中考几何动点压轴题及答案,最新中考最值综合题全方位解析

合集下载

动点与最值题 中考数学重难点专题 全国通用版 含答案(原卷+解析版)

动点与最值题 中考数学重难点专题 全国通用版 含答案(原卷+解析版)

OA BC 2 3 ;②当点 D 运动到 OA 的中点处时, PC 2 PD2 7 ;③在运动过程中, CDP 是一个
-1-
定值;④当△ODP
为等腰三角形时,点
D
的坐标为
2
3 3
,
0
.其中正确结论的个数是(

A.1 个
B.2 个
C.3 个
D.4 个
5.如图,在 Rt
ABO
中, OBA
于点 Q,D 为线段 PQ 的中点,当 BD 平分 ABC 时,AP 的长度为( )
8
A.
13
15
B.
13
25
C.
13
32
D.
13
3.如图是函数 y x2 2x 3(0 x 4) 的图象,直线 l / / x 轴且过点 (0, m) ,将该函数在直线 l 上方的图
象沿直线 l 向下翻折,在直线 1 下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最
-8-
25.如图,在正方形 ABCD 中,点 E 是 AB 边上的一点,以 DE 为边作正方形 DEFG,DF 与 BC 交于点 M, 延长 EM 交 GF 于点 H,EF 与 GB 交于点 N,连接 CG. (1)求证:CD⊥CG;
1 MN
(2)若 tan∠MEN= ,求 的值;
3 EM 1
(3)已知正方形 ABCD 的边长为 1,点 E 在运动过程中,EM 的长能否为 ?请说明理由.
-5-
19.如图, ABC 是⊙O 的内接三角形,且 AB 是⊙O 的直径,点 P 为⊙O 上的动点,且 BPC 60 ,
⊙O 的半径为 6,则点 P 到 AC 距离的最大值是___.

