高一数学必修四测试卷

合集下载

高中数学必修4试题含答案

高中数学必修4试题含答案

11.设α角属于第二象限,且2cos 2cosαα-=,则2α角属于()A .第一象限B .第二象限C .第三象限D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有()A .①B .②C .③D .④3.02120sin 等于()A .23±B .23C .23-D .214.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于()A 43-B 34-C 43D .345.若α是第四象限的角,则πα-是()A .第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角6.4tan 3cos 2sin 的值()A .小于0B .大于0C .等于0D .不存在二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式:①0<<OM MP ;②0OM MP <<;③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________。

3.若角α与角β的终边关于y 轴对称,则α与β的关系是___________。

4.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是。

5.与02002-终边相同的最小正角是_______________。

三、解答题1.已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos+的值.2.已知2tan =x ,求xx x x sin cos sin cos -+的值。

3.化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅--4.已知)1,2(,cos sin ≠≤=+m m m x x 且,求(1)x x 33cos sin +;(2)x x 44cos sin +的值。

高中数学必修四综合测试(含解析)

高中数学必修四综合测试(含解析)

模块综合质量测试一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.[2013·长春外国语高一模拟]tan(-300°)的值为( ) A. 33 B. -33 C. 3D. - 3[解析] tan(-300°)=-tan300°=-tan(360°-60°) =tan60°= 3. [答案] C2.若tan(α-3π)>0,sin(-α+π)<0,则α在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] 由已知得tan α>0,sin α<0,∴α在第三象限. [答案] C3.设角α的终边过点P (-4,3),则2sin α+cos α的值是( ) A.25 B.25或-25 C .-25D .-34[解析] ∵sin α=35,cos α=-45,∴2sin α+cos α=25. [答案] A4.下列命题中正确的是( ) A .若λa +μb =0,则λ=μ=0 B .若a ·b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a |D .若a ⊥b ,则a ·b =(a ·b )2[解析] 根据平面向量基本定理,必须在a ,b 不共线的情况下,若λa +μb =0,则λ=μ=0;选项B 显然错误;若a ∥b ,则a 在b 上的投影为|a |或-|a |,平行时分两向量所成的角为0°和180°两种;a ⊥b ⇒a ·b =0,(a ·b )2=0.[答案] D5.若3OC →-2OA →=OB →,则( ) A.AC →=13AB → B.AC →=23AB → C.AC →=-13AB →D.AC →=-23AB →[解析] 原式化为3(OC →-OA →)=OB →-OA →, ∴3AC →=AB →,AC →=13AB →. [答案] A6.[2013·哈师大附中高一月考]若函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|≤π2)的图象如下图所示,则函数f (x )=( )A. sin(2x -π6)B. sin(x +π6)C. sin(2x +π6) D. sin(x -π6)[解析] 由图知A =1,T 4=π6+π12=π4, ∴T =π,ω=2. ∴f (x )=sin(2x +φ). ∴f (π6)=sin(2×π6+φ)=1, 即π3+φ=2k π+π2,(k ∈Z ), ∴φ=2k π+π6(k ∈Z ).∵|φ|≤π2,∴φ=π6,∴f (x )=sin(2x +π6). [答案] B7.设a >0,对于函数f (x )=sin x +asin x (0<x <π),下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值[解析] 令t =sin x ,t ∈(0,1],则函数f (x )=sin x +asin x (0<x <π)的值域为函数y =1+a t ,t ∈(0,1]的值域.又a >0,所以y =1+at ,t ∈(0,1]是一个减函数,故选B.[答案] B8.[2013·吉林实验高一联考]若f (x )=3sin(2x +φ)+a ,对任意实数x 都有f (π3+x )=f (π3-x ),且f (π3)=-4,则实数a 的值等于( )A. -1B. -7或-1C. 7或1D. ±7[解析] 由f (π3+x )=f (π3-x ),得 f (x )的图象关于直线x =π3对称. ∴2×π3+φ=k π+π2(k ∈Z ). ∴φ=k π-π6(k ∈Z ). ∵f (π3)=-4,∴f (π3)=3sin(2×π3+φ)+a =3sin(2π3+k π-π6)+a =3sin(k π+π2)+a =3cos k π+a =-4.当k 为奇数时,-3+a =-4,得a =-1; 当k 为偶数时,3+a =-4,得a =-7. [答案] B9.已知a =(cos α,sin α),b =(cos β,sin β)且a ≠±b ,那么a +b 与a -b 的夹角大小为( )A.π3B.π6C.π2D .π[解析] ∵|a |=1,|b |=1,∴|a |=|b |,∴(a +b )·(a -b )=|a |2-|b |2=0. ∴夹角为π2. [答案] C10.已知|a |=1,|b |=2,a 与b 的夹角为60°,c =2a +3b ,d =k a -b (k ∈R ),且c ⊥d ,那么k 的值为( )A .-6B .6C .-145D.145[解析] a ·b =1×2×cos60°=1,∵c ⊥d ,∴c ·d =(2a +3b )·(k a -b )=2k a 2-2a ·b +3k a ·b -3b 2=2k -2+3k -12=0,∴k =145.[答案] D11.已知向量m ,n 的夹角为π6,且|m |=3,|n |=2,在△ABC 中,AB →=m +n ,AC →=m -3n ,D 为BC 边的中点,则|AD →|=( )A .1B .2C .3D .4 [解析] 由题意知:|AD →|=12|AB →+AC →|=12|2m -2n |=|m -n |=|m -n |2=|m |2+|n |2-2|m ||n |cos π6=1.[答案] A12.已知f (x )=sin(x +π2),g (x )=cos(x -π2),则下列结论中正确的是( )A .函数y =f (x )g (x )的周期为2πB .函数y =f (x )g (x )的最大值为1C .将y =f (x )的图象向左平移π2个单位后得y =g (x )的图象 D .将y =f (x )的图象向右平移π2个单位后得y =g (x )的图象 [解析] f (x )=sin(x +π2)=cos x ,g (x )=cos(x -π2)=sin x ,故只能选D.