知(0,1,2)AM =,(1,0,2)CN =,则直线AM 和CN 所成角的余弦值是__________.
4.在北纬45°圈上有A 、B 两点,若该纬度圈上A 、B
两点间的劣弧长为
4
R (R 为地球的半径),则A 、B 两点间的球面距离是__________. 5.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩
,则2z x y =+的最大值是__________.
6.不等式220mx mx --<对任意x ∈R 恒成立的充要条件是m ∈__________. 7.某圆柱的高为2,底面周长为16,其三视图如图,圆柱表面上的点M 在正(主)视图上的对应点为A ,圆柱表面上的点N 在侧(左)视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为__________.
8.有一多边形ABCD 水平放置的斜二测直观图A B C D ''''是直角梯形(如图所示),其中45A B C '''=︒,B C C D ''''⊥,1A D D C ''''==,则原四边形ABCD 的面积为__________.
9.正四棱柱1111ABCD A B C D -中,1AB AD ==,E 为1BB 中点,若点P
满足
AP PD λ→→=,且//BP 平面1AED ,则λ=__________.
10.在正方体1111ABCD A B C D -中,给出下面四个命题:
①()221111113()A A A D A B A A ++=;②1AD 与1A B 夹角为120∘;③110AC C D ⋅=;④正方体的体积是1AB BC CC ⋅⋅,则正确的命题是__________.
11.如图,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD 是平面α内边长为R 的正三角形,线段AC ,AD 分别与球面交于点M 、N ,则三棱锥A BMN -的体积是__________.
12.在三棱锥A BCD -中, 10AC AD BC BD ====,8AB =,12CD =,点P
在侧面ACD 上,且到直线AB PB 的取值范围是__________. 13.已知直线n ⊂平面α,则//m n 是//m α的( )
A .充要条件
B .充分非必要条件件
C .必要非充分条件
D .既非充分又非必要条件
14.在正方体1111ABCD A B C D -中,,,E F G 分别为棱111,,CD CC A B 的中点,用过点,,E F G 的平面截正方体,则位于截面以下部分的几何体的侧视图为( )
A .
B .
C .
D .
15.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”.半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体体现了数学的对称美.如图是一个棱数为24的半正多面体,它的所有顶点都在同一个正方体的棱上,且此正方体的棱长为1.则该半正多面体:①有12个顶点;②有14个面;③表面积为3;④体积为56
,正确的有( )
A .①②③
B .②③④
C .①②④
D .①②③④ 16.如图,已知正四面体1234A A A A ,点5A ,6A ,7A ,8A ,9A ,10A 分别是所在棱中点,点P 满足4414243
A P xA A yA A zA A =++且1x y z ++=,记44min ||||A Q A P =,则当1i ≤,10j ≤且i j ≠时,数量积4i j A Q A A ⋅的不同取值的个数是( )
A .3
B .5
C .9
D .21 17.设函数()22)lg(3f x x x =+-的定义域为集合A ,函数1()||g x a x x =+
-在[-3,-1]上存在零点时的a 的取值集合B .
(1)求A B ;
(2)若集合2{}0|C x x p =+≥,若x C ∈是x A ∈充分条件,求实数p 的取值范围. 18.已知正方体1111ABCD A B C D -中的棱长为2,1O 是11A C 中点.
(1)求证:1//AO 平面1DBC ;
(2)设1BB 的中点为M ,过A 、1C 、M 作一截面,求出截面面积.
19.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,
(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;
(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.
20.如图,在Rt SOA 中,6OSA π
∠=,斜边4SA =,半圆H 的圆心H 在边OS 上,
且与SA 相切,现将Rt SOA 绕SO 旋转一周得到一个几何体,点B 为圆锥底面圆周上一点,且90AOB ∠=︒.
(1)求球H 的半径;
(2)求点O 到平面SAB 的距离;
(3)设Р是圆锥的侧面与球的交线上一点,求PO 与平面SAB 所成角正弦值的范围. 21.设集合A 的元素均为实数,若对任意a A ∈,存在b B ∈,c C ∈.使得b c a +=且1b c -=,则称元素最少的B 和C 为A 的“孪生集”;称A 的“孪生集”的“孪生集”为A 的“2级孪生集”;称A 的“2级孪生集”的“孪生集”为A 的“3级孪生集”,依次类推....... (1)设{}3,5,7A =,直接写出集合A 的“孪生集”;
(2)设元素个数为n 的集合A 的“孪生集”分别为B 和C ,若使集合
()BUC B C ⋂中元素个数最少且所有元素之和为3,证明:A 中所有元素之和为3n ;
(3)若(){}
121,1,*k k A a a a k k n k N ==+-≤≤∈,请直接写出A 的“n 级孪生集”的个数,设A 的所有“n 级孪生集”的并集为Ω,若123M M M Ω=⋃⋃;求有序集合组()123,M M M ,的个数.。

相关文档
最新文档