几何难题中考压轴题带含及详细解析

几何难题中考压轴题带含及详细解析

几何难题精选解答题〔共 30 小题〕1 .〔2021 ?河南〕如图 1,在 Rt △ABC 中,∠B=90 °,BC=2AB=8 ,点 D、E 分别是边 BC、AC 的中点,连接DE,将△EDC 绕点 C 按顺时针方向旋转,记旋转角为α.〔1〕问题发现①当α=0 °时, = ;②当α=180 °时, = .〔2〕拓展研究试判断:当 0°≤α<360 °时,的大小有无变化?请仅就图 2 的状况给出证明.〔3〕问题解决当△EDC 旋转至 A,D,E 三点共线时,直接写出线段 BD 的长.2.〔2021 ?济南〕如图 1 ,在△ABC 中,∠ACB=90 °,AC=BC ,∠EAC=90 °,点M 为射线 AE 上任意一点〔不与 A 重合〕,连接 CM ,将线段 CM 绕点 C 按顺时针方向旋转 90 °获取线段CN ,直线 NB 分别交直线 CM 、射线 AE 于点 F、D.〔1〕直接写出∠ NDE 的度数;〔2〕如图 2、图 3,当∠EAC 为锐角或钝角时,其他条件不变,〔 1〕中的结论可否发生变化?若是不变,采用其中一种状况加以证明;若是变化,请说明原由;〔3〕如图 4,假设∠EAC=15 °,∠ACM=60 °,直线CM 与 AB 交于 G,BD= ,其他条件不变,求线段 AM的长.3 .〔2021 ?岳阳〕直线 m ∥n ,点 C 是直线 m 上一点,点 D 是直线 n 上一点, CD 与直线 m 、n 不垂直,点 P 为线段 CD 的中点.〔1〕操作发现:直线 l ⊥m ,l⊥n,垂足分别为 A、B,当点 A 与点 C 重合时〔如图①所示〕,连接 PB,请直接写出线段 PA 与 PB 的数量关系:.〔2〕猜想证明:在图①的状况下,把直线 l 向上平移到如图②的地址,试问〔 1〕中的 PA 与 PB 的关系式可否依旧成立?假设成立,请证明;假设不成立,请说明原由.〔3〕延伸研究:在图②的状况下,把直线 l 绕点 A 旋转,使得∠ APB=90 °〔如图③所示〕,假设两平行线 m 、n 之间的距离为 2k .求证: PA ?PB=k ?AB.4 .〔2021 ?重庆〕在△ABC 中,AB=AC ,∠A=60 °,点D 是线段 BC 的中点,∠EDF=120 °,DE 与线段 AB 相交于点 E.DF 与线段 AC 〔或 AC 的延伸线〕订交于点 F.〔1〕如图 1,假设 DF⊥AC,垂足为 F,AB=4 ,求 BE 的长;〔2〕如图 2,将〔1 〕中的∠EDF 绕点 D 顺时针旋转必然的角度, DF 仍与线段 AC 订交于点 F.求证:BE+CF= AB;〔3〕如图 3,将〔 2〕中的∠EDF 连续绕点 D 顺时针旋转必然的角度,使 DF 与线段 AC 的延伸线订交于点 F,作 DN ⊥AC 于点 N ,假设 DN ⊥AC 于点 N ,假设 DN=FN ,求证: BE+CF= 〔BE﹣CF〕.5 .〔2021 ?烟台〕【问题提出】如图①,△ ABC 是等腰三角形,点 E 在线段 AB 上,点 D 在直线 BC 上,且 ED=EC ,将△BCE 绕点 C 顺时针旋转 60°至△ACF 连接 EF试证明: AB=DB+AF【类比研究】〔1〕如图②,若是点 E 在线段 AB 的延伸线上,其他条件不变,线段 AB ,DB,AF 之间又有怎样的数量关系?请说明原由〔2〕若是点 E 在线段 BA 的延伸线上,其他条件不变,请在图③的基础大将图形补充完满,并写出 AB ,DB ,AF 之间的数量关系,不用说明原由.6 .〔2021 ?莆田〕在 Rt△ACB 和 Rt △AEF 中,∠ACB= ∠AEF=90 °,假设点P 是 BF 的中点,连接 PC,PE.特别发现:如图 1,假设点 E,F 分别落在边 AB,AC 上,那么结论: PC=PE 成立〔不要求证明〕.问题研究:把图 1 中的△AEF 绕着点 A 顺时针旋转.〔1〕如图 2,假设点 E 落在边 CA 的延伸线上,那么上述结论可否成立?假设成立,请恩赐证明;假设不成立,请说明原由;〔2〕如图 3,假设点 F 落在边 AB 上,那么上述结论可否依旧成立?假设成立,请恩赐证明;假设不成立,请说明原由;〔3〕记 =k ,当 k 为何值时,△ CPE 总是等边三角形?〔请直接写出 k 的值,不用说明原由〕7 .〔2021 ?襄城区模拟〕如图,正方形 ABCO 的边 OA 、OC 在坐标轴上,点 B 坐标为〔3,3〕.将正方形 ABCO绕点 A 顺时针旋转角度α〔 0°<α<90 °〕,获取正方形 ADEF ,ED 交线段 OC 于点 G,ED 的延伸线交线段 BC于点 P,连 AP 、AG .〔1〕求证:△AOG ≌△ADG ;〔2〕求∠PAG 的度数;并判断线段 OG 、PG、BP 之间的数量关系,说明原由;〔3〕当∠1= ∠2 时,求直线 PE 的解析式;〔4〕在〔3〕的条件下,直线 PE 上可否存在点 M ,使以 M 、A、G 为极点的三角形是等腰三角形?假设存在,请直接写出 M 点坐标;假设不存在,请说明原由.8 .〔2021 ?重庆校级一模〕,四边形 ABCD 是正方形,点 P 在直线 BC 上,点 G 在直线 AD 上〔P、G 不与正方形极点重合,且在 CD 的同侧〕, PD=PG ,DF⊥PG 于点 H,DF 交直线 AB 于点 F,将线段 PG 绕点 P逆时针旋转 90 °获取线段P E,连接 EF.〔1〕如图 1,当点 P 与点 G 分别在线段 BC 与线段 AD 上时,假设 PC=1 ,计算出 DG 的长;〔2〕如图 1,当点 P 与点 G 分别在线段 BC 与线段 AD 上时,证明:四边形 DFEP 为菱形;〔3〕如图 2,当点 P 与点 G 分别在线段 BC 与线段 AD 的延伸线上时,〔2〕的结论:四边形 DFEP 为菱形可否依旧成立?假设成立,请给出证明;假设不成立,请说明原由.9 .〔2021 ?房山区二模〕在△ ABC 中,AB=BC=2 ,∠ABC=90 °,BD 为斜边 AC 上的中线,将△ ABD 绕点 D 顺时针旋转α〔0°<α<180 °〕获取△EFD,其中点 A 的对应点为点 E,点 B 的对应点为点 F.BE 与 FC 订交于点 H.〔1〕如图 1,直接写出 BE 与 FC 的数量关系:;〔2〕如图 2,M 、N 分别为 EF、BC 的中点.求证: MN= ;〔3〕连接 BF,CE,如图 3,直接写出在此旋转过程中,线段 BF、CE 与 AC 之间的数量关系:.10 .〔2021 ?衢州校级模拟〕图 1 是边长分别为 4 和 2 的两个等边三角形纸片 ABC 和 ODE 叠放在一起〔 C与 O 重合〕.〔1〕操作:固定△ ABC ,将△0DE 绕点 C 顺时针旋转 30 °后获取△ODE ,连接 AD 、B E,CE 的延伸线交 AB 于 F 〔图 2〕;研究:在图 2 中,线段 BE 与 AD 之间有怎样的大小关系?试证明你的结论.〔2〕在〔 1〕的条件下将的△ ODE ,在线段 CF 上沿着 CF 方向以每秒 1 个单位的速度平移,平移后的△ CDE 设为△PQR,当点 P 与点 F 重合时停止运动〔图 3〕研究:设△PQR 搬动的时间为 x 秒,△PQR 与△ABC 重叠局部的面积为 y,求 y 与 x 之间的函数解析式,并写出函数自变量 x 的取值范围.〔3〕将图 1 中△0DE 固定,把△ABC 沿着 OE 方向平移,使极点 C 落在 OE 的中点 G 处,设为△ABG ,尔后将△ABG 绕点 G 顺时针旋转,边 BG 交边 DE 于点 M ,边 AG 交边 DO 于点 N ,设∠BGE= α〔30 °<α<90 °〕;〔图4 〕研究:在图 4 中,线段 ON ?EM 的值可否随α的变化而变化?若是没有变化,请你求出 ON ?EM 的值,若是有变化,请你说明原由.11 .〔2021 ?武义县模拟〕〔 1 〕将矩形 OABC 放在平面直角坐标系中,极点 O 为原点,极点 C、A 分别在 x轴和 y 轴上, OA=8 ,OC=10 ,点 E 为 OA 边上一点,连接 CE,将△EOC 沿 CE 折叠.①如图 1,当点 O 落在 AB 边上的点 D 处时,求点 E 的坐标;②如图 2,当点 O 落在矩形 OABC 内部的点 D 处时,过点 E 作 EG∥x 轴交 CD 于点 H,交 BC 于点 G,设 H〔m ,n 〕,求 m 与 n 之间的关系式;〔2〕如图 3,将矩形 OABC 变为边长为 10 的正方形,点 E 为 y 轴上一动点,将△ EOC 沿 CE 折叠.点 O 落在点 D 处,延伸 CD 交直线 AB 于点 T,假设 = ,求 AT 的长.12 .〔2021 ?石家庄校级模拟〕如图 1,在菱形 ABCD 中,AC=6 ,BD=6 ,AC,BD 订交于点 O .〔1〕求边 AB 的长;〔2〕如图 2,将一个足够大的直角三角板 60 °角的极点放在菱形 ABCD 的极点 A 处,绕点 A 左右旋转,其中三角板 60 °角的两边分别于边 BC,CD 订交于 E,F,连接 EF 与 AC 订交于点 G.①判断△AEF 是哪一种特别三角形,并说明原由;②旋转过程中可否存在线段 EF 最短,假设存在,求出最小值,假设不存在,请说明原由.13 .〔2021 春 ?泰安校级期中〕如图,正方形 OEFG 绕着边长为 30 的正方形 ABCD 的对角线的交点 O 旋转,边 OE、OG 分别交边 AD 、AB 于点 M 、N .〔1〕求证: OM=ON ;〔2〕设正方形 OEFG 的对角线 OF 与边 AB 订交于点 P,连接 PM .假设 PM=13 ,试求 AM 的长;〔3〕连接 MN ,求△AMN 周长的最小值,并指出此时线段 MN 与线段 BD 的关系.14 .〔2021 ?天津〕在平面直角坐标系中, O 为原点,点 A〔﹣2 ,0〕,点 B〔0,2〕,点 E,点 F 分别为 OA ,OB 的中点.假设正方形 OEDF 绕点 O 顺时针旋转,得正方形 OE ′D′F′,记旋转角为α.〔Ⅰ〕如图①,当α =90 °时,求AE′,BF′的长;〔Ⅱ〕如图②,当α =135 °时,求证AE′=BF ′,且AE′⊥BF′;〔Ⅲ〕假设直线 AE′与直线BF′订交于点P,求点 P 的纵坐标的最大值〔直接写出结果即可〕.15 .〔2021 春 ?青山区期末〕正方形 ABCD 和正方形 EBGF 共极点 B,连 AF,H 为 AF 的中点,连 EH,正方形 EBGF 绕点 B 旋转.〔1〕如图 1,当 F 点落在 BC 上时,求证: EH= FC;〔2〕如图 2,当点 E 落在 BC 上时,连 BH ,假设 AB=5 ,BG=2 ,求 BH 的长;〔3〕当正方形 EBGF 绕点 B 旋转到如图 3 的地址时,求的值.16 .〔2021 ?盐城〕阅读资料如图①,△ABC 与△DEF 都是等腰直角三角形,∠ACB= ∠EDF=90 °,且点 D 在 AB 边上,AB、EF的中点均为 O ,连接 BF、CD 、CO ,显然点 C、F、O 在同一条直线上,可以证明△ BOF≌△COD ,那么 BF=CD .解决问题〔1〕将图①中的 Rt△DEF 绕点 O 旋转获取图②,猜想此时线段 BF 与 CD 的数量关系,并证明你的结论;〔2〕如图③,假设△ ABC 与△DEF 都是等边三角形, AB 、EF 的中点均为 O ,上述〔 1 〕中的结论依旧成立吗?如果成立,请说明原由;如不成立,央求出 BF 与 CD 之间的数量关系;〔3〕如图④,假设△ABC 与△DEF 都是等腰三角形, AB 、EF 的中点均为 0,且顶角∠ACB= ∠EDF= α,请直接写出的值〔用含α的式子表示出来〕17 .〔2021 ?梅州〕用如图①,②所示的两个直角三角形〔局部边长及角的度数在图中已标出〕,完成以下两个研究问题:研究一:将以上两个三角形如图③拼接〔 BC 和 ED 重合〕,在 BC 边上有一动点 P.〔1〕当点 P 运动到∠CFB 的角均分线上时,连接 AP,求线段 AP 的长;〔2〕当点 P 在运动的过程中出现 PA=FC 时,求∠PAB 的度数.研究二:如图④,将△ DEF 的极点 D 放在△ABC 的 BC 边上的中点处,并以点 D 为旋转中心旋转△ DEF,使△DEF 的两直角边与△ ABC 的两直角边分别交于 M 、N 两点,连接 MN .在旋转△DEF 的过程中,△ AMN 的周长可否存在有最小值?假设存在,求出它的最小值;假设不存在,请说明原由.18 .〔2021 ?营口〕如图,点 P 是⊙O 外一点, PA 切⊙O 于点 A,AB 是⊙O 的直径,连接 OP ,过点 B 作 BC∥OP 交⊙O 于点 C,连接 AC 交 OP 于点 D .〔1〕求证: PC 是⊙ O 的切线;〔2〕假设 PD= ,AC=8 ,求图中阴影局部的面积;〔3〕在〔 2〕的条件下,假设点 E是的中点,连接 CE,求 CE 的长.19 .〔2021 ?永州〕问题研究:〔一〕新知学习:圆内接四边形的判判断理:若是四边形对角互补,那么这个四边形内接于圆〔即若是四边形 EFGH 的对角互补,那么四边形 EFGH 的四个极点 E、F、G、H 都在同个圆上〕.〔二〕问题解决:⊙ O 的半径为 2,AB ,CD 是⊙O 的直径. P 是上任意一点,过点 P 分别作 AB,CD 的垂线,垂足分别为 N,M .〔1〕假设直径 AB⊥CD,关于上任意一点 P〔不与 B、C 重合〕〔如图一〕,证明四边形 PMON 内接于圆,并求此圆直径的长;〔2〕假设直径 AB⊥CD ,在点 P〔不与 B、C 重合〕从 B 运动到 C 的过程中,证明 MN 的长为定值,并求其定值;〔3〕假设直径 AB 与 CD 订交成 120 °角.①当点 P 运动到的中点 P1 时〔如图二〕,求 MN 的长;②当点 P〔不与 B、C 重合〕从 B 运动到 C 的过程中〔如图三〕,证明 MN 的长为定值.〔4〕试问当直径 AB 与 CD 订交成多少度角时, MN 的长取最大值,并写出其最大值.20 .〔2021 ?盘锦〕如图 1,△ABC 和△AED 都是等腰直角三角形,∠ BAC= ∠EAD=90 °,点B 在线段 AE 上,点C 在线段 AD 上.〔1〕请直接写出线段 BE 与线段 CD 的关系:;〔2〕如图 2,将图 1 中的△ABC 绕点 A 顺时针旋转角α〔 0<α<360 °〕,①〔1〕中的结论可否成立?假设成立,请利用图 2 证明;假设不成立,请说明原由;②当 AC= ED 时,研究在△ABC 旋转的过程中,可否存在这样的角α,使以 A、B、C、D 四点为极点的四边形是平行四边形?假设存在,请直接写出角α的度数;假设不存在,请说明原由.21 .〔2021 ?旭日〕问题:如图〔 1〕,在 Rt△ACB 中,∠ACB=90 °,AC=CB ,∠DCE=45 °,试试究AD 、DE、EB 满足的等量关系.[研究发现 ]小聪同学利用图形变换,将△ CAD 绕点 C 逆时针旋转 90°获取△CBH,连接 EH,由条件易得∠ EBH=90 °,∠ECH= ∠ECB+ ∠BCH= ∠ECB+ ∠ACD=45 °.依照“边角边〞,可证△ CEH ≌,得 EH=ED .在 Rt△HBE 中,由定理,可得 BH 2+EB 2=EH 2,由 BH=AD ,可得 AD 、DE、EB 之间的等量关系是.[实践运用 ]〔1〕如图〔 2 〕,在正方形 ABCD 中,△AEF 的极点 E、F 分别在 BC、CD 边上,高 AG 与正方形的边长相等,求∠EAF 的度数;〔2〕在〔 1〕条件下,连接 BD ,分别交 AE、AF 于点 M 、N ,假设 BE=2 ,DF=3 ,BM=2 ,运用小聪同学探究的结论,求正方形的边长及 MN 的长.22 .〔2021 ?自贡〕在△ABC 中,AB=AC=5 ,cos ∠ABC= ,将△ABC 绕点 C 顺时针旋转,获取△ A1B1C.〔1〕如图①,当点 B1 在线段 BA 延伸线上时.①求证: BB1∥CA 1;②求△AB1C 的面积;〔2〕如图②,点 E 是 BC 边的中点,点 F 为线段 AB 上的动点,在△ ABC 绕点 C 顺时针旋转过程中,点 F 的对应点是 F1,求线段 EF1 长度的最大值与最小值的差.23 .〔2021 ?吉林〕两个三角板 ABC,DEF,按以以下图的地址摆放,点 B 与点 D 重合,边 AB 与边 DE 在同一条直线上〔假设图形中所有的点,线都在同一平面内〕.其中,∠C= ∠DEF=90 °,∠ABC= ∠F=30 °,AC=DE=6cm .现固定三角板 DEF,将三角板 ABC 沿射线 DE 方向平移,当点 C 落在边 EF 上时停止运动.设三角板平移的距离为 x〔cm 〕,两个三角板重叠局部的面积为 y〔cm 2〕.〔1〕当点 C 落在边 EF 上时, x= cm ;〔2〕求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围;〔3〕设边 BC 的中点为点 M ,边 DF 的中点为点 N .直接写出在三角板平移过程中,点 M 与点 N 之间距离的最小值.24 .〔2021 ?汕尾〕在 Rt△ABC 中,∠A=90 °,AC=AB=4 ,D,E 分别是边 AB ,AC 的中点,假设等腰 Rt△ADE绕点 A 逆时针旋转,获取等腰 Rt△AD 1E1,设旋转角为α〔 0<α≤180 °〕,记直线 BD1 与 CE1 的交点为 P.〔1〕如图 1,当α=90 °时,线段BD 1 的长等于,线段 CE1 的长等于;〔直接填写结果〕〔2〕如图 2,当α=135 °时,求证:BD 1=CE 1,且 BD1⊥CE1;〔3〕求点 P 到 AB 所在直线的距离的最大值.〔直接写出结果〕25 .〔2021 ?赤峰〕如图,四边形 ABCD 是边长为 2,一个锐角等于 60°的菱形纸片,小芳同学将一个三角形纸片的一个极点与该菱形极点 D 重合,按顺时针方向旋转三角形纸片,使它的两边分别交 CB、BA〔或它们的延长线〕于点 E、F,∠EDF=60 °,当CE=AF 时,如图 1 小芳同学得出的结论是 DE=DF .〔1〕连续旋转三角形纸片,当 CE≠AF 时,如图 2 小芳的结论可否成立?假设成立,加以证明;假设不成立,请说明原由;〔2〕再次旋转三角形纸片,当点 E、F 分别在 CB、BA 的延伸线上时,如图 3 请直接写出 DE 与 DF 的数量关系;〔3〕连 EF,假设△DEF 的面积为 y ,CE=x ,求 y 与 x 的关系式,并指出当 x 为何值时, y 有最小值,最小值是多少?26 .〔2021 ?海南〕如图,菱形 ABCD 中,点 P 是 CD 的中点,∠BCD=60 °,射线AP 交 BC 的延伸线于点 E,射线 BP 交 DE 于点 K,点 O 是线段 BK 的中点.〔1〕求证:△ADP ≌△ECP;〔2〕假设 BP=n ?PK,试求出 n 的值;〔3〕作 BM 丄 AE 于点 M ,作 KN 丄 AE 于点 N,连接 MO 、NO ,如图 2 所示,请证明△MON 是等腰三角形,并直接写出∠ MON 的度数.27 .〔2021 ?丹东〕在正方形 ABCD 中,对角线 AC 与 BD 交于点 O;在 Rt△PMN 中,∠MPN=90 °.〔1〕如图 1,假设点 P 与点 O 重合且 PM ⊥AD 、PN ⊥AB ,分别交 AD 、AB 于点 E、F,请直接写出 PE 与 PF 的数量关系;〔2〕将图 1 中的 Rt△PMN 绕点 O 顺时针旋转角度α〔 0 °<α<45 °〕.①如图 2,在旋转过程中〔 1〕中的结论依旧成立吗?假设成立,请证明;假设不成立,请说明原由;②如图 2,在旋转过程中,当∠ DOM=15 °时,连接EF,假设正方形的边长为 2,请直接写出线段 EF 的长;③如图 3,旋转后,假设 Rt△PMN 的极点 P 在线段 OB 上搬动〔不与点 O 、B 重合〕,当 BD=3BP 时,猜想此时PE 与 PF 的数量关系,并给出证明;当 BD=m ?BP 时,请直接写出 PE 与 PF 的数量关系.28 .〔2021 ?成都〕 AC ,EC 分别是四边形 ABCD 和 EFDC 的对角线,点 E 在△ABC 内,∠CAE+ ∠CBE=90 °.〔1〕如图①,当四边形 ABCD 和 EFCG 均为正方形时,连接 BF.〔i〕求证:△CAE∽△CBF;〔ii 〕假设 BE=1 ,AE=2 ,求 CE 的长;〔2〕如图②,当四边形 ABCD 和 EFCG 均为矩形,且 = =k 时,假设 BE=1 ,AE=2 ,CE=3 ,求 k 的值;〔3〕如图③,当四边形 ABCD 和 EFCG 均为菱形,且∠ DAB= ∠GEF=45 °时,设BE=m ,AE=n ,CE=p ,试试究 m ,n,p 三者之间满足的等量关系.〔直接写出结果,不用写出解答过程〕29 .〔2021 ?锦州〕如图①,∠ QPN 的极点 P 在正方形 ABCD 两条对角线的交点处,∠ QPN= α,将∠QPN 绕点P 旋转,旋转过程中∠ QPN 的两边分别与正方形 ABCD 的边 AD 和 CD 交于点 E 和点 F〔点 F 与点 C,D 不重合〕.〔1〕如图①,当α =90 °时,DE,DF,AD 之间满足的数量关系是;〔2〕如图②,将图①中的正方形 ABCD 改为∠ADC=120 °的菱形,其他条件不变,当α =60 °时,〔1〕中的结论变为 DE+DF= AD ,请给出证明;〔3〕在〔2〕的条件下,假设旋转过程中∠ QPN 的边 PQ 与射线 AD 交于点 E,其他条件不变,研究在整个运动变化过程中, DE,DF ,AD 之间满足的数量关系,直接写出结论,不用加以证明.30 .〔2021 ?绵阳〕如图 1,矩形 ABCD 中,AB=4 ,AD=3 ,把矩形沿直线 AC 折叠,使点 B 落在点 E 处,AE交 CD 于点 F,连接 DE.〔1〕求证:△DEC≌△EDA;〔2〕求 DF 的值;〔3〕如图 2,假设 P 为线段 EC 上一动点,过点 P 作△AEC 的内接矩形,使其极点 Q 落在线段 AE 上,定点 M 、N 落在线段 AC 上,当线段 PE 的长为何值时,矩形 PQMN 的面积最大?并求出其最大值.几何难题精选 (1) 旋转圆四边形参照答案与试题解析一.解答题〔共 30 小题〕1 .〔2021 ?河南〕如图 1,在 Rt △ABC 中,∠B=90 °,BC=2AB=8 ,点 D、E 分别是边 BC、AC 的中点,连接DE,将△EDC 绕点 C 按顺时针方向旋转,记旋转角为α.〔1〕问题发现①当α=0 °时, = ;②当α=180 °时, = .〔2〕拓展研究试判断:当 0°≤α<360 °时,的大小有无变化?请仅就图 2 的状况给出证明.〔3〕问题解决当△EDC 旋转至 A,D,E 三点共线时,直接写出线段 BD 的长.【考点】几何变换综合题.【专题】压轴题.【解析】〔1〕①当α=0 °时,在Rt △ABC 中,由勾股定理,求出 AC 的值是多少;尔后依照点 D、E 分别是边BC、AC 的中点,分别求出 AE、BD 的大小,即可求出的值是多少.②α=180 °时,可得AB ∥DE,尔后依照,求出的值是多少即可.〔2〕第一判断出∠ ECA= ∠DCB ,再依照,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.〔3〕依照题意,分两种状况:①点 A,D,E 所在的直线和 BC 平行时;②点 A ,D,E 所在的直线和 BC 订交时;尔后分类谈论,求出线段 BD 的长各是多少即可.【解答】解:〔 1〕①当α=0 °时,∵Rt △ABC 中,∠B=90 °,∴AC= ,∵点D、E 分别是边 BC、AC 的中点,∴,∴.②如图 1,,当α=180 °时,可得 AB∥DE,∵,∴ = .故答案为:.〔2〕如图 2,,当 0°≤α<360 °时,的大小没有变化,∵∠ECD= ∠ACB ,∴∠ECA= ∠DCB ,又∵,∴△ECA∽△DCB ,∴.〔3〕①如图 3 ,,∵AC=4 ,CD=4 ,CD ⊥AD ,∴AD= = ,∵AD=BC ,AB=DC ,∠B=90 °,∴四边形 ABCD 是矩形,∴.②如图 4,连接 BD,过点 D 作 AC 的垂线交 AC 于点 Q ,过点 B作 AC 的垂线交 AC 于点 P,,∵AC=4 ,CD=4 ,CD ⊥AD ,∴AD= = ,∵点D、E 分别是边 BC、AC 的中点,∴DE= =2 ,∴AE=AD ﹣DE=8 ﹣2=6 ,由〔2〕,可得,∴BD= = .综上所述, BD 的长为 4 或.【谈论】〔1〕此题主要观察了几何变换综合题,观察了解析推理能力,观察了分类谈论思想的应用,观察了数形结合思想的应用,要熟练掌握.〔2〕此题还观察了相似三角形、全等三角形的判断和性质的应用,要熟练掌握.〔3〕此题还观察了线段长度的求法,以及矩形的判断和性质的应用,要熟练掌握.2.〔2021 ?济南〕如图 1 ,在△ABC 中,∠ACB=90 °,AC=BC ,∠EAC=90 °,点M 为射线 AE 上任意一点〔不与 A 重合〕,连接 CM ,将线段 CM 绕点 C 按顺时针方向旋转 90 °获取线段CN ,直线 NB 分别交直线 CM 、射线 AE 于点 F、D.〔1〕直接写出∠ NDE 的度数;〔2〕如图 2、图 3,当∠EAC 为锐角或钝角时,其他条件不变,〔 1〕中的结论可否发生变化?若是不变,采用其中一种状况加以证明;若是变化,请说明原由;〔3〕如图 4,假设∠EAC=15 °,∠ACM=60 °,直线CM 与 AB 交于 G,BD= ,其他条件不变,求线段 AM的长.【考点】几何变换综合题.【专题】压轴题.【解析】〔1〕依照题意证明△ MAC ≌△NBC 即可;〔2〕与〔 1〕的证明方法相似,证明△ MAC ≌△NBC 即可;〔3〕作 GK ⊥BC 于 K,证明 AM=AG ,依照△MAC ≌△NBC ,获取∠BDA=90 °,依照直角三角形的性质和条件求出 AG 的长,获取答案.【解答】解:〔 1〕∵∠ACB=90 °,∠MCN=90 °,∴∠ACM= ∠BCN ,在△MAC 和△NBC 中,,∴△MAC ≌△NBC ,∴∠NBC= ∠MAC=90 °,又∵∠ACB=90 °,∠EAC=90 °,∴∠NDE=90 °;〔2〕不变,在△MAC ≌△NBC 中,,∴△MAC ≌△NBC ,∴∠N= ∠AMC ,又∵∠MFD= ∠NFC,∠MDF= ∠FCN=90 °,即∠NDE=90 °;〔3〕作 GK⊥BC 于 K,∵∠EAC=15 °,∴∠BAD=30 °,∵∠ACM=60 °,∴∠GCB=30 °,∴∠AGC= ∠ABC+ ∠GCB=75 °,∠AMG=75 °,∴AM=AG ,∵△MAC ≌△NBC ,∴∠MAC= ∠NBC ,∴∠BDA= ∠BCA=90 °,∵BD= ,∴AB= + ,AC=BC= +1 ,设 BK=a ,那么 GK=a ,CK= a,∴a+ a= +1 ,∴a=1 ,∴KB=KG=1 ,BG= ,AG= ,∴AM= .【谈论】此题观察的是矩形的判断和性质以及三角形全等的判断和性质,正确作出辅助线、利用方程的思想是解题的重点,注意旋转的性质的灵便运用.3 .〔2021 ?岳阳〕直线 m ∥n ,点 C 是直线 m 上一点,点 D 是直线 n 上一点, CD 与直线 m 、n 不垂直,点 P 为线段 CD 的中点.〔1〕操作发现:直线 l ⊥m ,l⊥n,垂足分别为 A、B,当点 A 与点 C 重合时〔如图①所示〕,连接 PB,请直接写出线段 PA 与 PB 的数量关系: PA=PB .〔2〕猜想证明:在图①的状况下,把直线 l 向上平移到如图②的地址,试问〔 1〕中的 PA 与 PB 的关系式可否依旧成立?假设成立,请证明;假设不成立,请说明原由.〔3〕延伸研究:在图②的状况下,把直线 l 绕点 A 旋转,使得∠ APB=90 °〔如图③所示〕,假设两平行线 m 、n 之间的距离为 2k .求证: PA ?PB=k ?AB.【考点】几何变换综合题.【专题】压轴题.【解析】〔1〕依照三角形 CBD 是直角三角形,而且点 P 为线段 CD 的中点,应用直角三角形的性质,可得 PA=PB ,据此解答即可.〔2〕第一过 C 作 CE⊥n 于点 E,连接 P E,尔后分别判断出 PC=PE 、∠PCA= ∠PEB、AC=BE ;尔后依照全等三角形判断的方法,判断出△ PAC∽△PBE,即可判断出 PA=PB 依旧成立.〔3〕第一延伸 AP 交直线 n 于点 F,作 AE⊥BD 于点 E,尔后依照相似三角形判断的方法,判断出△AEF∽△BPF,即可判断出 AF ?BP=AE ?BF,再个 AF=2PA ,AE=2k ,BF=AB ,可得 2PA ?PB=2k .AB,因此 PA?PB=k ?AB,据此解答即可.【解答】解:〔 1〕∵l⊥n,∴BC⊥BD,∴三角形 CBD 是直角三角形,又∵点 P 为线段 CD 的中点,∴PA=PB .〔2〕把直线 l 向上平移到如图②的地址, PA=PB 依旧成立,原由以下:如图②,过 C 作 CE⊥n 于点 E,连接 P E,,∵三角形 CED 是直角三角形,点 P 为线段 CD 的中点,∴PD=PE ,又∵点 P 为线段 CD 的中点,∴PC=PD ,∴PC=PE ;∵PD=PE ,∴∠CDE= ∠PEB,∵直线 m ∥n ,∴∠CDE= ∠PCA ,∴∠PCA= ∠PEB,又∵直线 l⊥m ,l⊥n,CE⊥m ,CE⊥n ,∴l∥CE,∴AC=BE ,在△PAC 和△PBE 中,∴△PAC≌△PBE,∴PA=PB .〔3〕如图③,延伸 AP 交直线 n 于点 F,作 AE⊥BD 于点 E,,∵直线 m ∥n ,∴,∴AP=PF ,∵∠APB=90 °,∴BP⊥AF,又∵AP=PF ,∴BF=AB ;在△AEF 和△BPF 中,∴△AEF∽△BPF,∴,∴AF ?BP=AE ?BF,∵AF=2PA ,AE=2k ,BF=AB ,∴2PA ?PB=2k .AB ,∴PA?PB=k ?AB .【谈论】〔1〕此题主要观察了几何变换综合题,观察了解析推理能力,观察了分类谈论思想的应用,观察了数形结合思想的应用,观察了从图象中获守信息,并能利用获取的信息解答相应的问题的能力.〔2〕此题还观察了直角三角形的性质和应用,要熟练掌握.〔3〕此题还观察了全等三角形的判断和性质的应用,以及相似三角形的判断和性质的应用,要熟练掌握.4 .〔2021 ?重庆〕在△ABC 中,AB=AC ,∠A=60 °,点D 是线段 BC 的中点,∠EDF=120 °,DE 与线段 AB 相交于点 E.DF 与线段 AC 〔或 AC 的延伸线〕订交于点 F.〔1〕如图 1,假设 DF⊥AC,垂足为 F,AB=4 ,求 BE 的长;〔2〕如图 2,将〔1 〕中的∠EDF 绕点 D 顺时针旋转必然的角度, DF 仍与线段 AC 订交于点 F.求证:BE+CF= AB;〔3〕如图 3,将〔 2〕中的∠EDF 连续绕点 D 顺时针旋转必然的角度,使 DF 与线段 AC 的延伸线订交于点 F,作 DN ⊥AC 于点 N ,假设 DN ⊥AC 于点 N ,假设 DN=FN ,求证: BE+CF= 〔BE﹣CF〕.【考点】几何变换综合题;全等三角形的判断与性质;等边三角形的判断与性质;锐角三角函数的定义.【专题】压轴题.【解析】〔1〕如图 1,易求得∠B=60 °,∠BED=90 °,BD=2 ,尔后运用三角函数的定义即可求出 BE 的值;〔2〕过点 D 作 DM ⊥AB 于 M ,作 DN ⊥AC 于 N,如图 2,易证△MBD ≌△NCD ,那么有 BM=CN ,DM=DN ,进而可证到△ EMD ≌△FND ,那么有 EM=FN ,即可获取 BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60 °=BD= BC= AB;〔3〕过点 D 作 DM ⊥AB 于 M ,如图 3.同〔1〕可得:∠B= ∠ACD=60 °,同〔2〕可得: BM=CN ,DM=DN ,EM=FN .由 DN=FN 可得 DM=DN=FN=EM ,进而可得BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM ,B E﹣CF=BM+EM ﹣CF=BM+NF ﹣CF=BM+NC=2BM .尔后在 Rt△BMD 中,运用三角函数即可获取 DM= BM ,即 BE+CF= 〔B E﹣CF〕.【解答】解:〔 1〕如图 1,∵AB=AC ,∠A=60 °,∴△ABC 是等边三角形,∴∠B= ∠C=60 °,BC=AC=AB=4 .∵点D 是线段 BC 的中点,∴BD=DC= BC=2 .∵DF⊥AC,即∠AFD=90 °,∴∠AED=360 °﹣60 °﹣90 °﹣120 °=90 °,∴∠BED=90 °,∴BE=BD ×cos ∠B=2 ×cos60 °=2 × =1 ;〔2〕过点 D 作 DM ⊥AB 于 M ,作 DN ⊥AC 于 N,如图 2,那么有∠AMD= ∠BMD= ∠AND= ∠CND=90 °.∵∠A=60 °,∴∠MDN=360 °﹣60 °﹣90 °﹣90 °=120 °.∵∠EDF=120 °,∴∠MDE= ∠NDF .在△MBD 和△NCD 中,,∴△MBD ≌△NCD ,∴BM=CN ,DM=DN .在△EMD 和△FND 中,,∴△EMD ≌△FND ,∴EM=FN ,∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD ×cos60 °=BD= BC= AB ;〔3〕过点 D 作 DM ⊥AB 于 M ,如图 3.同〔1〕可得:∠B= ∠ACD=60 °.同〔2〕可得: BM=CN ,DM=DN ,EM=FN .∵DN=FN ,∴DM=DN=FN=EM ,∴BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM ,BE﹣CF=BM+EM ﹣CF=BM+NF ﹣CF=BM+NC=2BM .在 Rt△BMD 中,DM=BM ?tanB= BM ,∴BE+CF= 〔BE﹣CF〕.【谈论】此题主要观察了等边三角形的判断与性质、四边形的内角和定理、全等三角形的判断与性质、三角函数的定义、特别角的三角函数值等知识,经过证明三角形全等获取 BM=CN ,DM=DN ,EM=FN 是解决此题的关键.5 .〔2021 ?烟台〕【问题提出】如图①,△ ABC 是等腰三角形,点 E 在线段 AB 上,点 D 在直线 BC 上,且 ED=EC ,将△BCE 绕点 C 顺时针旋转 60°至△ACF 连接 EF试证明: AB=DB+AF【类比研究】〔1〕如图②,若是点 E 在线段 AB 的延伸线上,其他条件不变,线段 AB ,DB,AF 之间又有怎样的数量关系?请说明原由〔2〕若是点 E 在线段 BA 的延伸线上,其他条件不变,请在图③的基础大将图形补充完满,并写出 AB ,DB ,AF 之间的数量关系,不用说明原由.【考点】几何变换综合题.【专题】压轴题.【解析】第一判断出△ CEF 是等边三角形,即可判断出 EF=EC,再依照 ED=EC ,可得 ED=EF ,∠CAF= ∠BAC=60 °,因此∠EAF= ∠BAC+ ∠CAF=120 °,∠DBE=120 °,∠EAF= ∠DBE;尔后依照全等三角形判断的方法,判断出△EDB ≌△FEA ,即可判断出 BD=AE ,AB=AE+BF ,因此 AB=DB+AF .〔1〕第一判断出△CEF 是等边三角形,即可判断出 EF=EC,再依照 ED=EC ,可得 ED=EF ,∠CAF= ∠BAC=60 °,因此∠EFC= ∠FGC+ ∠FCG,∠BAC= ∠FGC+ ∠FEA,∠FCG= ∠FEA,再依照∠FCG= ∠EAD ,∠D= ∠EAD,可得∠D= ∠FEA;尔后依照全等三角形判断的方法,判断出△ EDB≌△FEA,即可判断出 BD=AE ,EB=AF ,进而判断出AB=BD ﹣AF 即可.〔2〕第一依照点 E 在线段 BA 的延伸线上,在图③的基础大将图形补充完满,尔后判断出△ CEF 是等边三角形,即可判断出 EF=EC ,再依照 ED=EC ,可得 ED=EF ,∠CAF= ∠BAC=60 °,再判断出∠ DBE= ∠EAF,∠BDE= ∠AEF;。