[答案] D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上.)13.设向量a =(3,-2),b =(1,2),若a +λb 与a 垂直,则实数λ=__________.[解析] 若a +λb 与a 垂直,则(a +λb )·a =0,即a 2+λa ·b =0.a 2=13,a ·b =-1.所以13-λ=0,即λ=13.[答案] 1314.[2013·南京市高一第二次联考]已知α为第三象限角,且 1-sin α1+sin α+1cos α=2,则sin α-cos αsin α+2cos α的值为________.[解析] 由1-sin α1+sin α+1cos α=2,得|1-sin α||cos α|+1cos α=2.∵α为第三象限角,∴1-sin α-cos α+1cos α=2,即sin α=2cos α,tan α=2. sin α-cos αsin α+2cos α=tan α-1tan α+2=2-12+2=14.[答案] 1415.[2013·南昌市高一月考]已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.[解析] 由对称轴完全相同知两函数周期相同, ∴ω=2,∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6. 由x ∈⎣⎢⎡⎦⎥⎤0,π2,得-π6≤2x -π6≤56π. ∴-32≤f (x )≤3.[答案] ⎣⎢⎡⎦⎥⎤-32,3 16.[2013·温州十校高一检测]下面有五个命题: ①终边在y 轴上的角的集合是{β|β=2k π+π2,k ∈Z }.②设一扇形的弧长为4 cm ,面积为4 cm 2,则这个扇形的圆心角的弧度数是2.③函数y =sin 4x -cos 4x 的最小正周期是2π.④为了得到y =3sin2x 的图象,只需把函数y =3sin(2x +π3)的图象向右平移π6.⑤函数y =tan(-x -π)在⎣⎢⎡⎭⎪⎫-π,-π2上是增函数.所有正确命题的序号是________.(把你认为正确命题的序号都填上)[解析] 终边在y 轴上的角的集合为{β|β=k π+π2,k ∈Z },故①不正确;由S =12lR ,得4=12×4×R ,R =2,所以α=l R =42=2,故②正确;y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x ,所以周期为π,故③不正确;④正确:y =tan(-x -π)=-tan x 在[-π,-π2)上不可能是增函数,故⑤不正确.[答案] ②④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)已知A 、B 、C 三点的坐标分别是(-2,1)、(2,-1)、(0,1),且CP →=3CA →,CQ →=2CB →,求点P 、Q 和向量PQ →的坐标.[解] ∵A (-2,1)、B (2,-1)、C (0,1), ∴CA →=(-2,0),CB →=(2,-2). 于是CP →=3CA →=(-6,0), CQ →=2CB →=(4,-4).设P (x ,y ),则有CP →=(x ,y -1).∴⎩⎪⎨⎪⎧ x =-6,y -1=0,解得⎩⎪⎨⎪⎧x =-6,y =1. 即P 点的坐标为(-6,1). 同理可得Q (4,-3). 因此向量PQ →=(10,-4).18.(本题满分12分)已知α为第二象限角,且sin α=154,求sin (α+π4)sin2α+cos2α+1的值.[解] sin (α+π4)sin2α+cos2α+1=22(sin α+cos α)2sin αcos α+2cos 2α =2(sin α+cos α)4cos α(sin α+cos α), 因α为第二象限角,且sin α=154,所以cos α=-14. ∴sin α+cos α≠0,∴原式=24cos α=- 2.19.(本题满分12分)设向量a ,b 满足|a |=|b |=1及|3a -2b |=7. (1)求a ,b 的夹角θ; (2)求|3a +b |的值.[解] (1)由已知得(3a -2b )2=7, 即9|a |2-12a ·b +4|b |2=7. 又|a |=1,|b |=1代入得a ·b =12. ∴|a ||b |cos θ=12, 即cos θ=12.又θ∈[0,π],∴θ=π3. ∴向量a ,b 的夹角θ=π3.(2)由(1)知,(3a +b )2=9|a |2+6a ·b +|b |2=9+3+1=13.∴|3a +b |=13.20.(本题满分12分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求f (x )的最小正周期及解析式;(2)设g (x )=f (x )-cos2x ,求函数g (x )在区间[0,π2]上的最大值和最小值.[解] (1)由图可得A =1,T 2=2π3-π6=π2, 所以T =π. 所以ω=2.当x =π6时,f (x )=1,可得sin(2×π6+φ)=1. 因为|φ|<π2,所以φ=π6.所以f (x )的解析式为f (x )=sin(2x +π6). (2)g (x )=f (x )-cos2x =sin(2x +π6)-cos2x =sin2x cos π6+cos2x sin π6-cos2x=32sin2x -12cos2x=sin(2x -π6).因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.当2x -π6=π2,即x =π3时,g (x )有最大值,最大值为1;当2x -π6=-π6,即x =0时,g (x )有最小值,最小值为-12.21.(本题满分12分)[2013·吉林实验高一模拟]关于x 的方程8sin(x +π3)cos x -23-a =0在开区间(-π4,π4)上.(1)若方程有解,求实数a 的取值范围;(2)若方程有两个不等实数根,求实数a 的取值范围.[解] (1)令y =8sin(x +π3)cos x -2 3=8sin x cos π3·cos x +8cos x ·sin π3cos x -2 3=4sin x cos x +43cos 2x -2 3=2sin2x +23(cos2x +1)-2 3=2sin2x +23cos2x=4sin(2x +π3),要使方程有解,即使4sin(2x +π3)=a 有解.∵x ∈(-π4,π4),∴2x +π3∈(-π6,56π).∴4sin(2x +π3)∈(-2,4],∴a ∈(-2,4].(2)作出y =4sin(2x +π3)的图象如下图要使方程有两解由图知2<a <4,故a 的取值范围为(2,4).22.(本题满分12分)已知向量OA →=(λsin α,λcos α),OB →=(cos β,sin β),且α+β=5π6,其中O 为原点.(1)若λ<0,求向量OA →与OB →的夹角;(2)若λ∈[-2,2],求|AB →|的取值范围.[解] (1)因为|OA →|=(λsin α)2+(λcos α)2=-λ,|OB →|=1,OA →·OB →=λsin αcos β+λcos αsin β=λsin(α+β)=λsin 5π6=12λ.设OA →与OB →夹角为θ,则cos θ=12λ-λ×1=-12. 又因为θ∈[0,π],所以θ=2π3,所以OA →与OB →的夹角为2π3.(2)|AB →|=|OB →-OA →| =(cos β-λsin α)2+(sin β-λcos α)2 =1+λ2-2λ(sin αcos β+cos αsin β) =1+λ2-2λsin (α+β)=1+λ2-2λsin 5π6 =1+λ2-λ=(λ-12)2+34. 因为λ∈[-2,2],所以当λ=12时有最小值32,λ=-2时有最大值7.所以|AB →|的取值范围是[32,7].。

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。

)。

A。

4.B。

8.C。

16.D。

322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。

)。

A。

(-∞,-1)。

B。

(1,+∞)。

C。

(-1,1)U(1,+∞)。

D。

(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。

)。

A。

a<b<c。

B。

b<c<a。

C。

c<a<b。

D。

c<b<a4.函数y=-x^2+4x+5的单调增区间是(。

)。

A。

(-∞,2]。

B。

[-1,2]。

C。

[2,+∞)。

D。

[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。

)。

A。

a≤2.B。

-2≤a≤2.C。

a≤-2.D。

a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。

)。

A。

y=x-2.B。

y=x-1.C。

y=x^2.D。

y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。

)。

A。

1/2.B。

2/3.C。

3/4.D。

1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。

)。

A。

1/5.B。

-1/5.C。

5.D。

-59.若tanα=3,则sinαcosα=(。

)。

A。

3.B。

3/2.C。

3/4.D。

9/410.sin600°的值为(。

)。

A。

3/2.B。

-3/2.C。

-1/2.D。

1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。

)。

A。

1.B。

-1.C。

5/8.D。

-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。

高一数学必修4第三章综合检测题

高一数学必修4第三章综合检测题

第三章综合检测题、选择题(本大题共12个小题,每小题5分,共60分)1. si门2右一cos2;n的值为(C )B.2 D. ,3~2[解析]原式=-(cos2^- sin^F - cos62.函数f(x)= sin2x—cos2x的最小正周期是(B )nA.q3 B . n C . 2 n D . 4 n[解析]f(x) = sin2x—cos2x= , 2sin(2x—4),故T=今=冗13.已知cos 0= 3,(0,n )则cos(32 + 2 0 = ( C )4;29D.9[解析]cos(3n + 2 0= sin2 A 2sin 0os0= 2X 屮3=普44.若tan a= 3, ta n B= 3,则tan (a— 3 等于(D )C. 3D.13 —4tan a—tan 3 3 1[解析]tan(a—®=■—o= = 3.1 + tan dt an B〔+ 3X4 335. COS275°+COS215°+COS75°C OS15的值是(A )5 6 3 2A.4B.〒eq D. 1 +可2 21 5 [解析]原式=sin215°+ cos 15° + sin15 6os15°= 1 + ?sin30 = 4.6. y= cos2x—sin2x+ 2sinxcosx的最小值是(B )A. 2 B2 C. 2 D2_ n _[解析]y= cos2x+ si n2x= 2si n( 2x+ 4),.,.y max=— 2.7.若tan a= 2, tan(B— M= 3,贝U tan(B—2 0)= ( D )A. —1B. —5C.7D.1tan p- a—tan a 3 —2 i[解析]tan( p—2 a = tan[( p— a) —a = = =千1 + tan p—a tan a 1 + 68.已知点P(cos a, sin M, Q(cos p, sin®,贝U |PQ| 的最大值是(B )A. 2[解析] PQ = (cos® —cos a, sin p—si n a ,贝U |PQ| = p cos®—cos a2+ sin p- sin a2='2—2cos a— p,故|PQ|的最大值为2.cos2x+ sin2x”^「十厂9.函数y= cos2x —sin2x的最小正周期为(C )n nA. 2 nB. nC.qD.41 + tan2x n n[解析]y= =tan(2x+ 4),.T=2.1 —tan2x 4 210. 若函数f(x) = sin2x —*x€ R),则f(x)是(D )A .最小正周期为訓勺奇函数B .最小正周期为n的奇函数C.最小正周期为2 n的偶函数 D .最小正周期为n的偶函数1 12 12[解析]f(x)= sin2x—2= —2(1 —2sin2x) = —^cos2x,.f(x)的周期为n的偶函数.n11. y= sin(2x —3)—sin2x 的一个单调递增区间是(B )n n n 7^ r 5 1^ _ _ _ n 5 nA . [—6, 3] B.[石,石n]c.