中考数学几何压轴题及答案及答案

中考数学几何压轴题及答案及答案

中考数学几何压轴题及答案一、解答题(共30小题)1.观察猜想(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论2.在△ABC的边BC上取B′、C′两点,使∠AB′B=∠AC′C=∠BAC(1)如图1中∠BAC为直角,∠BAC=∠AB′B=∠AC′C=90°(点B′与点C′重合),则△ABC∽△B'BA∽△C'AC,,,进而可得AB2+AC2=;(2)如图2中当∠BAC为锐角,图3中∠BAC为钝角时(1)中的结论还成立吗?若不成立,则AB2+AC2等于什么(用含用BC和B′C′的式子表示)?并说明理由(3)若在△ABC中,AB=5,AC=6,BC=9,请你先判断出△ABC的类型,再求出B′C′的长3.(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D是线段AB上一动点,连接BE填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE 的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.4.(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE 和AF数量关系.(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.5.如图,在平行四边形ABCD中,AC与BD交于点O,以点O为顶点的∠EOF的两边分别与边AB、AD交于点E、F,且∠EOF与∠BAD互补.(1)若四边形ABCD是正方形,则线段OE与OF有何数量关系?请直接写出结论;(2)若四边形ABCD是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由;(3)若AB:AD=m:n,探索线段OE与OF的数量关系,并证明你的结论.6.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=.7.如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.探索发现:图1中,的值为;的值为.(2)拓展探完若将△CDE绕点C逆时针方向旋转一周,在旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△CDE旋转至A,D,E三点共线时,直接写出线段BE的长.8.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD=m.(1)问题发现如图1,△CDE的形状是三角形.(2)探究证明如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.(3)解决问题是否存在m的值,使△DEB是直角三角形?若存在,请直接写出m的值;若不存在,请说明理由.9.等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD 的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为,线段MN 和线段NF的数量关系为;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为.10.四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD中,AB=AD,CB=CD,则AC与BD的位置关系是,请说明理由.(2)试探究图1中四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE的长.11.问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.12.如图1,菱形ABCD与菱形GECF的顶点C重合,点G在对角线AC上,且∠BCD=∠ECF=60°,(1)问题发现的值为;(2)探究与证明将菱形GECF绕点C按顺时针方向旋转α角(0°<α<60°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:菱形GECF在旋转过程中,当点A,G,F三点在一条直线上时,如图3所示连接CG并延长,交AD于点H,若CE=2,GH=,则AH的长为.13.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.14.如图,已知点E是射线BC上的一点,以BC、CE为边作正方形ABCD和正方形CEFG,连接AF,取AF的中点M,连接DM、MG(1)如图1,判断线段DM和GM的数量关系是,位置关系是;(2)如图2,在图中的正方形CEFG绕点C逆时针旋转的过程中,其他条件不变,(1)中的结论是否成立?说明理由;(3)已知BC=10,CE=2,正方形CEFG绕点C旋转的过程中,当A、F、E共线时,直接写出△DMG的面积.15.在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分别交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形P A'B′Q的面积是否存在最小值.若存在,求出四边形P A′B′Q的最小面积;若不存在,请说明理由.16.如图(1),在等边三角形ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M,N,P分别是BE,CD,BC的中点,连接DE,PM,PN,MN.(1)观察猜想,图(1)中△PMN是(填特殊三角形的名称)(2)探究证明,如图(2),△ADE绕点A按逆时针方向旋转,则△PMN的形状是否发生改变?并就图(2)说明理由.(3)拓展延伸,若△ADE绕点A在平面内自由旋转,AD=2,AB=6,请直接写出△PMN 的周长的最大值.17.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.18.问题提出:(1)如图1,在四边形ABCD中,连接AC、BD,AB=AD,∠BAD=∠BCD=90°,将△ABC绕点A逆时针旋转90°,得到△ADE,点B的对应点落在点D,点C的对应点为点E,可知点C、D、E在一条直线上,则△ACE为三角形,BC、CD、AC的数量关系为;探究发现:(2)如图2,在⊙O中,AB为直径,点C为的中点,点D为圆上一个点,连接AD、CD、AC、BC、BD,且AD<BD,请求出CD、AD、BD间的数量关系.拓展延伸:(3)如图3,在等腰直角三角形ABC中,点P为AB的中点,若AC=13,平面内存在一点E,且AE=10,CE=13,当点Q为AE中点时,PQ=.19.已知△ABC中,CA=CB,0°<∠ACB≤90°,点M、N分别在边CA,CB上(不与端点重合),BN=AM,射线AG∥BC交BM延长线于点D,点E在直线AN上,EA=ED.(1)【观察猜想】如图1,点E在射线NA上,当∠ACB=45°时,①线段BM与AN的数量关系是;②∠BDE的度数是;(2)【探究证明】如图2点E在射线AN上,当∠ACB=30°时,判断并证明线段BM与AN的数量关系,求∠BDE的度数;(3)【拓展延伸】如图3,点E在直线AN上,当∠ACB=60°时,AB=3,点N是BC 边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.20.如图①,在正方形ABCD和正方形AB'C'D'中,AB=2,AB'=,连接CC’(1)问题发现:.(2)拓展探究:将正方形AB'C'D'绕点A逆时针旋转,记旋转角为θ,连接BB',试判断:当0°≤θ<360°时,的值有无变化?请仅就图②中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C,C′,D'三点共线时BB′的长.21.如图1,在正方形ABCD中,点O是对角线BD的中点.(1)观察猜想将图1中的△BCD绕点O逆时针旋转至图2中△ECF的位置,连接AC,DE,则线段AC与DE的数量关系是,直线AC与DE的位置关系是.(2)类比探究将图2中的△ECF绕点O逆时针旋转至图3的位置,(1)中的结论是否成立?并说明理由.(3)拓展延伸将图2中的△ECF在平面内旋转,设直线AC与DE的交点为M,若AB=4,请直接写出BM的最大值与最小值.22.如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC=90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;(3)在旋转过程中,若CD长为1,当△ABD面积取得最大值时,请直接写AD的长.23.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)观察猜想:线段EF与线段EG的数量关系是;(2)探究证明:如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.24.如图1,在Rt△ABC中,∠B=90°,AB=2,BC=1,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、B、E三点共线时,直接写出线段BD的长.25.在△ABC中,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长,交AB于点F.(1)尝试探究如图(1),当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是;(2)类比延伸如图(2),当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移如图(3),当△ABC为锐角三角形,DE=nEA时,请直接写出BF,BA之间的数量关系.26.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE ⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.27.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O 于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.28.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.29.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.30.如图1和图2,在△ABC中,AB=AC,BC=8,tan C=.点K在AC边上,点M,N 分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3<x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.参考答案与试题解析一.解答题(共30小题)1.【解答】解:(1)如图①中,∵∠EAF=∠BAC=90°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE,∴∠ABF=∠C,BF=CE,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为:BF⊥BE,BC.(2)如图②中,作DH∥AC交BC于H.∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=2,∴BF+BE=BH=2;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M.∵AC∥DH,∴∠ACB=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH=∠H,∴DB=DH,∵∠EDF=∠BDH=α,∴∠BDF=∠HDE,∵DF=DE,DB=DH,∴△BDF≌△HDE,∴BF=EH,∴BF+BE=EH+BE=BH,∵DB=DH,DM⊥BH,∴BM=MH,∠BDM=∠HDM,∴BM=MH=BD•sin.∴BF+BE=BH=2n•sin.2.【解答】解:(1)如图1中,∵△ABC∽△B'BA∽△C'AC,∴=,=,∴AB2=BB′×BC,AC2=CC′×BC,∴AB2+AC2=BC(BB′+CC′)=BC×BC=BC2,故答案为BC2.(2)不成立.理由:如图2中当∠BAC为锐角时,BB′+CC′﹣B′C′=BC,且△ABC∽△B'BA∽△C'AC,∴∴=,=,∴AB2=BB′×BC,AC2=CC′×BC,∴AB2+AC2=BC(BB′+CC′)=BC2+BC•B′C′.图3中∠BAC为钝角时,BB′+CC′+B′C′=BC.AB2+AC2=BC(BB′+CC′)=BC2﹣BC•B′C′.(3)当AB=5,AC=6,BC=9时,则AB2+AC2<BC2,可知△ABC为钝角三角形,由图3可知:AB2+AC2=BC2﹣BC•B′C′,∴52+62=92﹣9B′C′,∴B′C′=.3.【解答】解:(1)∵∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,∴∠ABC=∠CAB=45°=∠CDE=∠CED,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠CAB=∠CBE=45°,∴∠DBE=∠ABC+∠CBE=90°,=1,故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,∵△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣4.【解答】解:(1)∵△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,∴AD=BD=DC,∠BDA=90°,∵四边形DFGE是正方形,∴DE=DF,∠EDF=90°,∴∠BDE=∠ADF=90°,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF故答案为:BE=AF;(2)成立;理由如下:当正方形DFGE在BC的上方时,如图②所示,连接AD,∵在Rt△ABC中,AB=AC,D为斜边BC的中点,∴AD=BD,AD⊥BC,∴∠ADE+∠EDB=90°,∵四边形DFGE为正方形,∴DE=DF,且∠EDF=90°,∴∠ADE+∠ADF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF;当正方形DFGE在BC的下方时,连接AD,如图③所示:∵∠BDE=∠BDF+90°,∠ADF=∠BDF+90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF;综上所述,(1)中的结论BE=AF成立;(3)在△ADE中,∵AE<AD+DE,∴当点A、D、E共线时,AE取得最大值,最大值为AD+DE.如图④所示:则AD=BC=1,DE=DF=2,∴AE=AD+DE=3,即AE的最大值为3.5.【解答】解:(1)如图1,过点O作OM⊥AB于M,ON⊥AD于N,∴∠OME=∠ONF=90°,∴∠BAD+∠MON=180°,∵∠BAD+∠EOF=180°,∴∠MON=∠EOF,∴∠EOM=∠FON,∵O是正方形ABCD的对角线的交点,∴∠BAO=∠DAO,∵OM⊥AB,ON⊥AD,∴OM=ON,∴△OME≌△ONF(AAS)∴OE=OF;(2)(1)的结论成立;理由:如图2,过点O作OM⊥AB于M,ON⊥AD于N,∴∠OME=∠ONF=90°,∴∠BAD+∠MON=180°,∵∠BAD+∠EOF=180°,∴∠MON=∠EOF,∴∠EOM=∠FON,∵O是菱形ABCD的对角线的交点,∴∠BAO=∠DAO,∵OM⊥AB,ON⊥AD,∴OM=ON,∴△OME≌△ONF(AAS)∴OE=OF;(3)如图3,过点O作OG⊥AB于G,OH⊥AD于H,∴∠OGE=∠OHF=90°,∴∠BAD+∠GOH=180°,∵∠BAD+∠EOF=180°,∴∠GOH=∠EOF,∴△EOG∽△FOH,∴,∵O是▱ABCD的对角线的交点,∴S△AOB=S△AOD,∵S△AOB=AB•OG,S△AOD=AD•OH,∴AB•OG=AD•OH,∴=,∴.6.【解答】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.7.【解答】解:(1)如图1,连接AE,∵AB=AC=2,点E分别是BC的中点,∴AE⊥BC,∴∠BEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根据勾股定理得,BE=∵点E是BC的中点,∴BC=2BE=2,∴==,∵点D是AC的中点,∴AD=CD=AC=1,∴==,故答案为:,;(2)无变化,理由:由(1)知,CD=1,CE=BE=,∴=,,∴=,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)当点D在线段AE上时,如图2,过点C作CF⊥AE于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴DF=CD=,∴CF=DF=,在Rt△AFC中,AC=2,根据勾股定理得,AF==,∴AD=AF+DF=,由(2)知,,∴BE=AD=当点D在线段AE的延长线上时,如图3,过点C作CG⊥AD交AD的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴DG=CD=,∴CG=DG=,在Rt△ACG中,根据勾股定理得,AG=,∴AD=AG﹣DG=,由(2)知,,∴BE=AD=即:线段BE的长为或.8.【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;故答案为:等边;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;③当6<m<10时,由∠DBE=120°>90°,∴此时不存在;④当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14,综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.9.【解答】解:(1)如图1中,连接DB,MF,CE,延长BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.故答案为:45°(2):如图2中,连接MF,EC,BD.设EC交AB于O,BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠AOC+∠ACO=90°,∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.(3):如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,此时∠CBP的值最小,点P到BC的距离最小,即△BCP的面积最小,∵AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,BD=EC,∵∠ABD+∠AOB=90°,∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2,BD=EC==2,∴PC=2﹣2,PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.10.【解答】(1)解:AC⊥BD,理由如下:连接AC、BD,如图2所示:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,故答案为:AC⊥BD;(2)解:AD2+BC2=AB2+CD2;理由如下:如图1,已知四边形ABCD中,AC⊥BD,设BD、AC相交于E,∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)解:如图3,连接CG、BE,∵四边形ACFG和四边形ABDE是正方形,∴AC=AG,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,由(2)得,CG2+BE2=CB2+GE2,在Rt△ABC中,AC=4,AB=5,根据勾股定理得,BC2=52﹣42=9,∵CG和BE分别是正方形ACFG和正方形ABDG的对角线,∴CG2=42+42=32,BE2=52+52=50,∴GE2=CG2+BE2﹣CB2=32+50﹣9=73,∴GE=.11.【解答】解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴BH=CD=2,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∴==,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.12.【解答】解:(1)如图1中,作EH⊥CG于H.∵四边形ECFG是菱形,∠ECF=60°,∴∠ECH=∠ECF=30°,EC=EG,∵EH⊥CG,∴GH=CG,∴=cos30°=,∴=2•=,∵EG∥CD,AB∥CD,∴GE∥AB,∴==.故答案为.(2)结论:AG=BE.理由:如图2中,连接CG.∵四边形ABCD,四边形ECFG都是菱形,∠ECF=∠DCB=60°,∴∠ECG=∠EGC=∠BCA=∠BAC=30°,∴△ECG∽△BCE,∴=,∵∠ECB=∠GCA,∴△ECB∽△GCA,∴==,∴AG=BE.(3)如图3中,∵∠AGH=∠CGF=30°.∠AGH=∠GAC+∠GCA,又∵∠DAC=∠HAG+∠GAC=30°,∴∠HAG=∠ACH,∵∠AHG=∠AHC,∴△HAG∽△HCA,∴HA:HC=GH:HA,∴AH2=HG•HC,∴FC=2,CG=CF,∴GC=2,∵HG=,∴AH2=HG•HC=•3=9,∵AH>0,∴AH=3.故答案为3.13.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.14.【解答】解:(1)如图1,延长GM交AD于H,∵AD∥GF,∴∠GFM=∠HAM,在△FMG和△AMH中,,∴△FMG≌△AMH(ASA),∴HM=GM,AH=FG,∵AD=CD,AH=FG=CG,∴DH=DG,∵∠HDG=90°,HM=GM,∴DM=MG,DM⊥MG,故答案为DM=MG,DM⊥MG.(2)结论成立:DM=MG,DM⊥MG,理由:如图2中,延长GM使得MH=GM,连接AH、DH、DG,延长AD交GF的延长线于N,交CD于O.∵AM=MF,∠AMH=∠FMG,MH=MG,∴△AMH≌△FMG(SAS),∴AH=GF=CG,∠AHM=∠FGM,∴AH∥GN,∴∠HAD=∠N,∵∠ODN=∠OGC=90°,∠DON=∠GOC,∴∠N=∠OCG,∴∠HAD=∠DCG,∵AH=CG,AD=CD,∴△HAD≌△GCD(SAS),∴DH=DG,∠HDA=∠CDG,∴∠HDG=∠ADC=90°,∴△HDG是等腰直角三角形,∵MH=MG,∴DM⊥GH,DM=MH=MG,(3)①如图3﹣1中,连接AC.在Rt△ABC中,AC==10,在Rt△ACE中,AE==14,∴AF=AE=EF=14﹣2=12,∴FM=AM=AF=6,在Rt△MGF中,MG==2,∴S△DMG=×2×2=20,②如图3﹣2中,连接AC.同法可得AE=14,AF=16,FM=8,MG==2,∴S△DMG=×2×2=34,综上所述,满足条件的△DMG的面积为20或34.15.【解答】解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵∠PCQ=∠PBC=90°,∴∠BQC+∠BPC=∠BCP+∠BPC=90°,∴∠BQC=∠BCP=∠A,∴tan∠BQC=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形P A'B′Q=S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形P A'B′Q最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,∵∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=时,“=”成立,∴PQ=+=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣.16.【解答】解:(1)结论:△PMN是等边三角形.理由:如图1中,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=EC,∵PB=PC,CN=ND,BM=EM,∴PN∥BD,PM∥EC,PN=BD,PM=EC,∴PM=PN,∠NPC=∠ABC=60°,∠MPB=∠ACB=60°,∴∠MPN=60°,∴△PMN是等边三角形,故答案为等边三角形.(2)△PMN的形状不发生改变,仍为等边三角形,理由如下:如图2中,连接BD,CE.由旋转可得∠BAD=∠CAE,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°又∵AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,∴PM=,且PM∥CE.同理可证PN=BD且PN∥BD,∴PM=PN,∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC﹣∠ABD)=∠ACB+∠ABC=120°,∴∠MPN=60°,∴△PMN是等边三角形.(3)∵PM=EC,∴当EC最大时,等边△PMN的周长最大,∵EC≤AE+AC,∴EC≤8,∴PM≤4,∴PM的最大值为4,∴△PMN的周长的最大值为12.17.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.18.【解答】解:(1)由旋转变换的性质可知,∠CAE=90°,AC=AE,∴△ACE为等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC,故答案为:等腰直角;BC+CD=AC;(2)延长CO交⊙O于E,连接AE、BE、DE,则∠CDE=90°,∵点C为的中点,∴点E为的中点,∴EA=EB,∵AB为⊙O的直径,∴∠ADB=90°,由(1)得,DE=(AD+BD),由勾股定理得,CD2=CE2﹣DE2=AD2+BD2﹣(AD+BD)2=(AD﹣BD)2,∴CD=(BD﹣AD);(3)如图3,当点E在直线AC的左侧时,连接CQ、PC,∵CA=CB,点P为AB的中点,∴CP⊥AB,∵CA=CE,点Q为AE中点,∴CQ⊥AE,AQ=QE=AE=5,∴由勾股定理得,CQ==12,由(1)得,AQ+CQ=PQ,。