[匚n 石n ] D . [3,石!5 n n n n n[解析] y = sin(2x — 3) — sin2x = sin2xcos^ — coshes% — sin2x =- (sin2xcos^ + cos2xsin^)=—sin(2x + 3),其增区间是函数y = sin(2x +3)的减区间,即2k n+㊁三2x + 3W 2k n+~2,「k nn7 n 「 r 「 n 7 n+12= x <k n+12,当 k = 0 时,x € [乜,乜].12. 已知 sin(a+ 3 = 2,sin(a- 3 = £,则 log • 5(器 等于 (C . 41 sin a os 3+ cos a in 23得 1sin a os 3— cos a in 3= 313. (1+ tan 17 )(1 + tan28 °tan 17 ° tan28[解析] 原式=1 + tan 17 + tan28 °tan 17 °tan28 ;又 tan(17 +28°) = ------------- =1 — tan17 )an28 0 tan45 = 1,Atan17 + tan28 = 1— tan 17 °tan28 )14. (2012全国高考江苏卷)设a 为锐角,若cosn a+6=5,贝U sin 2 a+ 的值为弋^2.n n 2 n n [解析]Ta 为锐角,.「6<a+ 6<3,v cos a- 6 =4 5, n 3 sin a+ 6 = 5;n n n 24.••sin 2 a+ 3 = 2sin a+ 6 cos a+ 6 = 25,n n 2 .2 n 7cos(2 a+ 3) = cos( a+ g) 一 sin ( a+ g) =25 . n n n . n .•sin 2 a+ 12 = sin 2 + 3— 4 = sin 2 a — 3 ncos4—cosc n . n 1A /2 2a+3 sin 4= 50 .115.已知 cos2a= 3,贝U sin 4 a+ cos 4a=[解析]由sin(a+ 3 = 2, sin(a- a 5sin ocos 3=12.tan a 1,• °tan 3cos a i n 3=徨=5,「•log ‘5(眯沪 g 552 = 4.、填空题(本大题共4个小题, 每小题5分,共20分)代入原式可得结果为2.521 2 2 2[解析]cos2o a 2cos a—1= 3 得cos a 3,由cos2o a 1 —2s in a得sin2a 3(或据sin2a2 2 1 , + cos a 1得Sin a= 3),代入计算可得.3 1 n n16.设向量a=(刃sin0, b= (cos0 3),其中0€ (0,刃,若a / b,贝U 0= ___41 n [解析]若a//b,贝U sin 0cos A2,即卩2sin(Cos B= 1 ,:sin2 A1,又(0,㊁),n 4.三、解答题(本大题共6个小题,共70分,写出文字说明,证明过程或演算步骤3 - 3 sin2 a+ 2sin a,17.(本题满分10分)已知cos a—sin a= 5^,且na^n 求—1 —t an a—的值.[解析]因为cos a—sin aa%"2,所以1 —2si n a cos a=卷,所以2si n«cos a= £又a€ ( n "2),故sin a+ CoS a=-冷 1 + 2sin0cos a= —誉,2 2sin2 a+ 2sin a 2sin a cos a+ 2sin a cos a 2sin a cos a cos a+ sin a所以=1 —tan a COS a—sin a COS a—sin aZ x4/225x一 55 28 75.18.(本题满分12分)设x€ [0 , 3],求函数y= cos(2x-3) + 2sin(x—力的最值.n n n n[解析]y = cos(2x—3) + 2si n(x—6)= cos2(x—6)+ 2sin(x—石)2n n n 1 2 3=1 —2sin (x—舌)+ 2sin(x —6)= —2[sin(x—$) —2 + 21 1 3 1 • x€ [0 , 3], —x—g[一6,6].• °sin(x—g) € [一?, 2] ,^ymax a2,ymin= —2*19.(本题满分12分)已知tan2a2tan2a+ 1,求证:cos20+ sin2a= 0.十卄2cos20- sin20 2 1 —tan20 2—2tan2a[证明] cos2 0+ sin a= 2 2 + sin a= 2 + sin a= 2cos20+ sin20 1 + tan20 1 + 2tan2a+ 1+ si n2a=.2—sin a 2 + sin a= COS a+ Sin a 2 o—sin a+ sin a 0.3x . 3xx . x »亠12分)已知向量 a = (cos^, sin_2), b = (co^,— sin^), c = (.3— 1),其中 x €R.(1)当a 丄b 时,求x 值的集合; ⑵求a —ci 的最大值.3x x 3x xk n n [解析](1)由 a 丄b 得 a b = 0,即卩 cos^cos^ —sin-^sin^a 0,贝Ucos2x = 0,得x a ^ + 4(kk n n€ Z), Ax 值的集合是{x|x = 2 + 4, « Z}.2 3x1- 2 3x 2 o 3x t -3x o 3x 3x(2)|a — c| = (cos 刁—.3) + (sin_2 + 1) = cos"^ — 2.3cos^ + 3+ sin + 2sin^ + 1=5+ 2sin^x —2 ,3。

高中数学必修四试卷(含详细答案)

高中数学必修四试卷(含详细答案)

高中数学必修四试卷(考试时间:100分钟 满分:150分)一、选择题1.下列命题正确的是A.第一象限角是锐角B.钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同 2.函数12sin()24y x π=-+的周期,振幅,初相分别是A.4π,2,4π B. 4π,2-,4π- C. 4π,2,4π D. 2π,2,4π3.如果1cos()2A π+=-,那么sin()2A π+=A.12B.12C.12D.124.函数2005sin(2004)2y x π=-是 A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 5.给出命题(1)零向量的长度为零,方向是任意的.(2)若a ,b 都是单位向量,则a =b.(3)向量AB 与向量BA相等.(4)若非零向量AB 与CD是共线向量,则A ,B ,C ,D 四点共线.以上命题中,正确命题序号是A.(1)B.(2)C.(1)和(3)D.(1)和(4) 6.如果点(sin 2P θ,cos2)θ位于第三象限,那么角θ所在象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在四边形ABCD 中,如果0AB CD = ,AB DC =,那么四边形ABCD 的形状是A.矩形B.菱形C.正方形D.直角梯形 8.若α是第一象限角,则sin cos αα+的值与1的大小关系是 A.sin cos 1αα+> B.sin cos 1αα+= C.sin cos 1αα+< D.不能确定 9.在△ABC 中,若sin 2cos sin C A B =,则此三角形必是10.如图,在△ABC 中,AD 、BE 、CF 分别是BC 、点G ,则下列各等式中不正确的是 A.23BG BE = B.2CG GF =C.12DG AG =D.121332DA FC BC +=二、填空题(本大题共4小题,每小题5分,共20分)11.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .12.已知tan 2α=,3tan()5αβ-=-,则tan β= . 13.已知(3a = ,1),(sin b α= ,cos )α,且a ∥b ,则4sin 2cos 5cos 3sin αααα-+= .14.给出命题:(1)在平行四边形ABCD 中,AB AD AC +=.(2)在△ABC 中,若0AB AC <,则△ABC 是钝角三角形.(3)在空间四边形ABCD 中,,E F 分别是,BC DA 的中点,则1()2FE AB DC =+.以上命题中,正确的命题序号是 .三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知3sin 25α=,53[,]42αππ∈. (1)求cos 2α及cos α的值;(2)求满足条件sin()sin()2cos 10x x ααα--++=-的锐角x .已知函数()sin22x xf x =,x R ∈. (1)求函数()f x 的最小正周期,并求函数()f x 在[2,2]x ππ∈-上的单调递增区间; (2)函数()sin ()f x x x R =∈的图象经过怎样的平移和伸缩变换可以得到函数()f x 的图象.17.(本小题满分13分)已知电流I 与时间t 的关系式为sin()I A t ωϕ=+. (1)下图是sin()I A t ωϕ=+(0,)2πωϕ><求sin()I A t ωϕ=+的解析式; (2)如果t 在任意一段1150秒的时间内,电流 sin()I A t ωϕ=+ 那么ω的最小正整数值是多少?已知向量(3,4)OA =- ,(6,3)OB =- ,(5,3)OC m m =---.(1)若点,,A B C 能够成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且A ∠为直角,求实数m 的值.19.(本小题满分13分)设平面内的向量(1,7)OA = ,(5,1)OB = ,(2,1)OM =,点P 是直线OM 上的一个 动点,且8PA PB =- ,求OP的坐标及APB ∠的余弦值.20.(本小题满分13分)已知向量33(cos ,sin )22x x a = ,(cos ,sin )22x x b =- ,且[,]2x ππ∈. (1)求a b 及a b +;(2)求函数()f x a b a b =++的最大值,并求使函数取得最大值时x 的值.高中数学必修(4)试卷参考答案及评分标准一、选择题二、填空题11. 2 12. -13 13. 5714. (1)(2)(3) 三、解答题15.解:(1)因为5342παπ<<,所以5232παπ<<. ………………………(2分) 因此4cos 25α==-. ………………………………(4分)由2cos 22cos 1αα=-,得cos α=……………………(8分) (2)因为sin()sin()2cos x x ααα--++=, 所以2cos (1sin )10x α-=-,所以1sin 2x =. ………………………(11分)因为x 为锐角,所以6x π=. ………………………………………………(13分)16.解:sin2sin()2223x x x y π=+=+. (1)最小正周期2412T ππ==. ……………………………………………(3分)令123z x π=+,函数sin y z =单调递增区间是[2,2]()22k k k Z ππππ-++∈.由 1222232k x k πππππ-+≤+≤+,得 544,33k x k k Z ππππ-+≤≤+∈. ………………………………(5分) 取0k =,得533x ππ-≤≤,而5[,]33ππ-⊂[2,2]ππ-, 所以,函数sin 22x x y =,[2,2]x ππ∈-得单调递增区间是5[,]33ππ-.(2)把函数sin y x =图象向左平移3π,得到函数sin()3y x π=+的图象,…(10分)再把函数sin()3y x π=+的图象上每个点的横坐标变为原来的2倍,纵坐标不变,得到函数sin()23x y π=+的图象, …………………………………(11分)然后再把每个点的纵坐标变为原来的2倍,横坐标不变,即可得到函数2sin()23x y π=+的图象. …………………………………………………(13分) 17.解:(1)由图可知300A =,设11900t =-,21180t =, ……………………(2分)则周期211112()2()18090075T t t =-=+=, …………………………(4分) ∴2150T πωπ==. ………………………………………………………(6分) 1900t =-时,0I =,即1sin[150()]0900πϕ⋅-+=,sin()06πϕ-=. 而2πϕ<, ∴6πϕ=.故所求的解析式为300sin(150)6I t ππ=+. ……………………………(8分)(2)依题意,周期1150T ≤,即21150πω≤,(0)ω>, …………………(10分)∴300942ωπ≥>,又*N ω∈,故最小正整数943ω=. ……………(13分)18.解:(1)已知向量(3,4)OA =- ,(6,3)OB =- ,(5,3)OC m m =--- ,若点,,A B C 能构成三角形,则这三点不共线,即AB 与BC不共线. ……(4分)(3,1)AB = ,(2,1)AC m m =--,故知3(1)2m m -≠-,∴实数12m ≠时,满足条件. …………………………………………………(8分) (若根据点,,A B C 能构成三角形,必须任意两边长的和大于第三边的长,即由ABBC CA +>去解答,相应给分)∴3(2)(1)0m m -+-=, 解得74m =. …………………………………………………………………(13分) 19.解:设(,)OP x y =.∵点P 在直线OM 上,∴OP 与OM 共线,而OM(2,1)=,∴20x y -=,即2x y =,有(2,)OP y y =. ………………………………(2分)∵(12,7)PA OA OP y y =-=-- ,(52,1)PB OB OP y y =-=--,……(4分)∴(12)(52)(7)(1)PA PB y y y y =--+-- ,即252012PA PB y y =-+ . …………………………………………………(6分) 又8PA PB =- , ∴2520128y y -+=-,所以2y =,4x =,此时(4,2)OP =. ……………………………………(8分) (3,5),(1,1)PA PB =-=-.于是8PA PB PA PB ===-. …………………………………(10分)∴cos PA PB APB PA PB ∠===⋅. ………………………(13分) 20.解:(1)33cos cos sin sin cos 22222x x x xa b x =-=, ……………………(3分)a b += ………………………(4分)=2cos x == …………………………………………(7分) ∵[,]2x ππ∈, ∴cos 0x <.∴2cos a b x +=-. …………………………………………………………(9分) (2)2()cos 22cos 2cos 2cos 1f x a b a b x x x x =++=-=--2132(cos )22x =-- …………………………………………………(11分) ∵[,]2x ππ∈, ∴1cos 0x -≤≤, ……………………………………(13分)∴当cos 1x =-,即x π=时max ()3f x =. ………………………………(15分)。