中考动点问题经典题型归类总结附答案

中考动点问题经典题型归类总结附答案

专题十动点型问题考点一:建立动点问题的函数解析式(或函数图像)例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

(一)点动问题.例2 (2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.思路分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t 的函数表达式,继而可得出函数图象. 解:在Rt △ADE 中,AD=2213AE DE +=,在Rt △CFB 中,BC=2213BF CF +=,①点P 在AD 上运动:对应训练2.(2013•北京)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2.设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .2.A(二)线动问题例3 (2013•荆门)如右图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是( )A.B.C.D.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.对应训练3.(2013•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A.B.C.D.3.A(三)面动问题例4 (2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A.B.C.D.解:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,A符合;故选A.对应训练4.(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.4.A究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.(4)△QMN 为等腰三角形的情形有两种,需要分类讨论,避免漏解.解:(1)∵C (7,4),AB ∥CD ,∴D (0,4).∵sin ∠DAB=22, ∴∠DAB=45°,∴OA=OD=4,∴A (-4,0).设直线l 的解析式为:y=kx+b ,则有4-40b k b =⎧⎨+=⎩, 解得:k=1,b=4,∴y=x+4.∴点A 坐标为(-4,0),直线l 的解析式为:y=x+4.(2)在点P 、Q 运动的过程中:①当0<t≤1时,如答图1所示:过点C 作CF ⊥x 轴于点F ,则CF=4,BF=3,由勾股定理得BC=5.过点Q 作QE ⊥x 轴于点E ,则BE=BQ•cos ∠CBF=5t•35=3t . ∴PE=PB -BE=(14-2t )-3t=14-5t ,S=12PM•PE=12×2t×(14-5t )=-5t 2+14t ; ②当1<t≤2时,如答图2所示:过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5,PE=AF-AP-EF=11-2t-(5t-5)=16-7t,S=12PM•PE=12×2t×(16-7t)=-7t2+16t;③当点M与点Q相遇时,DM+CQ=CD=7,即(2t-4)+(5t-5)=7,解得t=167.当2<t<167时,如答图3所示:MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,S=12PM•MQ=12×4×(16-7t)=-14t+32.(3)①当0<t≤1时,S=-5t2+14t=-5(t-75)2+495,∵a=-5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,S=-7t2+16t=-7(t-87)2+647,∵a=-7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647;③当2<t<167时,S=-14t+32∵k=-14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)△QMN为等腰三角形,有两种情形:①如答图4所示,点M在线段CD上,MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,由MN=MQ,得16-7t=2t-4,解得t=209;②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.故当t=209或t=125时,△QMN为等腰三角形.对应训练5.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A 运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q 两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ 扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.5.解:(1)当点P沿A-D运动时,AP=8(t-1)=8t-8.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ=12AB•QE=12BQ×12,4当0<t≤1时,如图③.∵S △BPM =S △BQM ,∴PM=QM .∵AB ∥QR ,∴∠PBM=∠QRM ,∠BPM=∠MQR ,在△BPM 和△RQM 中PBM QRMBPM MQR PM QM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPM ≌△RQM .∴BP=RQ ,∵RQ=AB ,∴BP=AB∴13t=13,解得:t=1当1<t≤83时,如图④.∵BR 平分阴影部分面积,∴P 与点R 重合.34∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或83时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A-D之间或D-A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50-5t=50-8(t-1)+13,或50-5t=8(t-1)-50+13,解得:t=7或t=95 13.当P在A-D之间或D-A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50-5t+13=8(t-1)-50,解得:t=121 13.∴当t=7,t=9513,t=12113时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.中考真题演练一、选择题1.(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.51.D2.(2013•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变2.D3.(2013•盘锦)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()A.B.C.D.3.B4.(2013•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.54.B5.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.516、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A、①②③B、①④⑤(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.6.解:(1)∵A(8,0),B(0,6),8.(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF 重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O如图,过O 点作OK ⊥MN 于K ,∴∠MON=2∠NOK ,MN=2NK ,在Rt △ONK 中,sin ∠NOK=2NK NK ON =, ∴∠NOK 随NK 的增大而增大,∴∠MON 随MN 的增大而增大,∴当MN 最大时∠MON 最大,当MN 最小时∠MON 最小,①当N ,M ,A 分别与D ,B ,O 重合时,MN 最大,MN=BD ,∠MON=∠BOD=90°,S 扇形MON 最大=π(cm 2),②当MN=DC=2时,MN 最小,∴ON=MN=OM ,∴∠NOM=60°,S 扇形MON 最小=23π(cm 2), ∴23π≤S 扇形MON ≤π. 故答案为:30°.9.(2013•重庆)已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平8.解:(1)∵四边形ABCD是平行四边形,∴AD=BC=6.在Rt△ADE中,AD=6,∠EAD=30°,∴AE=AD•cos30°=33,DE=AD•sin30°=3,∴△AED的周长为:6+33+3=9+33.(2)在△AED向右平移的过程中:(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△D0NK.∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0•tan30°=3t,∴S=S△D0NK=12ND0•NK=12t•3t=32t2;(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0KN.∵AA0=2t,∴A0B=AB-AA0=12-2t,∴A0N=12A0B=6-t,NK=A0N•tan30°=33(6-t).∴S=S四边形D0E0KN=S△ADE-S△A0NK=12×3×33-12×(6-t)×33(6-t)=-36t2+23t-332;(III)当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D0IJKN.∵AA 0=2t,∴A0B=AB-AA0=12-2t=D0C,∴A0N=12A0B=6-t,D0N=6-(6-t)=t,BN=A0B•cos30°=3(6-t);易知CI=BJ=A0B=D0C=12-2t,∴BI=BC-CI=2t-6,S=S梯形BND0I-S△BKJ=12[t+(2t-6)]• 3(6-t)-12•(12-2t)•33(12-2t)=-1336t2+203t-423.综上所述,S与t之间的函数关系式为:S=2223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t tS t t tt t t⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩.(3)存在α,使△BPQ为等腰三角形.理由如下:经探究,得△BPQ∽△B1QC,故当△BPQ为等腰三角形时,△B1QC也为等腰三角形.(I)当QB=QP时(如答图4),则QB1=QC,∴∠B1CQ=∠B1=30°,即∠BCB1=30°,∴α=30°;(II)当BQ=BP时,则B1Q=B1C,若点Q在线段B1E1的延长线上时(如答图5),∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,即∠BCB1=75°,∴α=75°.10.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式.11.解:(1)当点P 运动到点F 时,∵F 为AC 的中点,AC=6cm ,∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s ,∴BQ=AF=3cm ,∴CQ=8cm -3cm=5cm ,故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t -3=8,t=112, BQ 的长度为112×1=112(cm );(3)∵D 、E 、F 分别是AB 、BC 、AC 的中点,∴DE=12AC=12×6=3, DF=12BC=12×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°,∵∠QBM=∠CBA ,∴△MBQ ∽△ABC ,∴BQ MQ BC AC=, ∴86x MQ =,MQ=34x,分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD=34x(7-x)即y=-34x2+214x;②当4≤x<112时,重叠部分为矩形,如图3,y=3[(8-X)-(X-3))]即y=-6x+33;③当112≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x)]即y=6x-33.213.解:(1)如图,2如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)(3)如图3,连接ME ,∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE ∵在△COD 与△MED 中COA DEMODC MD EOC ME∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM设OD=x 则CD=DM=OM -OD=4-x 则RT △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=(4-x )2∴x=32,∴D (32,0)设直线CE 的解析式为y=kx+b ∵直线CE 过C (0,2),D (32,0)两点,则3022k b b ⎧+=⎪⎨⎪=⎩,解得:432k b ⎧=-⎪⎨⎪=⎩。

中考数学专题-几何综合压轴问题(解答题)-(解析版)

中考数学专题-几何综合压轴问题(解答题)-(解析版)