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。

一、选择题:(共12小题,每小题5分,共60分。

)1.sin300°的值为A。

-31 B。

3 C。

22 D。

1/22.角α的终边过点P(4,-3),则cosα的值为A。

4 B。

-3 C。

2/5 D。

-4/53.cos25°cos35°-sin25°sin35°的值等于A。

3/11 B。

3/4 C。

2/11 D。

-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。

AB+BC=AC B。

AB-AC=BCC。

AB-BC=BC D。

AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。

[0,π] B。

[π,2π] C。

[-π/2,π/2] D。

[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。

4/3 B。

-3/5 C。

-5/3 D。

-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。

y=sin(2x+π/3) B。

y=sin(2x+2π/3)C。

y=sin(2x-π/3) D。

y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。

1个 B。

2个 C。

3个 D。

4个9.下列命题中,正确的是A。

|a|=|b|→a=b B。

|a|>|b|→a>bC。

|a|=0→a=0 D。

a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。

高一必修四数学正切函数练习

高一必修四数学正切函数练习

§1.4.3正切函数的性质和图象班级 姓名 学号 得分一、选择题 1.函数y =tan (2x +6π)的周期是 ( ) (A) π (B)2π (C)2π (D)4π 4、函数⎪⎭⎫ ⎝⎛+=42tan πx y 的周期是 A .πB .π2C .2πD .4π3.在下列函数中,同时满足(1)在(0,2π)上递增;(2)以2π为周期;(3)是奇函数的是 ( ) (A) y =|tanx | (B) y =cos x (C) y =tan 21x (D) y =-tanx4.函数y =lgtan2x的定义域是 ( ) (A){x |k π<x <k π+4π,k ∈Z} (B) {x |4k π<x <4k π+2π,k ∈Z} (C) {x |2k π<x <2k π+π,k ∈Z} (D)第一、三象限 5.已知函数y =tan ωx 在(-2π,2π)内是单调减函数,则ω的取值范围是 ( ) (A)0<ω≤ 1 (B) -1≤ω<0 (C) ω≥1 (D) ω≤ -1*6.如果α、β∈(2π,π)且tan α<tan β,那么必有 ( ) (A) α<β (B) α>β (C) α+β>32π (D) α+β<32π 1、tan (,)2y x x k k Z ππ=≠+∈在定义域上的单调性为( ).A .在整个定义域上为增函数B .在整个定义域上为减函数C .在每一个开区间(,)()22k k k Z ππππ-++∈上为增函数 D .在每一个开区间(2,2)()22k k k Z ππππ-++∈上为增函数2、下列各式正确的是( ).A .1317tan()tan()45ππ-<-B .1317tan()tan()45ππ->- C .1317tan()tan()45ππ-=- D .大小关系不确定 3、若tan 0x ≤,则( ).A .22,2k x k k Z πππ-<<∈ B .2(21),2k x k k Z πππ+≤<+∈21世纪教育网C .,2k x k k Z πππ-<≤∈ D .,2k x k k Zπππ-≤≤∈5、函数sin tan y x x =+的定义域为( ).A .|22,2x k x k k ππππ⎧⎫≤<+∈⎨⎬⎩⎭ B . |22,2x k x k k ππππ⎧⎫<≤+∈⎨⎬⎩⎭{}C.|22,|2,2x k x k k x x k k Z ππππππ⎧⎫≤<+∈⋃=+∈⎨⎬⎩⎭D .|222x k x k πππ⎧≤<+⎨⎩且}2,x k k Zππ≠+∈6、直线y a =(a为常数)与正切曲线tan (y x ωω=为常数,且0)ω>相交的两相邻点间的距离为( ). A .π B .2πωC .πωD .与a 值有关二.填空题 7.函数y =2tan(3π-2x)的定义域是 ,周期是 ;8.函数y =tan 2x -2tan x +3的最小值是 ;9.函数y =tan(2x +3π)的递增区间是 ;3、函数⎪⎭⎫ ⎝⎛+=3tan πx y 的单调区间是_________________6.函数y=tan(2x+π4)的单调递增区间是__________.15.求函数y =3tan (6π-4x)的周期和单调区间. 7、函数tan()4y x π=-的定义域是_____________8、函数tan()(0)6y ax a π=+≠的周期为_______三. 解答题11.不通过求值,比较下列各式的大小 (1)tan(-5π)与tan(-37π) (2)tan(78π)与tan (16π)12.求函数y =tan 1tan 1x x +-的值域.*14.已知α、β∈(2π,π),且tan(π+α)<tan(52π-β),求证: α+β<32π. 2、函数⎥⎦⎤⎝⎛-∈=4,3,tan ππx x y 的值域是A .(]1,∞- B .(]1,3-C .()+∞∞-,D .()+∞-,35、要得到函数x y 2tan =的图象,只须把⎪⎭⎫ ⎝⎛+=32tan πx y 的图象A .左移3π个单位 B .右移3π个单位 C .左移6π个单位 D .右移6π个单位6、观察正切曲线,满足条件1tan <x 的x 的取值范围是(其中k ∈Z) ( )A .(2k π-4π,2k π+4π)B .(k π,k π+4π) C .(k π4π-,k π+4π)D .(k π+4π,k π+43π)二、填空题 1、函数xy tan 11-=的定义域是 2、函数x y tan =图象的对称中心是5、观察正切曲线,满足条件3tan >x 的x 的取值范围是6、4tan ,3tan ,2tan ,1tan 由小到大排列为1、 求函数()()3tan 13tan 2-++-=x x x f 的定义域.2、 已知()1tan sin ++=x b x a x f ,75=⎪⎭⎫ ⎝⎛πf ,求⎪⎭⎫⎝⎛599πf 的值.4.若sin α>tan α>cot α(-π2 <x<π2 ),则α的取值范围是( )A.(- π2 ,π4 )B. (-π4 ,0)C.(0, π4 )D.( π4 ,π2 )7.函数 y=sinx 与 y=tanx 的图象在区间[0,2π]上交点的个数是________.9.函数y=lg tanx+1tanx-1 的奇偶性是__________.10.函数的y=|tan(2x-π3 )|周期是___________.13. 求函数y =)6πtan(1tan +-x x 的定义域 14. 求下列函数的值域:(1)y =2cos 2x +2cos x -1; (2)y =1cos 21cos 2-+x x .9、下列函数不等式中正确的是( ).A .43tan tan 77ππ>B .23tan tan 55ππ<[来源:21世纪教育网] C . 1315tan()tan()78ππ-<- D .1312tan()tan()45ππ-<- 一、选择题1、下列不等式中,正确的是( )A . tan74π>tan73π B . tan(-413π)>tan(-512π)C . tan 4<tan3D . tan281°>tan665° 2、下列命题中正确的是( )A .x y tan =在第一象限单调递增.B . 在x y tan =中,x 越大,y 也越大C . 当x >0时,x tan >0.D . x y tan =的图象关于原点对称3、若βαππβα22tan tan ),23,(,>∈且,则 ( )A .α<βB .α>βC .α+β>3πD .α+β<2π4、直线y = a (a 为常数)与y = tan ωx (ω>0)的相邻两支的交点距离为 ( )A .πB .ωπ C .ωπ2 D .与a 有关的值5、在下列函数中,同时满足的是( )①在(0,2π)上递增 ②以2π为周期 ③是奇函数 A .y =tan x B .y =cos x C .y =tan 21x D .y =-tan x6、在区间(-π23,π23)内,函数x y tan =与函数x y sin =图象交点的个数为( )A .1B .2C .3D .5二、填空题1、使函数y=tanx 和y=sinx 同时为单调递增函数的区间是.2、函数y=3tan(21x 4π-)的定义域是 ,值域是 .3、函数y=3tan(2x +3π)的对称中心的坐标是 .4、函数⎪⎭⎫ ⎝⎛+=42tan πx y 的图象被平行直线 隔开,图象与x 轴交点的横坐标是 ,与y 轴交点的纵坐标是 ,函数的周期是 ,定义域是 ,值域是,它的奇偶性是 . 5、比较大小: (1)︒222tan︒223tan ; (2)31)44(tan ︒ 21)44(tan ︒。