几何综合压轴问题一、解答题1.(湖南省郴州市2021年中考数学试卷)如图1,在等腰直角三角形ABC 中,90BAC ∠=︒.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90︒得到AG ,连接GC ,HB .(1)证明:AHB AGC ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .①证明:在点H 的运动过程中,总有90HFG ∠=︒;①若4AB AC ==,当EH 的长度为多少时,AQG 为等腰三角形?【答案】(1)见详解;(2)①见详解;①当EH 的长度为2AQG 为等腰三角形【分析】(1)由旋转的性质得AH =AG ,①HAG =90°,从而得①BAH =①CAG ,进而即可得到结论;(2)①由AHB AGC ≌,得AH =AG ,再证明AEH AFG ≌,进而即可得到结论;①AQG 为等腰三角形,分3种情况:(a )当①QAG =①QGA =45°时,(b )当①GAQ =①GQA =67.5°时,(c )当①AQG =①AGQ =45°时,分别画出图形求解,即可.【详解】解:(1)①线段AH 绕点A 逆时针方向旋转90︒得到AG ,①AH =AG ,①HAG =90°,①在等腰直角三角形ABC 中,90BAC ∠=︒,AB =AC ,①①BAH =90°-①CAH =①CAG ,①AHB AGC ≌;(2)①①在等腰直角三角形ABC 中,AB =AC ,点E ,F 分别为AB ,AC 的中点,①AE =AF ,AEF 是等腰直角三角形,①AH =AG ,①BAH =①CAG ,①AEH AFG ≌,①①AEH =①AFG =45°,①①HFG =①AFG +①AFE =45°+45°=90°,即:90HFG ∠=︒;①①4AB AC ==,点E ,F 分别为AB ,AC 的中点,①AE =AF =2,①①AGH =45°,AQG 为等腰三角形,分3种情况:(a )当①QAG =①QGA =45°时,如图,则①HAF =90°-45°=45°,①AH 平分①EAF ,①点H 是EF 的中点,①EH 12==(b )当①GAQ =①GQA =(180°-45°)÷2=67.5°时,如图,则①EAH =①GAQ =67.5°,①①EHA =180°-45°-67.5°=67.5°,①①EHA =①EAH ,①EH =EA =2;(c )当①AQG =①AGQ =45°时,点H 与点F 重合,不符合题意,舍去,综上所述:当EH 的长度为2AQG 为等腰三角形.【点睛】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.2.(2021·湖北中考真题)问题提出 如图(1),在ABC 和DEC 中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC 内部,直线AD 与BE 交于点F ,线段AF ,BF ,CF 之间存在怎样的数量关系?问题探究 (1)先将问题特殊化.如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形.如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立.问题拓展 如图(3),在ABC 和DEC 中,90ACB DCE ∠=∠=︒,BC kAC =,EC kDC =(k 是常数),点E 在ABC 内部,直线AD 与BE 交于点F ,直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.【答案】(1)BF AF -=.(2)见解析;问题拓展:BF k AF -⋅=. 【分析】(1)先证明①BCE ①①ACD ,得到AF =BE ,BF -BE =BF -AF =EF ;(2)过点C 作CG CF ⊥交BE 于点G ,证明ACD BCE ≅△△,ACF BCG ≅△△,CGF △是等腰直角三角形即可;利用前面的方法变全等为相似证明即可.【详解】问题探究 (1)BF AF -=.理由如下:如图(2),①①BCA =①ECF =90°,①①BCE =①ACF ,①BC =AC ,EC =CF ,①BCE ①①ACF ,①BE =AF ,①BF -BE =BF -AF =EF ;(2)证明:过点C 作CG CF ⊥交BE 于点G ,则90FCG ACB ∠=∠=︒,①90ACB DCE ∠=∠=︒,①BCE ACD ∠=∠.又①AC BC =,DC EC =,①ACD BCE ≅△△,①CAF CBG ∠=∠.①ACF BCG ≅△△.①AF BG =,CF CG =,①CGF △是等腰直角三角形.①GF =.①BF AF BF BG GF -=-==.问题拓展 BF k AF -⋅.理由如下:①①BCA =①ECD =90°,①①BCE =①ACD ,①BC =kAC ,EC =kCD ,①①BCE ①①ACD ,①①EBC =①F AC ,过点C 作CM CF ⊥交BE 于点M ,则90FCM ACB ∠=∠=︒,①①BCM ①①ACF ,①BM :AF =BC :AC =MC :CF =k ,①BM =kAF ,MC =kCF ,①BF -BM =MF ,MF①BF - kAF .【点睛】本题考查了等腰直角三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,勾股定理,熟练掌握三角形全等的判定,三角形相似的判定,勾股定理是解题的关键.3.(2021·浙江中考真题)(证明体验)(1)如图1,AD 为ABC 的角平分线,60ADC ∠=︒,点E 在AB 上,AE AC =.求证:DE 平分ADB ∠.(思考探究)(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB FC =,2DG =,3CD =,求BD 的长.(拓展延伸)(3)如图3,在四边形ABCD 中,对角线AC 平分,2BAD BCA DCA ∠∠=∠,点E 在AC 上,EDC ABC ∠=∠.若5,2BC CD AD AE ===,求AC 的长.【答案】(1)见解析;(2)92;(3)163 【分析】(1)根据SAS 证明EAD CAD ≌△△,进而即可得到结论;(2)先证明EBD GCD ∽,得BD DE CD DG=,进而即可求解;(3)在AB 上取一点F ,使得AF AD =,连结CF ,可得AFC ADC ≌,从而得DCE BCF ∽,可得,CD CE CED BFC BC CF=∠=∠,4CE =,最后证明EAD DAC ∽,即可求解. 【详解】解:(1)①AD 平分BAC ∠,①EAD CAD ∠=∠,①,==AE AC AD AD ,①()EAD CAD SAS ≌,①60ADE ADC ∠=∠=︒,①18060EDB ADE ADC ∠=︒-∠-∠=︒,①BDE ADE =∠∠,即DE 平分ADB ∠;(2)①FB FC =,①EBD GCD ∠=∠,①60BDE GDC ∠=∠=︒,①EBD GCD ∽, ①BD DE CD DG=. ①EAD CAD ≌△△,①3DE DC ==.①2DG =, ①92BD =; (3)如图,在AB 上取一点F ,使得AF AD =,连结CF .①AC 平分BAD ∠,①FAC DAC ∠=∠①AC AC =,①()AFC ADC SAS ≌,①,,CF CD ACF ACD AFC ADC =∠=∠∠=∠.①2ACF BCF ACB ACD ∠+∠=∠=∠,①DCE BCF ∠=∠.①EDC FBC ∠=∠,①DCE BCF ∽, ①,CD CE CED BFC BC CF=∠=∠.①5,BC CF CD ===,①4CE =.①180180AED CED BFC AFC ADC ∠=︒-∠=︒-∠=∠=∠,又①EAD DAC ∠=∠,①EAD DAC ∽ ①12EA AD AD AC ==, ①4AC AE =, ①41633AC CE ==. 【点睛】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,添加辅助线,构造全等三角形和相似三角形,是解题的关键.4.(2021·浙江中考真题)如图1,四边形ABCD 内接于O ,BD 为直径,AD 上存在点E ,满足AE CD =,连结BE 并延长交CD 的延长线于点F ,BE 与AD 交于点G .(1)若DBC α∠=,请用含α的代数式表列AGB ∠.(2)如图2,连结,CE CE BG =.求证;EF DG =.(3)如图3,在(2)的条件下,连结CG ,2AD =.①若tan ADB ∠=FGD 的周长. ①求CG 的最小值.【答案】(1)90AGB α∠=︒-;(2)见解析;(3)【分析】(1)利用圆周角定理求得90BAD ∠=︒,再根据AE CD =,求得ABG DBC α∠=∠=,即可得到答案; (2)由90BEC BDC α∠=∠=︒-,得到BEC AGB ∠=∠,从而推出CEF BGD ∠=∠,证得()CFE BDG ASA ≌,由此得到结论;(3)①连结DE .利用已知求出2AB AD ==,证得DA CE =,得到2BG AD ==,利用Rt ABG 中,根据正弦求出160,12AGB AG BG ∠=︒==,求出EF 的长,再利用Rt DEG △中,60EGD ∠=︒,求出EG 及DE ,再利用勾股定理求出DF 即可得到答案;①过点C 作CH BF ⊥于H ,证明()BAD CHF AAS ≌,得到FH AD =,证明BHC CHF ∽,得到BH CH CH FH=,设GH x =,得到()222CH x =-,利用勾股定理得到222CG GH CH =+ ,求得2222(2)(1)3CG x x x =+-=-+,利用函数的最值解答即可.【详解】解:(1)①BD 为O 的直径,①90BAD ∠=︒,①AE CD =, ①ABG DBC α∠=∠=,①90AGB α∠=︒-.(2)①BD 为O 的直径,①90BCD ∠=︒,①90BEC BDC α∠=∠=︒-,①BEC AGB ∠=∠,①180,180CEF BEC BGD AGB ∠=︒-∠∠=︒-∠, ①CEF BGD ∠=∠.又①,CE BG ECF GBD =∠=∠,①()CFE BDG ASA ≌,①EF DG =.(3)①如图,连结DE .①BD 为O 的直径,①90A BED ∠=∠=︒.在Rt ABD △中,tan ADB ∠=,2AD =,①AB AD ==.①AE CD =,①AE DE CD DE +=+,即DA CE =,①AD CE =.①CE BG =,①2BG AD ==.①在Rt ABG 中,sin 2AB AGB BG ∠==, ①160,12AGB AG BG ∠=︒==, ①1EF DG AD AG ==-=.①在Rt DEG △中,60EGD ∠=︒,①11,2222EG DG DE DG ====.在Rt FED 中,DF ==,①52FG DG DF +++=,①FGD . ①如图,过点C 作CH BF ⊥于H .①BDG CFE ≌,①,BD CF CFH BDA =∠=∠.①90BAD CHF ∠=∠=︒,①()BAD CHF AAS ≌.①FH AD =,①AD BG =,①FH BG =.①90BCF ∠=︒,①90BCH HCF ∠+∠=︒.①90BCH HBC ∠+∠=︒,①HCF HBC ∠=∠,①90BHC CHF ∠=∠=︒,①BHC CHF ∽, ①BH CH CH FH=. 设GH x =,①2BH x =-,①()222CH x =-. 在Rt GHC 中,222CG GH CH =+ ,①2222(2)(1)3CG x x x =+-=-+,当1x =时,2CG 的最小值为3,①CG【点睛】此题考查圆周角的定理,弧、弦和圆心角定理,全等三角形的判定及性质,勾股定理,三角函数,相似三角形的判定,函数的最值问题,是一道综合的几何题型,综合掌握各知识点是解题的关键.5.(2021·浙江中考真题)在扇形AOB 中,半径6OA =,点P 在OA 上,连结PB ,将OBP 沿PB 折叠得到O BP '.(1)如图1,若75O ∠=︒,且BO '与AB 所在的圆相切于点B .①求APO ∠'的度数.①求AP 的长.(2)如图2,BO '与AB 相交于点D ,若点D 为AB 的中点,且//PD OB ,求AB 的长.【答案】(1)①60°;①6-(2)125π 【分析】(1)根据图像折叠的性质,确定角之间的关系,通过已知的角度来间接求所求角的角度;求AP 的长,先连接'OO ,先在Rt OBQ △中,求出OQ ;再在Rt OPQ 中,求出OP 即可得到答案;(2)要求AB 的长,扇形的半径已知,就转化成求AOB ∠的度数,连接'OO ,通过条件找到角之间的等量关系,再根据三角形内角和为180︒,建立等式求出AOB ∠,最后利用弧长的计算公式进行计算.【详解】解:(1)①如图1,'BO 为圆的切线'90OBO ∴∠=︒.由题意可得,'45O BP OBP ∠=∠=︒,'O PB OPB ∠=∠.180180754560OPB BOP OBP ∴∠=︒-∠-∠=︒-︒-︒=︒'60O PB OPB ∴∠=∠=︒'60APO ∴∠=︒,①如图1,连结'OO ,交BP 于点Q .则有'BP OO ⊥.在Rt OBQ △中,sin 45OQ OB =⨯︒=在Rt OPQ △中,sin 60OQ OP ==︒6AP OA OP ∴=-=-(2)如图2.连结OD .设1a ∠=.①点D 为AB 的中点.BD AD ∴=21a ∴∠=∠=//PD OB321a ∴∠=∠=∠=.PD PO ∴=由题意可得,','PO PO O BOP =∠=∠.'PD PO ∴=''2PDO O BOP a ∴∠=∠=∠=又//,''2PD OB OBO PDO a ∴∠=∠=,4'2OB OD OBO a =∴∠=∠=43'180PDO ∠+∠+∠=︒,22180a a a ∴++=︒,解得36a =︒.72AOB ∴∠=︒726121801805n R AB πππ⨯∴===. 【点睛】本题考查了求线段的长度和弧长的长度问题,解题的关键是:根据题目中的条件,找到边角之间的等量关系,通过等量代换的思想间接求出所需要求的量.6.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =. (3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.【答案】(1)(2)见解析;(3)存在,m 【分析】(1)先解直角三角形ABC 得出2AB AC =,从而得出ADC 是等边三角形,再解直角三角形ACP 即可求出AC 的长,进而得出BC 的长;(2)连结BE ,先利用AAS 证出≌CPA DPE ,得出AE =2PE ,AC =DE ,再得出ADC 是等边三角形,然后由SAS 得出≌CAB EBA ,得出AE =BC 即可得出结论;(3)过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ①AB 于G ,过E 作EN ①AB 于N ,由(2)得AE =2AP ,DE =AC ,再证明≌AEN BCG ,从而得出≌CAB EBA 得出DE =BE ,然后利用勾股定理即可得出m 的值.【详解】(1)解 90,60ACB CAD ∠=∠=︒︒,2cos60AC AB AC ︒==, BD AC =,AD AC =∴,ADC ∴是等边三角形,60ACD ∴∠=︒ Р是CD 的中点,AP CD ∴⊥,在Rt APC 中,AP =2sin 60AP AC ∴==︒,tan 60BC AC =︒=∴(2)证明:连结BE ,//DE AC ,CAP DEP ∴∠=∠,,CP DP CPA DPE =∠=∠,()CPA DPE AAS ∴≌,1,2AP EP AE DE AC ∴===, BD AC =,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,BDE ∴是等边三角形,,60BD BE EBD ∴=∠=︒BD AC =,AC BE ∴=,又60,CAB EBA AB BA ∠=∠=︒=,()CAB EBA SAS ∴≌,AE BC ∴=,2BC AP ∴=.(3)存在这样的,m m =.过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ①AB 于G ,过E 作EN ①AB 于N ,则45∠=∠=︒BDE CAD ,sin 45∴=⨯CG AC ,sin 45=⨯EN DE由(2)得AE =2AP ,DE =AC ,①CG =EN ,①2BC AP =,①AE =BC ,①①ANE =①BGC =90°,≌∴AEN BCG ,①①EAN =①CBG①AE =BC ,AB =BA ,①≌CAB EBA①AC =BE ,①DE =BE ,①①EDB =①EBD =45°,①①DEB =90°,①=BD ,①BD mAC = ①m【点睛】本题属于三角形综合题,考查了解直角三角形,全等三角形的性质与判定,等边三角形和等腰三角形的性质、勾股定理,解题的关键是合理添加辅助线,有一定的难度.7.(2021·安徽中考真题)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作CF //AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD △≌△;(2)如图2,若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF 的延长线经过AD 的中点M ,求BE EC的值.【答案】(1)见解析;(2)6;(3)1【分析】(1)根据平行线的性质及已知条件易证ABE AEB ∠=∠,DCE DEC ∠=∠,即可得AB AE =,DE DC =;再证四边形AFCD 是平行四边形即可得AF CD =,所以AF DE =,根据SAS 即可证得ABF EAD △≌△;(2)证明EBF EAB ∽△△,利用相似三角形的性质即可求解;(3)延长BM 、ED 交于点G .易证ABE DCE ∽,可得AB AE BE DC DE CE==;设1CE =,BE x =,DC DE a ==,由此可得AB AE ax ==,AF CD a ==;再证明MAB MDG △≌△,根据全等三角形的性质可得DG AB ax ==.证明FAB FEG △∽△,根据相似三角形的性质可得FA AB FE EG =,即(1)(1)a ax a x a x =-+,解方程求得x 的值,继而求得BE EC的值. 【详解】(1)证明://AE CD ,AEB DCE ∴∠=∠;//DE AB ,ABE DEC ∴∠=∠,12∠=∠,ABC BCD ∠=∠,ABE AEB ∴∠=∠,DCE DEC ∠=∠,AB AE =∴,DE DC =,//AF CD ,//AD CF ,∴四边形AFCD 是平行四边形AF CD ∴=AF DE ∴=在ABF 与EAD 中.12AB EAAF ED=⎧⎪∠=∠⎨⎪=⎩,()ABF EAD SAS ∴△≌△(2)ABF EAD △≌△,BF AD ∴=,在AFCD □中,AD CF =,BF CF ∴=,FBC FCB ∴∠=∠,又2FCB ∠=∠,21∠=∠,1FBC ∴∠=∠,在EBF △与EAB 中.1EBF BEF AEB∠=∠⎧⎨∠=∠⎩,EBF EAB ∴△∽△;EBEFEA EB ∴=;9AB =,9AE ∴=;5CD =,5AF ∴=;4EF ∴=,49EB EB∴=, 6BE ∴=或6-(舍); (3)延长BM 、ED 交于点G .ABE 与DCE 均为等腰三角形,ABC DCE ∠=∠, ABE DCE ∴△∽△,AB AE BE DC DE CE∴==, 设1CE =,BE x =,DC DE a ==, 则AB AE ax ==,AF CD a ==, (1)EF a x ∴=-,//AB DG ,3G ∴∠=∠;在MAB △与MDG 中,345G MA MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()MAB MDG AAS ∴△≌△;DG AB ax ∴==.(1)EG a x ∴=+;//AB EG ,FAB FEG ∴△∽△,FA AB FE EG ∴=, (1)(1)a ax a x a x ∴=-+, (1)1x x x -∴=+,2210x x ∴--=,2(1)2x ∴-=,1x ∴=11x ∴=,21x =1BE EC∴= 【点睛】本题是三角形综合题,考查了全等三角形的性质及判定、相似三角形的性质及判定,熟练判定三角形全等及相似是解决问题的关键.8.(2021·四川中考真题)在等腰ABC 中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若60C ∠=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE ∠=________;(2)若60C ∠=°,将线段AD 绕点A 顺时针旋转60︒得到线段AE ,连结BE .①在图2中补全图形;①探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE ==,且ADE C ∠=∠,试探究BE 、BD 、AC 之间满足的数量关系,并证明.【答案】(1)30°;(2)①见解析;①CD BE =;见解析;(3)()AC k BD BE =+,见解析【分析】(1)先根据题意得出①ABC 是等边三角形,再利用三角形的外角计算即可(2)①按要求补全图即可①先根据已知条件证明①ABC 是等边三角形,再证明AEB ADC △≌△,即可得出CD BE =(3)先证明AC BC AD DE=,再证明ACB ADE △∽△,得出BAC EAD ∠=∠,从而证明AEB ADC △≌△,得出BD BE BC +=,从而证明()AC k BD BE =+【详解】解:(1)①AB AC =,60C ∠=°①①ABC 是等边三角形①①B =60°①点D 关于直线AB 的对称点为点E①AB ①DE ,①BDE ∠=30故答案为:30;(2)①补全图如图2所示;①CD 与BE 的数量关系为:CD BE =;证明:①AB AC =,60BAC ∠=︒.①ABC 为正三角形,又①AD 绕点A 顺时针旋转60︒,①AD AE =,60EAD ∠=︒,①60BAD DAC ∠+∠=︒,60BAD BAE ∠+∠=︒,①BAE DAC ∠=∠,①AEB ADC △≌△,①CD BE =.(3)连接AE .①AB AD k BC DE ==,AB AC =,①AC AD BC DE=. ①AC BC AD DE =. 又①ADE C ∠=∠,①ACB ADE △∽△,①BAC EAD ∠=∠.①AB AC =,①AE AD =,①BAD DAC BAD BAE ∠+∠=∠+∠,①DAC BAE ∠=∠,①AEB ADC △≌△,CD BE =.①BD DC BC +=,①BD BE BC +=.又①AC k BC=, ①()AC k BD BE =+.【点睛】本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点9.(2021·山东中考真题)如图1,O 为半圆的圆心,C 、D 为半圆上的两点,且BD CD =.连接AC 并延长,与BD 的延长线相交于点E .(1)求证:CD ED =;(2)AD 与OC ,BC 分别交于点F ,H .①若CF CH =,如图2,求证:CF AF FO AH ⋅=⋅;①若圆的半径为2,1BD =,如图3,求AC 的值.【答案】(1)见解析;(2)①见解析;①72AC =【分析】(1)连接BC ,根据90ACB BCE ∠=∠=︒,90ECD BCD ∠+∠=︒且BD CD =,则E ECD ∠=∠,即可推导出CD ED =;(2)①CF CH =,则AFO CHF ∠=∠,又BD CD =,CAD BAD ∠=∠,则AFO AHC △∽△,进而推导出CF AF FO AH ⋅=⋅;①连接OD 交BC 于G ,设OG x =,则2DG x =-,根据在Rt OGB △和Rt BGD △中列式222221(2)x x -=--,进而求得x 的值,再根据中位线定理求出AC 的长.【详解】证明:(1)连接BC ,①AB 为直径①90ACB BCE ∠=∠=︒ 90ECD BCD ∠+∠=︒①BD CD =①EBC BCD ∠=∠①E ECD ∠=∠①CD ED =.(2)①①CF CH =①CFH CHF ∠=∠又①AFO CFH ∠=∠①AFO CHF ∠=∠又①BD CD =①CAD BAD ∠=∠①AFO AHC △∽△ ①AF OF AH CH= ①AF OF AH CF = ①CF AF OF AH ⋅=⋅①连接OD 交BC 于G .设OG x =,则2DG x =-①CD BD =①COD BOD ∠=∠又①OC OB =①OD BC ,CG BG =在Rt OGB △和Rt BGD △中222221(2)x x -=-- ①74x =即74OG = ①OA OB =①OG 是ABC 的中位线 ①12OG AC =①72AC =.【点睛】本题考查了等弧对等角、相似三角形、等腰三角形、中位线等有关知识点,属于综合题型,借助辅助线是解决这类问题的关键.10.(2021·江苏中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC 是边长为3的等边三角形,E 是边AC 上的一点,且1AE =,小亮以BE 为边作等边三角形BEF ,如图1,求CF 的长;(2)ABC 是边长为3的等边三角形,E 是边AC 上的一个动点,小亮以BE 为边作等边三角形BEF ,如图2,在点E 从点C 到点A 的运动过程中,求点F 所经过的路径长;(3)ABC 是边长为3的等边三角形,M 是高CD 上的一个动点,小亮以BM 为边作等边三角形BMN ,如图3,在点M 从点C 到点D 的运动过程中,求点N 所经过的路径长;(4)正方形ABCD 的边长为3,E 是边CB 上的一个动点,在点E 从点C 到点B 的运动过程中,小亮以B 为顶点作正方形BFGH ,其中点F 、G 都在直线AE 上,如图4,当点E 到达点B 时,点F 、G 、H 与点B 重合.则点H 所经过的路径长为______,点G 所经过的路径长为______.【答案】(1)1;(2)3;(3(4)34π;4 【分析】(1)由ABC ∆、BEF ∆是等边三角形,BA BC =,BE BF =, ABE CBF ∠=∠,可证ABE CBF ∆∆≌即可;(2)连接CF ,ABC ∆、BEF ∆是等边三角形,可证ABE CBF ∆∆≌,可得BCF ABC ∠=∠,又点E 在C 处时,CF AC =,点E 在A 处时,点F 与C 重合.可得点F 运动的路径的长3==AC ; (3)取BC 中点H ,连接HN ,由ABC ∆、BMN ∆是等边三角形,可证≌∆∆DBM HBN ,可得NH BC ⊥.又点M 在C 处时,==HN CD M 在D 处时,点N 与H 重合.可求点N 所经过的路径的长==CD (4)连接CG ,AC ,OB ,由①CGA =90°,点G 在以AC 中点为圆心,AC 为直径的BC 上运动,由四边形ABCD 为正方形,BC 为边长,设OC =x ,由勾股定理222CO BO BC +=即,可求x =G 所经过的路径长为BC 长=4,点H 所经过的路径长为BN 的长34π=. 【详解】 解:(1)①ABC ∆、BEF ∆是等边三角形,①BA BC =,BE BF =,60∠=∠=︒ABC EBF .①∠+∠=∠+∠ABE CBE CBF CBE ,①ABE CBF ∠=∠,①ABE CBF ∆∆≌,①1CF AE ==;(2)连接CF ,①ABC ∆、BEF ∆是等边三角形,①BA BC =,BE BF =,60∠=∠=︒ABC EBF .①∠+∠=∠+∠ABE CBE CBF CBE ,①ABE CBF ∠=∠,①ABE CBF ∆∆≌,①CF AE =,60∠=∠=︒BCF BAE ,①60ABC ∠=︒,①BCF ABC ∠=∠,①//CF AB ,又点E 在C 处时,CF AC =,点E 在A 处时,点F 与C 重合.①点F 运动的路径的长3==AC ;(3)取BC 中点H ,连接HN , ①12BH BC =, ①12=BH AB , ①CD AB ⊥, ①12BD AB =,①BH BD =,①ABC ∆、BMN ∆是等边三角形,①BM BN =,60∠=∠=︒ABC MBN ,①∠+∠=∠+∠DBM MBH HBN MBH ,①∠=∠DBM HBN ,①≌∆∆DBM HBN ,①=HN DM ,90∠=∠=︒BHN BDM ,①NH BC ⊥,又点M 在C 处时,2==HN CD ,点M 在D 处时,点N 与H 重合,①点N 所经过的路径的长==CD (4)连接CG ,AC ,OB ,①①CGA =90°, ①点G 在以AC 中点为圆心,AC 为直径的BC 上运动,①四边形ABCD 为正方形,BC 为边长,①①COB =90°,设OC =x ,由勾股定理222CO BO BC +=即2223x x +=,①x =点G 所经过的路径长为BC 长=124π⨯=⎝⎭, 点H 在以BC 中点为圆心,BC 长为直径的弧BN 上运动,点H 所经过的路径长为BN 的长度,①点G 运动圆周的四分之一,①点H 也运动圆周的四分一,点H 所经过的路径长为BN 的长=1332424ππ⨯⨯=,故答案为34π.【点睛本题考查等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式,掌握等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式是解题关键.11.(2021·吉林中考真题)实践与探究操作一:如图①,已知正方形纸片ABCD ,将正方形纸片沿过点A 的直线折叠,使点B 落在正方形ABCD 的内部,点B 的对应点为点M ,折痕为AE ,再将纸片沿过点A 的直线折叠,使AD 与AM 重合,折痕为AF ,则EAF ∠= 度.操作二:如图①,将正方形纸片沿EF 继续折叠,点C 的对应点为点N .我们发现,当点E 的位置不同时,点N 的位置也不同.当点E 在BC 边的某一位置时,点N 恰好落在折痕AE 上,则∠=AEF 度. 在图①中,运用以上操作所得结论,解答下列问题:(1)设AM 与NF 的交点为点P .求证ANP FNE △≌△:.(2)若AB =AP 的长为 .【答案】操作一:45°,操作二:60°;(1)证明见解析;(2)2【分析】操作一:直接利用折叠的性质,得出两组全等三角形,从而得出BAE EAM ∠=∠,,MAF FAD ,从而得出①EAF 的值;操作二:根据折叠的性质得出,ABEAME CEF NEF ,从而得出BEA AEF FEC ,即可求得AEF ∠的度数;(1)首先利用60AEF ∠=︒ ,得出30,15NAP PAF ,则45NAF ∠=︒,从而得出①ANF 为等腰直角三角形,即可证得ANP FNE △≌△;(2)利用三角函数或者勾股定理求出BE 的长,则BE EM =,设DF =x ,那么FC x ,在Rt ①EFC 中,利用勾股定理得出DF 的长,也就是MF 的长,即可求得EF 的长,进而可得结果.【详解】操作一:45°,证明如下:①ABE △折叠得到AME △ ,ADF 折叠得到AMF ,①,ABEAME ADF AMF , ①11,22BAEMAE BAM MAF DAF MAD , ①111()222EAF EAM MAF BAM MAD BAM MAD190452=⨯︒=︒, 故填:45°;操作二:60°,证明如下:①ABE AME , ①BEA AEM ,又①CEF △沿着EF 折叠得到ENF △ ,①CEF NEF , ①NEF FEC , ①1603BEAAEF FEC BEC , 故填:60°;(1)证明:由上述证明得CEF NEF ,60NEC CEF , ①NFE CFE ,CENF ①四边形ABCD 为正方形,①①C =①D =90°,①30CFE NFE ,90ENF ANF , 又①ADFAMF , ①90D AMF ,在ANP 和PMF △中,①90,ANPPMF NPA MPF , ①30NAPMFP , ①30BAENAP , ①15MAFFAD , ①301545NAF NAP PAF ,①ANF 为等腰直角三角形,即AN =NF ,在ANP 和FNE 中:①NAP NFE AN NF ANP ENF ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ANP FNE ASA △≌△(2)由题可知ABE △是直角三角形,30BAE ∠=︒, ①3tan 33BE BE BAEAB , 解得BE =1,①BE =EM =1,31EC ,设DF =x,则MF =x ,CF x ,在Rt ①CEF 中,222CECF EF +=2221)(3)(1)x x,解得x =3, 则1232x EF ,①()ANP FNE ASA △≌△①AP =EF =2.【点睛】本题考查正方形的性质,折叠的性质,全等三角形的判定,勾股定理,解题的关键是熟练运用折叠的性质,找出全等三角形.12.(2021·湖南中考真题)如图,在ABC 中,AB AC =,N 是BC 边上的一点,D 为AN 的中点,过点A 作BC 的平行线交CD 的延长线于T ,且AT BN =,连接BT .(1)求证:BN CN =;(2)在如图中AN 上取一点O ,使AO OC =,作N 关于边AC 的对称点M ,连接MT 、MO 、OC 、OT 、CM 得如图.①求证:TOM AOC ∽;①设TM 与AC 相交于点P ,求证:1//,2PD CM PD CM =. 【答案】(1)见解析;(2)①见解析,①见解析.【分析】(1)先用//AT BN ,且AT BN =证明出四边形ATBN 是平行四边形,得到①TAD ①①CND ,用对应边相等与等量代换,从而得出结论.(2)①连接AM 、MN ,利用矩形的性质与等腰三角形的性质,证明出①OCM 是直角三角形,证明出Rt ①OAT ①Rt ①OCM ,得到对应角相等,则得到答案;①连接OP ,由①中TOM AOC ∽,得到①OTM =①OAP ,点O 、T 、A 、P 共圆,由直径所对的圆周角为直角,证明出①OPT =90①,再根据等腰三角形的三线合一性得出结论.【详解】证明:(1)①//AT BC ,且AT BN =①//AT BN ,且AT BN =,①四边形ATBN 是平行四边形,①//AN TB ,①①DTA =①DCN ,①①ADT =①NDC ,①点D 为AN 的中点,①AD =ND ,①①TAD ①①CND (AAS )①TA=CN,①AT BN,①BN=CN,(2)①如图所示,连接AM、MN,①点N关于边AC的对称点为M,①①ANC①①AMC,①①ACN=①ACM,①AB=AC,点N为AC的中点,①平行四边形ATBN是矩形,①①TAB=①ABN=①ACN=①ACM,①BAN=①MAC=①CAN,AT=BN=NC=MC,①OA=OC,①①CAN=①ACO,①①TAB+①BAN=①ACM+①ACO=90①,①①OAT=①OCM=90①,在Rt①OAT和Rt①OCM中,①AT=CM,①OAT=①OCM ,OA=OC,①Rt①OAT①Rt①OCM(SAS),①①AOT=①COM,OT=OM,①①AOT+①AOM=①COM+①AOM,①①TOM=①AOC①OA=OC,OT=OM,①OT OM OA OC=,①TOM AOC∽;①如图所示,连接OP,①TOM AOC∽,①①OTM=①OAP,①点O、T、A、P共圆,①①OAT=90①,①OT为圆的直径,①①OPT=90①,①OT=OM,①点P为TM的中点,①由(1)得①TAD①①CND,①TD=CD,①点D为TC的中点,①DP为①TCM的中位线,①1//,2PD CM PD CM.【点睛】本题主要考查了矩形的判定与性质、等腰三角形的性质、三角形全等的判定与性质、以及相似三角形的判定与性质、圆中直径的性质,关键在于通过等量代换,换出角相等,证明出直角三角形全等,再证明三角形相似.13.(2021·浙江台州市·中考真题)如图,BD是半径为3的①O的一条弦,BD=,点A是①O上的一个动点(不与点B,D重合),以A,B,D为顶点作平行四边形ABCD.(1)如图2,若点A是劣弧BD的中点.①求证:平行四边形ABCD是菱形;①求平行四边形ABCD的面积.(2)若点A运动到优弧BD上,且平行四边形ABCD有一边与①O相切.①求AB的长;①直接写出平行四边形ABCD对角线所夹锐角的正切值.【答案】①证明见解析;①(2)①AB【分析】=,根据一组邻边相等的平行四边形是菱形可得证;①连接AO,(1)①利用等弧所对的弦相等可得AD AB交BD于点E,连接OD,根据垂径定理可得DE BE==OE的长,即可求解;(2)①分情况讨论当CD与O相切时、当BC与O相切时,利用垂径定理即可求解;①根据等面积法求出AH的长度,利用勾股定理求出DH的长度,根据正切的定义即可求解.【详解】解:(1)①①点A是劣弧BD的中点,①AD AB=,=,①AD AB①四边形ABCD是平行四边形,①平行四边形ABCD是菱形;①连接AO,交BD于点E,连接OD,,①点A 是劣弧BD 的中点,OA 为半径,①OA BD ⊥,OA 平分BD ,①DE BE ==①平行四边形ABCD 是菱形,①E 为两对角线的交点,在Rt ODE △中,1OE ==,①2AE =,①122ABCD S BD AE =⋅⨯=; (2)①如图,当CD 与O 相切时,连接DO 并延长,交AB 于点F ,①CD 与O 相切,①DF CD ⊥,①2AB BF =,①四边形ABCD 是平行四边形,①//AB CD ,①DF AB ⊥,在Rt BDF △中,()2222323BF BD DF OF =-=-+,在Rt BOF △中,22229BF BO OF OF =-=-,①()223239OF OF -+=-,解得73OF =,①BF =①2AB BF == 如图,当BC 与O 相切时,连接BO 并延长,交AD 于点G ,同理可得AG DG ==73OG =,所以AB ==综上所述,AB ①过点A 作AH BD ⊥,,由(2)得:7163,33BD AD BG ===+= 根据等面积法可得1122BD AH AD BG ⋅=⋅, 解得329AH =,在在Rt ADH 中,DH ==,①HI ==①tan AH AIH HI ∠== 【点睛】本题考查垂径定理、平行四边形的判定与性质、解直角三角形等内容,掌握分类讨论的思想是解题的关键. 14.(2021·青海中考真题)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作60,30,15︒︒︒等大小的角,可以采用如下方法:操作感知:第一步:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开(如图13-1). 第二步:再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN (如图13-2).猜想论证:(1)若延长MN 交BC 于点P ,如图13-3所示,试判定BMP 的形状,并证明你的结论.拓展探究:(2)在图13-3中,若AB a BC b ==,,当a b ,满足什么关系时,才能在矩形纸片ABCD 中剪出符(1)中的等边三角形BMP ?【答案】(1)BMP 是等边三角形,理由见解析;(2)a ≤,理由见解析 【分析】(1)连接AN ,由折叠性质可得ABN 是等边三角形, 30PBN ∠=︒,30ABM NBM ∠=∠=︒,然后可得到 60MBP BMP ∠=∠=︒,即可判定 BMP 是等边三角形.(2)由折叠可知BC BP ≥,由(1)可知BP BM =,利用 30︒的三角函数即可求得.【详解】(1)解:BMP 是等边三角形,证明如下:连接AN .由折叠可知:AB BN =,EF 垂直平分AB .①AN BN =,①AN AB BN ==,①ABN 为等边三角形,①60ABN ∠=︒,①30PBN ∠=︒,①30ABM NBM ∠=∠=︒,90BNM BAM ∠=∠=︒,①60BMP ∠=︒,①60MBP BMP BPM ∠=∠=∠=︒,①BMP 是等边三角形.(2)解:方法一:要在矩形纸片ABCD 上剪出等边BMP ,则BC BP ≥,在Rt BNP △中,BN BA a ==,30PBN ∠=︒,①cos30a BP ==︒, ①BC BP ≥,①b ≥,即a ≤,当a ≤或(b ≥)时,在矩形纸片上能剪出这样的等边BMP . 方法二:要在矩形纸片ABCD 上剪出等边BMP ,则BC BP ≥,在Rt BNP △中,30NBP ∠=︒,BN AB a ==,设NP x =,则2BP x =,①222BP NP BN -=,即()2222x x a -=,得3x a =,①BP =, ①BC BP ≥,①3b a ≥,即2a b ≤,当a ≤(或b ≥)时,在矩形纸片上能剪出这样的等边BMP . 【点睛】本题考查了折叠的性质,及锐角三角函数的应用,正确理解折叠性质灵活运用三角函数解直角三角形是解本题的关键.15.(2021·海南中考真题)如图1,在正方形ABCD 中,点E 是边BC 上一点,且点E 不与点B C 、重合,点F 是BA 的延长线上一点,且AF CE =.(1)求证:DCE DAF ≌;(2)如图2,连接EF ,交AD 于点K ,过点D 作DH EF ⊥,垂足为H ,延长DH 交BF 于点G ,连接,HB HC .①求证:HD HB =;①若DK HC ⋅=HE 的长.【答案】(1)见解析;(2)①见解析;①1HE =.【分析】(1)直接根据SAS 证明即可;(2)①根据(1)中结果及题意,证明DFE △为等腰直角三角形,根据直角三角形斜边上的中线即可证明HD HB =;①根据已知条件,先证明DCH BCH ≌,再证明DKF HEC ∽,然后根据等腰直角三角形的性质即可求出HE 的长.【详解】(1)证明:①四边形ABCD 是正方形,,90CD AD DCE DAF ∴=∠=∠=︒.又CE AF =,DCE DAF ∴≌.(2)①证明;由(1)得DCE DAF ≌,,DE DF CDE ADF ∴=∠=∠.90FDE ADF ADE CDE ADE ADC ∴∠=∠+∠=∠+∠=∠=︒.DFE ∴为等腰直角三角形.又DH EF ⊥,∴点H 为EF 的中点.12HD EF ∴=. 同理,由HB 是Rt EBF △斜边上的中线得,12HB EF =. HD HB ∴=.①①四边形ABCD 是正方形,CD CB ∴=.又,HD HB CH CH ==,DCH BCH ∴≌.45DCH BCH ∴∠=∠=︒.又DEF 为等腰直角三角形,45DFE ∴∠=︒.HCE DFK ∴∠=∠.四边形ABCD 是正方形,//AD BC ∴.DKF HEC ∴∠=∠.DKF HEC ∴∽.DK DF HE HC∴=. DK HC DF HE ∴⋅=⋅.又①在等腰直角三角形DFH 中,DF ==2DK HC DF HE ∴⋅=⋅==1HE ∴=.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、直角三角形斜边上的中线以及等腰直角三角形的性质,熟知图形的性质与判定是解决本题的关键.16.(2021·甘肃中考真题)问题解决:如图1,在矩形ABCD 中,点,E F 分别在,AB BC 边上,,DE AF DE AF =⊥于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH AE =,判断AHF △的形状,并说明理由.类比迁移:如图2,在菱形ABCD 中,点,E F 分别在,AB BC 边上,DE 与AF 相交于点G ,,60,6,2DE AF AED AE BF =∠=︒==,求DE 的长.【答案】问题解决:(1)见解析;(2)等腰三角形,理由见解析;类比迁移:8【分析】问题解决:(1)证明矩形ABCD 是正方形,则只需证明一组邻边相等即可.结合DE AF ⊥和90DAE ∠=︒可知BAF ADG ∠=∠,再利用矩形的边角性质即可证明ABF DAE ≌,即AB AD =,即可求解; (2)由(1)中结论可知AE BF =,再结合已知BH AE =,即可证明ABH DAE △≌△,从而求得AHF △是等腰三角形;类比迁移:由前面问题的结论想到延长CB 到点H ,使得6BH AE ==,结合菱形的性质,可以得到ABH DAE ∆∆≌,再结合已知60AED ∠=︒可得等边AHF ∆,最后利用线段BF 长度即可求解.【详解】解:问题解决:(1)证明:如图1,①四边形ABCD 是矩形,90ABC DAB ∴∠=∠=︒.90BAF GAD ∴∠+∠=︒.,90DE AF ADG GAD ⊥∴∠+∠=.BAF ADG ∴∠=∠.又,,AF DE ABF DAE AB AD =∴∴=≌.①矩形ABCD 是正方形.(2)AHF △是等腰三角形.理由如下:,90,AB AD ABH DAE BH AE =∠=∠=︒=,,ABH DAE AH DE ∴∴=≌.又,DE AF AH AF =∴=,即AHF △是等腰三角形.类比迁移:如图2,延长CB 到点H ,使得6BH AE ==,连接AH .①四边形ABCD 是菱形,,,AD BC AB AD ABH BAD ∴=∴∠=∠∥.,BH AE ABH DAE =∴∆≌.,60AH DE AHB DEA ∴=∠=∠=︒.又,DE AF AH AF =∴=.60,AHB AHF ∠=︒∴是等边三角形,AH HF ∴=,628DE AH HF HB BF ∴===+=+=.【点睛】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.17.(2021·四川中考真题)如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:ABF CBE ∽;(2)如图2,连接AE ,点P 、M 、N 分别为线段AC 、AE 、EF 的中点,连接PM 、MN 、PN .求PMN∠的度数及MN PM的值;(3)在(2)的条件下,若BC =PMN 面积的最大值.【答案】(1)证明见解析;(2)135PMN ∠=;MN PM (3)14 【分析】(1)根据两边对应成比例,夹角相等判定即可.(2)PMN ∠的值可以根据中位线性质,进行角转换,通过三角形内角和定理求解即可,MN PM 的比值转换为AF CE的比值即可求得. (3)过点P 作PQ 垂直于NM 的延长线于点Q ,12PMN S MN PQ =△,将相关线段关系转化为CE ,可得关系218PMN S CE =△,观察图象,当CE BC == 【详解】(1)证明:①90ACB ∠=︒,AC BC =。