(word完整版)高一数学必修四第一章测试题

(word完整版)高一数学必修四第一章测试题

宣威市第九中学第一次月考高一数学试卷本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一.选择题(每小题5分,共60分) 1.与32︒-角终边相同的角为( )A .36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C .360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π3.点A(x,y)是300°角终边上异于原点的一点,则yx值为( ) A.3 B. - 3 C. 33 D. -334.下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =-5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛-=3sin πx y 的图象 ( )A. 向左平移3π B. 向右平移3π C. 向左平移32π D. 向右平移32π6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],内α的取值范围是( ) A.π3π5ππ244⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, B.ππ5ππ424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, C.π3π53ππ2442⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,, D.ππ3ππ424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,,7. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π8. 函数)32sin(π-=x y 的单调递增区间是( )A .5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ B .52,21212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ C .5,66k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈ D .52,266k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈9.已知函数sin()(0,)2y x πωϕωϕ=+><的部分图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+C .sin(4)2y x π=+ D .sin(4)4y x π=+ 10.在函数22sin ,sin ,sin(2),cos()323x y x y x y x y ππ===+=+中,最小正周期为π的函数的个数是( )A. 1个B. 2个C. 3个D.4个11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )B. 1C. 0D.12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分)13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=14. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为15.求使sin α>成立的α的取值范围是 16 关于函数f(x)=4sin ⎪⎭⎫⎝⎛+3π2x (x ∈R),有下列论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π6); ②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3π个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13、 14、 15、 16、三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)(1) ;(2)已知=αsin 21-,且α是第四象限角,求αcos 、αtan 的值.18.(本小题满分12分)已知51cos sin =+θθ,其中θ是ABC ∆的一个内角. (1)求θθcos sin 的值;(2)判断ABC ∆是锐角三角形还是钝角三角形; (3)求θθcos sin -的值.19.(本小题满分12分)已知tan 1tan 1αα=--,求(1)21sin sin cos ααα+的值;(2)设222sin ()sin (2)sin()322()cos ()2cos()f πθθθθθθπ++π-+--=π+--,求()3f π的值.20.(本小题满分12分)已知函数()2sin sin f x x x =+,02x π≤≤. 若方程m x f =)(有两个不同的实数根,求实数m 的取值范围.21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)若]2,0[x π∈时,f(x)的最小值为-2,求a 的值.22.(本小题满分12分)函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的一段图象如图所示,根据图象求:(1))(x f 的解析式;(2)函数)(x f 的图象可以由函数sin ()y x x R =∈ 的图象经过怎样的变换得到?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修四测试卷
一、选择题(本大题共12小题,每小题3分,共36分)
1、已知sin()0,cos()0πθπθ+<-<,则角θ所在的象限是 ( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
2、cos ,[,]62
y x x ππ
=∈-
的值域是 ( )
A 、[0,1]
B 、[1,1]- C
、 D 、1[,0]2
-
3、在ABC 的内角A ,B ,C 的对边分别是a ,b ,c ;若a ,b ,c 成等比数列,且c =2a ,则cos B =( )
A 、
1
4
B 、
3
4
C
、4
D

3
4、“1
2
a =
”是“函数22cos 2sin 2y ax ax =-的最小正周期委π”的 ( ) A 、充分不必要条件
B 、必要不充分条件
C 、充要条件
D 、既不充分也不必要条件
5、若角θ的终边过点P (4,3)(0)a a a -≠,则sin cos θθ+等于 ( ) A 、15- B 、15 C 、1
5
± D 、不能确定,与a 的值有关 6、函数()sin()6
f x x π
=+在(0,2)π上的图象与x 轴的交点的横坐标为 ( )
A 、1166
π
π
-

B 、566ππ或
C 、51166ππ或
D 、766ππ或 7、下列判断正确的是 ( )
A 、若向量A
B CD 与是共线向量,则A,B,C,D 四点共线
B 、单位向量都相等
C 、共线的向量,若起点不同,则终点一定不同
D 、模为0是一个向量方向不确定的充要条件
8、如图,在菱形ABCD 中,下列式子成立的是 ( ) A 、AB CD = B 、AB BC = C 、AD CB = D 、AD BC =
9、设s ,t 是非零实数,,i j 是单位向量,当两向量,s i t j t i s j +-的模相等时,,i j 的夹角是( ) A 、
6
π B 、
4π C 、3π D 、2
π 10、点P 在平面上作匀速直线运动,速度向量(4,3)v =- (即点P 的运动方向与v 相同,且每秒移动的距离为||v 各单位)。

设开始时点P 的坐标为(-10,10),求5秒后点P 的坐标为 ( ) A 、(2,4)-
B 、(30,25)-
C 、(10,5)-
D 、(5,10)-
11、如图,平面内的两条相交直线1OP 和2OP 将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界)
,若12OP aOP bOP =+,且点P 落在第Ⅲ部分,则实数a ,b 满足 ( )
A 、a>0 ,b>0
B 、a>0 ,b<0
C 、a<0 ,b>0
D 、a<0 ,b<0
12、把函数cos 2y x =的图象按向量a 平移,得到函数sin 2y x =的图象,则a 可以是:
( )
A 、(
,0)2
a π
= B 、(,0)2a π
=-
C 、(,0)4a π=
D 、(,0)4
a π
=- 二、填空题(本题共4小题,每小题4分,共16分) 13
、函数sin y x x =+在区间[0,
]2
π
上的最小值为_______________;
14、设向量a b 与的夹角为θ,且(3,3),2(1,1)a b a =-=-
θ= ; 15
、在,3,,30ABC a b c a A ==≠=中,则角C =_______度;
16、在锐角,cos()sin()ABC A B A B +=-中,则tan A = ______________. 三、解答题(本大题共4小题,共48分.解答应写出文字说明,证明过程或演算步骤)
17、(本题满分14分,Ⅰ,Ⅱ小题各7分) (Ⅰ)已知2sin(3)cos()πθπθ+=+,求2
22sin 3sin cos cos θθθθ+-的值
(Ⅱ)、对于函数|sin |()y x x R =∈,完成以下问题: (1)在下面的坐标系中画出它的图象并观察其周期; (2)它是奇函数?还是偶函数?为什么? (3)写出它的单调递减区间。

y
1
x
-1
18、(本题满分14分,Ⅰ,Ⅱ小题各7分)
(Ⅰ)在,||2,60ABC AB BAC =∠=中,G 是ABC 的重心,求GB GC .
(Ⅱ)、已知向量33(cos ,sin ),(cos ,sin ),||1,[0,]2222
x x x x
a b a b x π==-+=∈,求x 。

19、(本题满分10分)
已知函数()2sin()2sin ,3f x x x π=+
- ,0.2x π⎡⎤∈-⎢⎥⎣⎦
(Ⅰ)若cos x =
求函数()f x 的值; (Ⅱ)求函数()f x 的值域。

20、(本题满分10分).
如图,已知OPQ 是半径为1,园心角为

的扇形,C 是扇形弧上的动点,ABCD 是扇形的内结矩形,记COP α∠=,求当角α取何值时, 矩形ABCD 的面积最大?并求出这个最大值.。

相关文档
最新文档