中考数学压轴题专题07几何图形动点运动问题(学生版+解析版)

中考数学压轴题专题07几何图形动点运动问题(学生版+解析版)

专题七几何图形动点运动问题【考题研究】几何动点运动问题,是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究.对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用.动态问题,以运动中的几何图形为载体所构建成的综合题,它能把几何、三角、函数、方程等知识集于一身,题型新颖、灵活性强、有区分度,受到了人们的高度关注,同时也得到了命题者的青睐,动态几何问题,常常出现在各地的中考数学试卷中.【解题攻略】几何动点运动问题通常包括动点问题、动线问题、面动问题,在考查图形变换(含三角形的全等与相似)的同时常用到的不同几何图形的性质,以三角形四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想.【解题类型及其思路】动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题,利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。

解题类型:几何动点运动问题常见有两种常见类型:(1)利用函数与方程的思想和方法将所解决图形的性质直接转化为函数或方程;(2)根据运动图形的位置分类,把动态问题分割成几个静态问题,再将几何问题转化为函数和方程问题【典例指引】类型一【探究动点运动过程中线段之间的数量关系】【典例指引1】在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD∠CAF(填“=”或“≠”),并证明:CF⊥BD(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=42,CD=2,求线段CP的长.【举一反三】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________类型二【确定动点运动过程中的运动时间】【典例指引2】已知:如图,在平面直角坐标系中,长方形OABC的项点B的坐标是(6,4).(1)直接写出A点坐标(______,______),C点坐标(______,______);P m,且四边形OADP的面积是(2)如图,D为OC中点.连接BD,AD,如果在第二象限内有一点(),1∆面积的2倍,求满足条件的点P的坐标;ABC(3)如图,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N从点A出发.以每秒2t>,在M,个单位的連度沿线段AO运动,当N到达O点时,M,N同时停止运动,运动时间是t秒()0N运动过程中.当5MN=时,直接写出时间t的值.【举一反三】如图,▱ABCD 的对角线AC 、BD 相交于点O ,AB ⊥AC ,AB =3,BC =5,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连结PO 并延长交BC 于点Q .设点P 的运动时间为t 秒. (1)求BQ 的长,(用含t 的代数式表示)(2)当四边形ABQP 是平行四边形时,求t 的值(3)当点O 在线段AP 的垂直平分线上时,直接写出t 的值.类型三 【探究动点运动过程中图形的形状或图形之间的关系】【典例指引3】已知矩形ABCD 中,10cm AB =,20cm BC =,现有两只蚂蚁P 和Q 同时分别从A 、B 出发,沿AB BC CD DA =--方向前进,蚂蚁P 每秒走1cm ,蚂蚁Q 每秒走2cm .问:(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行几秒?(2)P 、Q 两只蚂蚁最快爬行几秒后,直线PQ 与边AB 平行?如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(AO<AB)且AO、AB的长分别是一元二次方程x2-3x+2=0的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.类型四【探究动点运动过程中图形的最值问题】【典例指引4】如图,抛物线y=ax2﹣34x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P 在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.已知:如图.在△ABC中.AB=AC=5cm,BC=6cm.点P由B出发,沿BC方向匀速运动.速度为1cm/s.同时,点Q从点A出发,沿AC方向匀速运动.速度为1cm/s,过点P作PM⊥BC交AB于点M,过点Q作QN⊥BC,垂足为点N,连接MQ,若设运动时间为t(s)(0<t<3),解答下列问题:(1)当t为何值时,点M是边AB中点?(2)设四边形PNQM的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PNQM:S△ABC=4:9?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使四边形PNQM为正方形?若存在,求出此时t的值;若不存在,请说明理由.【新题训练】1.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).2.如图,在矩形ABCD中,AB=18,AD=12,点M是边AB的中点,连结DM,DM与AC交于点G,点E,F分别是CD与DG上的点,连结EF,(1)求证:CG=2AG.(2)若DE=6,当以E,F,D为顶点的三角形与△CDG相似时,求EF的长.(3)若点E从点D出发,以每秒2个单位的速度向点C运动,点F从点G出发,以每秒1个单位的速度向点D运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG的面积的最小值.3.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF 向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.4.如图所示,已知抛物线2(0)y ax a =≠与一次函数y kx b =+的图象相交于(1,1)A --,(2,4)-B 两点,点P 是抛物线上不与A ,B 重合的一个动点.(1)请求出a ,k ,b 的值;(2)当点P 在直线AB 上方时,过点P 作y 轴的平行线交直线AB 于点C ,设点P 的横坐标为m ,PC 的长度为L ,求出L 关于m 的解析式;(3)在(2)的基础上,设PAB ∆面积为S ,求出S 关于m 的解析式,并求出当m 取何值时,S 取最大值,最大值是多少?5.已知:如图,在矩形ABCD 中,AC 是对角线,AB =6cm ,BC =8cm .点P 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ,同时,点Q 从点C 出发,沿CB 方向匀速运动,速度为2cm /s ,过点Q 作QM ∥AB 交AC 于点M ,连接PM ,设运动时间为t (s )(0<t <4).解答下列问题:(1)当t 为何值时,∠CPM =90°;(2)是否存在某一时刻t ,使S 四边形MQCP =ABCD 1532S 矩形?若存在,求出t 的值;若不存在,请说明理由; (3)当t 为何值时,点P 在∠CAD 的角平分线上.6.在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L取最大值和最小值时E点的位置?7.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.8.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C、O、A都不重合),过点A、C分别向直线BM作垂线段,垂足分别为E、F,连接OE,OF.(1)①依据题意补全图形;②猜想OE与OF的数量关系为_________________.(2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:想法1:由已知条件和菱形对角线互相平分,可以构造与△OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组△OAB和△EAB,再依据直角三角形斜边中线的性质,菱形四边相等,可以构造一对以OE和OF为对应边的全等三角形,即可证明猜想.……请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).(3)当∠ADC=120°时,请直接写出线段CF,AE,EF之间的数量关系是_________________.9.(1)(问题情境)小明遇到这样一个问题:如图①,已知ABC ∆是等边三角形,点D 为BC 边上中点,60ADE ∠=︒,DE 交等边三角形外角平分线CE 所在的直线于点E ,试探究AD 与DE 的数量关系.小明发现:过D 作//DF AC ,交AB 于F ,构造全等三角形,经推理论证问题得到解决.请直接写出AD 与DE 的数量关系,并说明理由. (2)(类比探究)如图②,当D 是线段BC 上(除,B C 外)任意一点时(其他条件不变)试猜想AD 与DE 的数量关系并证明你的结论. (3)(拓展应用)当D 是线段BC 上延长线上,且满足CD BC =(其他条件不变)时,请判断ADE ∆的形状,并说明理由.10.如图,直线y =﹣23x +4与x 轴交于点C ,与y 轴交于点B ,抛物线y =ax 2+103x +c 经过B 、C 两点. (1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当△BEC 面积最大时,请求出点E 的坐标; (3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.11.如图,边长为4的正方形ABCD 中,点P 是边CD 上一动点,作直线BP ,过A 、C 、D 三点分别作直线BP 的垂线段,垂足分别是E 、F 、G .(1)如图(a )所示,当CP =3时,求线段EG 的长;(2)如图(b )所示,当∠PBC =30°时,四边形ABCF 的面积;(3)如图(c )所示,点P 在CD 上运动的过程中,四边形AECG 的面积S 是否存在最大值?如果存在,请求出∠PBC 为多少度时,S 有最大值,最大值是多少?如果不存在,请说明理由.12.已知:如图,在四边形ABCD 中,//AB CD ,90ACB ∠=︒,10cm AB =,8cm BC =,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动,另一个点也停止运动.过点P 作PE AB ⊥,交BC 于点E ,过点O 作//QF AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为()t s ()05t <<,解答下列问题:(1)当t 为何值时,点E 在BAC ∠的平分线上? (2)设四边形PEGO 的面积为()2mS c ,求S 与t 的函数关系式.(3)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE OQ ⊥?若存在,求出t 的值;若不存在,请说明理由.13.已知:如图1,矩形OABC 的两个顶点A ,C 分别在x 轴,y 轴上,点B 的坐标是(8,2),点P 是边BC 上的一个动点,连接AP ,以AP 为一边朝点B 方向作正方形P ADE ,连接OP 并延长与DE 交于点M ,设CP =a (a >0).(1)请用含a 的代数式表示点P ,E 的坐标.(2)连接OE ,并把OE 绕点E 逆时针方向旋转90°得EF .如图2,若点F 恰好落在x 轴的正半轴上,求a 与EMDM的值. (3)①如图1,当点M 为DE 的中点时,求a 的值.②在①的前提下,并且当a >4时,OP 的延长线上存在点Q ,使得EQ +22PQ 有最小值,请直接写出EQ +22PQ 的最小值.14.如图,边长为6的正方形ABCD 中,,E F 分别是,AD AB 上的点,AP BE ⊥,P 为垂足. (1)如图①, AF =BF ,AE =23,点T 是射线PF 上的一个动点,则当△ABT 为直角三角形时,求AT 的长;(2)如图②,若AE AF =,连接CP ,求证:CP FP ⊥.15.边长相等的两个正方形ABCO 、ADEF 如图摆放,正方形ABCO 的边OA 、OC 在坐标轴上,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P ,连AG ,已知OA 长为3. (1)求证:AOG ADG ∆≅∆;(2)若12∠=∠,AG =2,求点G 的坐标;(3)在(2)条件下,在直线PE 上找点M ,使以M 、A 、G 为顶点的三角形是等腰三角形,求出点M 的坐标.16.定义:有一组邻角相等的凸四边形叫做“梦想四边形”。

最新中考数学复习:动态几何问题压轴题专项训练(带答案)

最新中考数学复习:动态几何问题压轴题专项训练(带答案)

2022年中考数学复习:动态几何问题压轴题专项训练1.已知AD是等边△ABC的高,AC=2,点O为直线AD上的动点(不与点A重合),连接BO,将线段BO 绕点O顺时针旋转60°,得到线段OE,连接CE、BE.(1)问题发现:如图1,当点O在线段AD上时,线段AO与CE的数量关系为,△ACE的度数是.(2)问题探究:如图2,当点O在线段AD的延长线上时,(1)中结论是否还成立?请说明理由.(3)问题解决:当△AEC=30°时,求出线段BO的长2.如图1,在平面直角坐标系中,已知△ABC中,△ABC=90°,B(4,0),C(8,0),tan△ACB=2,抛物线y=ax2+bx经过A,C两点.(1)求点A的坐标及抛物线的解析式;(2)如图2,过点A作AD△AB交BC的垂线于点D,动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P作PE△AB交AC于点E.△过点E作EF△AD于点F,交抛物线于点G.当t为何值时,线段EG取得最大值?最大值是多少?△连接EQ,在点P,Q运动过程中,t为何值时,使得△CEQ与△ABC相似?3.如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x32=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和△CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.4.如图,在□ABCD 中,△ABD =90°,AD =,BD =8cm .点P 从点A 出发,沿折线AB —BC 向终点C 运动,点P 在AB 边、BC 边上的运动速度分别为1cm /s /s .在点P 的运动过程中,过点P 作AB 所在直线的垂线,交边AD 或边CD 于点Q ,以PQ 为一边作矩形PQMN ,且QM =2PQ ,MN 与BD 在PQ 的同侧.设点P 的运动时间为t (秒),矩形PQMN 与□ABCD 重叠部分的面积为S (cm 2).(1)求边AB 的长;(2)当0<t <4时,PQ = ,当4<t <8时,PQ = (用含t 的代数式表示);(3)当点M 落在BD 上时,求t 的值;(4)当矩形PQMN 与□ABCD 重叠部分图形为四边形时,求S 与t 的函数关系式.5.如图,四边形ABCD 是菱形,其中60B ∠=︒,点E 在对角线AC 上,点F 在射线CB 上运动,连接EF ,作60FEG ∠=︒,交DC 延长线于点G .(1)试判断EFG 的形状,并说明理由;(2)图中7AB =,1AE =.△当CF 10=时,以点B 为原点,射线BC 为正半轴建立平面直角坐标系.平面内是否存在一点M ,使得以点M、E、F、G为顶点的四边形与菱形ABCD相似?若存在,求出点M的坐标,若不存在,说明理由;△记点F关于直线AB的轴对称点为点N.若点N落在EDC的内部(不含边界),求CF的取值范围.6.如图,在平面直角坐标系中,△AOB的边OA在x轴上,OA=AB,且线段OA的长是方程x2﹣4x﹣5=0的根,过点B作BE⊥x轴,垂足为E,tan∠BAE=43,动点M以每秒1个单位长度的速度,从点A出发,沿线段AB向点B运动,到达点B停止.过点M作x轴的垂线,垂足为D,以MD为边作正方形MDCF,点C在线段OA上,设正方形MDCF与△AOB重叠部分的面积为S,点M的运动时间为t(t>0)秒.(1)求点B的坐标;(2)求S关于t的函数关系式,并写出自变量t的取值范围;7.小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm 的正方形ABCD 中,点E 从点A 出发,沿边AD 向点D 运动,同时,点F 从点B 出发,沿边BA 向点A 运动,它们的运动速度都是2cm/s ,当点E 运动到点D 时,两点同时停止运动,连接CF 、BE 交于点M ,设点E , F 运动时问为t 秒.(1)【问题提出】如图1,点E ,F 分别在方形ABCD 中的边AD 、AB 上,且BE CF =,连接BE 、CF 交于点M ,求证:BE CF ⊥.请你先帮小明加以证明.(2)如图1,在点E 、F 的运动过程中,点M 也随之运动,请直接写出点M 的运动路径长 cm .(3)如图2,连接CE ,在点E 、F 的运动过程中.△试说明点D 在△CME 的外接圆O 上; △若△中的O 与正方形的各边共有6个交点,请直接写出t 的取值范围.8.如图,菱形ABCD ,120ABC ∠=︒,点E 为平面内一点,连接AE .(1)如图1,点E 在BC 的延长线上,将AE 绕点A 顺时针旋转60°得AF ,交EB 延长线于点G ,连接EF 交AB 延长线于点H ,若15AEB ∠=︒,4HF =,求AE 的长;(2)如图2,点E 在AC 的延长线上,将AE 绕点A 逆时针旋转60°得AF ,连接EF ,点M 为CE 的中点,连接BM ,FM ,证明:FM =;(3)如图3,将AB 沿AS 翻折得()120AE BAE ∠<︒,连DE 交AS 于点S ,点T 为平面内一点,当DS 取得最大值时,连接TD ,TE ,若3AT =,AD =6,求TD TE -的最大值.9.已知抛物线()()12y x x m m=+-与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,点P 为抛物线上一动点(点P 不与点C 重合).(1)当ABC 为直角三角形时,求ABC 的面积(2)如图,当AP BC ∥时,过点P 作PQ x ⊥轴于点Q ,求BQ 的长.(3)当以点A ,B ,P 为顶点的三角形和ABC 相似时(不包括两个三角形全等),求m 的值.10.已知:如图,在△ABC 纸片中,AC =3,BC =4,AB =5,按图所示的方法将△ACD 沿AD 折叠,使点C恰好落在边AB上的点C′处,点P是射线AB上的一个动点.(1)求折痕AD长.(2)点P在线段AB上运动时,设AP=x,DP=y.求y关于x的函数解析式,并写出此函数的定义域.(3)当△APD是等腰三角形时,求AP的长.11.如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P 是直线AB下方的抛物线上一动点(不与A、B重合).(1)求此抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.A-和点B,与y轴交于点C,顶点D 12.在平面直角坐标系中,抛物线2y ax bx c=++与x轴交于点(1,0)-.的坐标为(1,4)(1)直接写出抛物线的解析式;∠=∠,求点P的坐标;(2)如图1,若点P在抛物线上且满足PCB CBD⊥轴交抛物线于点N,Q是直线AC上一个动点,当(3)如图2,M是直线BC上一个动点,过点M作MN x∆为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标QMNB-,与y轴交于点C,且13.如图,已知抛物线2(0)=++≠与x轴交于点(1,0)y ax bx c aA和点(3,0)=.OC OB(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,BC,求BCE面积的最大值;(3)点P在抛物线的对称轴上,若线段P A绕点P逆时针旋转90︒后,点A的对应点'A恰好也落在此抛物线上,求点P 的坐标.14.综合与探究如图,已知抛物线228y x x =--与x 轴相交于点A ,B (点B 在点A 的右侧),与y 轴相交于点C ,其顶点为点D ,连接AC ,BC .(1)求点A ,B ,D 的坐标;(2)设抛物线的对称轴DE 交线段BC 于点E ,P 为第四象限内抛物线上一点,过点P 作x 轴的垂线,交线段BC 于点F .若四边形DEFP 为平行四边形,求点P 的坐标;(3)设点M 是线段BC 上的一个动点,过点M 作MN AB ,交AC 于点N .点Q 从点B 出发,以每秒1个单位长度的速度沿线段BA 向点A 运动,运动时间为t (6t <)秒,直接写出当t 为何值时,QMN 为等腰直角三角形.15.如图△,在平面直角坐标系中,点A 、B 的坐标分别为A (4,0)、B (0,3),连结AB .抛物线234y x bx c =++经过点B ,且对称轴是直线52x =-.(1)求抛物线的函数关系式.(2)将图△中的△ABO 沿x 轴向左平移得到△DCE (如图△),当四边形ABCD 是菱形时,说明点C 和点D 都在该抛物线上.(3)在(2)中,若点M 是抛物线上的一个动点(点M 不与点C 、D 重合),过点M 作MN △y 轴交直线CD 于点N .设点M 的横坐标为m ,线段MN 的长为l .求l 与m 之间的函数关系式.(4)在(3)的条件下,直接写出m 为何值时,以M 、N 、C 、E 为顶点的四边形是平行四边形.16.如图,抛物线y =-212x +32x +2与x 轴负半轴交于点A ,与y 轴交于点B . (1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC =BC ,求点C 的坐标;(3)如图2,将△ABO 绕平面内点P 顺时针旋转90°后,得到△DEF (点A ,B ,O 的对应点分别是点D ,E ,F ),D ,E 两点刚好在抛物线上.△求点F 的坐标;△直接写出点P 的坐标.17.如图1,直线AB 与x 轴,y 轴分别交于A ,B 两点,点C 在x 轴负半轴上,这三个点的坐标分别为A(4,0),B(0,4),C(−1,0) .(1)请求出直线AB的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF//BC交AB于点F,当△BEF的面积是52时,求点E的坐标;(3)如图2,将点B向右平移1个单位长度得到点D,在x轴上存在动点P,若△DCO+△DPO=△α,当tan△α=4时,请直接写出点P的坐标.18.将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.△求证:BE平分△AEC.△取BC的中点P,连接PH,求证:PH∥CG.△若BC=2AB=2,求BG的长.(2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.19.如图,△ABC是等边三角形,AB=4cm,动点P从A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ△AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使A,D在PQ异侧,设点P 的运动时间是x(s)(0<x<2).(1)AP的长为cm(用含x的代数式表示);(2)当Q与C重合时,则x=s;(3)△PQD的周长为y(cm),求y关于x的函数解析式,并写出自变量的取值范围.20.如图1,在平面直角坐标系中,抛物线y=ax2+154x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).(1)求抛物线的函数表达式及直线AB的函数表达式;(2)如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;(3)在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD速度向点D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S与t之间的函数关系式为(不必写出t的取值范围).参考答案:1.解:AO =CE ,△ACE =90°,理由如下:△线段BO 绕点O 顺时针旋转60°,得到线段OE ,△BO =OE ,△BOE =60°,△△BOE 为等边三角形,△△OBE =60°,BE =BO ,△△OBE =60°=△OBD +△DBE ,△△ABC 为等边三角形,△△ABC =60°=△ABO +△OBD ,AB=AC ,△△ABO =△CBE ,在△ABO 和△CBE 中,AB AC ABO CBE BO BE =⎧⎪∠=∠⎨⎪=⎩,△△ABO △△CBE (SAS),△AO =CE ,△BAO =△BCE ,△AD 是等边三角形ABC 的高,△△ACB =60°,AD 也是△BAC 的平分线,△△BAO =30°=△BCE ,△△ACE =△BCE +△ACB =30°+60°=90°,故答案为:AO =CE ,△ACE =90°;(2)解:成立,理由如下:如图:连接BE .△线段BO 绕点O 顺时针旋转了60°得EO ,△BO =EO ,△BOE =60°,△△BOE 是等边三角形,△BO =BE ,△OBE =60°,△△ABC 是等边三角形,△BA =BC ,△ABC =60°,△△ABC +△OBC =△OBE +△OBC ,即△ABO =△CBE ,在△ABO 和△CBE 中,AB AC ABO CBE BO BE =⎧⎪∠=∠⎨⎪=⎩△△ABO △△CBE (SAS),△AO =CE ,△BAO =△BCE ,△AD 是等边△ABC 的高,△△BCE =△BAO =30°,△BCA =60°,△△ACE =△BCE +△ACB =30°+60°=90°,△AO =CE ,△ACE =90°;(3)解:△当点O 1在线段AD 的延长线上时,由(1)和(2)知:△BO 1E 1是等边三角形,△ACE 1=90°,△△ACE 1=90°,△AE 1C =30°,△△E 1AC =60°,△△BAC =60°,△点A 、B 、E 1在一条直线上,△在Rt △ACE 1中,AC =2,△AE 1C =30°,△A E 1=4,△BO 1=BE 1=2;△当点O 2在线段DA 的延长线上时,△△ACE 2=90°,△AE 2C =30°,AC =2,△AE 2=4,2CE△△ABO 2△△CBE 2(SAS),△22AO CE ==△AD 是等边△ABC 的高,AB =AC =2,△BD =1,AD ==在Rt △O 2DB 中,BD =1,而22O D AO AD ==+△2BO ===综上,BO =2或2.解:△B (4,0),C (8,0),△BC =4,△△ABC =90°,tan△ACB =2,△AB =BC •tan△ACB =8,△A 的坐标为(4,8),将A (4,8),C (8,0)代入y =ax ²+bx ,得:16486480+=⎧⎨+=⎩a b a b , 解得:124⎧=-⎪⎨⎪=⎩a b , △抛物线得解析式为:2142y x x =-+; (2)解:△由题得:AP =t ,△APE =△ABC =90°,△EAP =△CAB ,△tan△EAP =tan△CAB ==EP BC AP AB , △4=8PE t ,即PE =2t , △PB =AB ﹣AP =8﹣t ,△E 的坐标为(4+2t ,8﹣t ), 将x =4+2t 代入2142y x x =-+, 得:2188=-+y t , △G 的纵的坐标为2188-+t , △EG =218(8)8-+--t t =21+8-t t =21(4)+28--t ,△0≤t ≤8, △t =4时,线段EG 有最大值且为2;△△CQ =t ,PE =2t ,AP =t ,BC =4,AB =8, △AE=,AC= △CE =AC ﹣AE=,当△CEQ △△ACB 时,=CE CQ AC AB ,代入数据:8=t ,解得:t =4,当△CEQ △△ABC 时,=CE CQ AB AC ,代入数据:△28=解得t =409, △综上,t =4或409. 3. 解:由题意:32216410b a a b ⎧-=⎪⎨⎪++=⎩, 解得1434a b ⎧=-⎪⎪⎨⎪=⎪⎩, △抛物线的解析式为y 14=-x 234+x +1, 令y =0,可得x 2﹣3x ﹣4=0,解得x =﹣1或4,△A (﹣1,0),令y =0,得到x =1,△C (0,1),△OA =OC =1,△△CAO =45°.(2)解:如图1中,过点C 作CE △OA 于E ,过点D 作DF △AB 于F .△△NEM=△DFM=△NMD=90°,△△NME + △DMF=90°,△DMF+△MDF=90°,△△NME=△MDF,△NM=DM,△MEN DFM AAS≌()△NE=MF,EM=DF,△△CAO=45°,AN=,AM=3t,△AE=EN=t,△EM=AM﹣AE=2t,△DF=2t,MF=t,OF=4t﹣1,△D(4t﹣1,2t),△14-(4t﹣1)234+(4t﹣1)+1=2t,△t>0,故可以解得t34 =,经检验,t34=时,M,N均没有达到终点,符合题意,△D(2,32).(3)解:如图3﹣1中,当点Q在点C的下方,点P在y的右侧,△QCP=△MDB时,取E (12,0),连接EC ,过点E 作EG △EC 交PC 于G , △M (54,0),D (2,32),B (4,0) △53244FM =-=,DM =,BM 114=,BD 52=, △DF =2MF ,△OC =2OE ,△tan△OCE =tan△MDF 12=, △△OCE =△MDF ,△△OCP =△MDB ,△△ECG =△FDB ,△tan△ECG =tan△FDB 43=, △EC =, △EG =G (116,23), △直线CP 的解析式为y 211=-x +1, 由2211113144y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得01x y =⎧⎨=⎩或411139121x y ⎧=⎪⎪⎨⎪=⎪⎩, △4139(,)11121P ,(0,1)C ,△PC =当MD BD CQ CP =或时MD BD PC CQ =,△QCP 与△MDB 相似,可得615242CQ =或2050363,△373(0,)242Q -或1687(0,)363-. 如图3﹣2中,当点Q 在点C 的下方,点P 在y 的右侧,△QCP =△DMB 时,设PC 交x 轴于K .△tan△OCK =tan△DMB =2,△OK =2OC =2,△点K 与F 重合,△直线PC 的解析式为112y x =-+, 由211213144y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得01x y =⎧⎨=⎩或532x y =⎧⎪⎨=-⎪⎩, △3(5,)2P -,△PC =当DM BM PC CQ =或DM BM CQ PC =时,△QCP 与△MDB 相似,可得556CQ =或7522, △49(0,)6Q -或53(0,)22-. 当点Q 在点C 的下方,点P 在y 的右侧,△QCP =△DBM 时,同法可得2591257(,)(0,)3918P Q --,或1151(0,)99, 当点Q 在点C 上方,△QCP =△DMB 时,同法可得P (1,32),Q (0,176)或(0,3722), 当点Q 在点C 上方,△QCP =△MDB 时,同法可得25171617(,)(0,)11121242P Q ,或1613(0,).363,当点Q 在点C 下方,点P 在y 轴的左侧时,△QCP =△DBM 时,同法可得71959(,)(0,)3918P Q ---,或251(0,)99-. 4(1)解:△△ABD =90°,AD =,BD =8cm .△4cm AB = ;(2)解:当0<t <4时,点P 在AB 边上,cm AP t = ,如图,△PQ △AB ,△ABD =90°,△PQ △BD ,△△APQ △△ABD ,△AP PQ AB BD = , △4182AP AB PQ BD === , 即12t PQ = , △2cm PQ t = ;当4<t <8时,点P 在BC 边上,)4cm BP t =- ,如图,△四边形ABCD 是平行四边形,△BC AD == ,AB △CD ,△BDC =△ABD =90°,△)()4cm CP BC BP t =-=-= ,△PQ △AB ,△PQ △CD ,△PQ △BD ,△△CPQ △△CBD , △CP PQ BC BD= ,△CP BC PQ BD === , △()162cm PQ t =- ;(3)解:如图,当点P 在AB 上时,cm AP t = ,则()4cm BP t =- ,在矩形PQMN 中, BP =QM ,△QM =2PQ ,△BP =2PQ ,△2cm PQ t =,△224t t ⨯=- ,解得:45t = ;如图,当点P 在BC 边上时,点M 与点D 重合,由(2)得:此时4182CQ CD PQ BD === , △()162cm PQ t =-,△()18cm 2CQ PQ t ==- , △()4cm MQ CD CQ t =-=- ,△QM =2PQ ,△()42162t t -=- ,解得:365t = ; 综上所述,当点M 落在BD 上时, t 的值为45或365; (4) 解:如图,当405t ≤≤ 时,△2cm PQ t =,QM =2PQ ,△4cm QM t =,△矩形PQMN 与□ABCD 重叠部分的面积为22248cm S PQ QM t t t =⋅=⨯= ; 如图,当445t << 时,设MQ 交BC 于点T ,根据题意得:AQ △BT ,QT △AB ,△四边形ABTQ 是平行四边形,△4cm QT = ,△()4cm BP AB AP t =-=- ,2cm PQ t =,△矩形PQMN 与□ABCD 重叠部分的面积为()()()2114428cm 22S PB QT PQ t t t t =+⨯=-+⨯=-+; 如图,当点N 落在AD 边上时,四边形ABPN 是平行四边形,△4cm PN AB == ,△4cm MQ PN == ,△QM =2PQ ,()162cm PQ t =-,△()21624t -= ,解得:7t = ,如图,当47t <≤ 时,设PN 交AD 于点K ,此时四边形ABPK 是平行四边形,△4cm PK AB == ,△()162cm PQ t =-,4182CQ CD PQ BD ===, △()18cm 2CQ PQ t ==- , △()()484cm DQ t t =--=- ,△矩形PQMN 与□ABCD 重叠部分的面积为()()()()211441628cm 22S PK DQ PQ t t t t =+⨯=-+⨯-=-+; 如图,当3685t ≤< 时,△()162cm PQ t =-,QM =2PQ ,△()324cm MQ t =- ,△矩形PQMN 与□ABCD 重叠部分的面积为()()()221623248128512cm S PQ MQ t t t t =⨯=-⨯-=-+ ,综上所述,S 与t 的函数关系式为222248(0)548(4)58(47)368128512(8)5t t t t t S t t t t t t ⎧≤≤⎪⎪⎪-+<<⎪=⎨⎪-+<≤⎪⎪-+≤<⎪⎩.5.(1) EFG 是等边三角形,理由如下:如图,过点E 作EM AB ∥,交FC 于M ,△四边形ABCD 是菱形,△AB CB =,△60ACB ABC ∠=∠=︒,△60ACD ACB ∠=∠=︒,△120ACG ∠=︒,△EM AB ∥,△60ABC EMC ∠∠==︒,△120EMF ∠=︒,△60EMC ECM ∠=∠=︒,△EMC △是等边三角形,△EM EC =,60MEC ∠=︒,△60FEG MEC ∠=∠=︒,△FEM GEC ∠=∠,在FEM △和GEC 中,FGM GEC EM ECEMF ECG ∠=∠⎧⎪=⎨⎪∠=∠⎩, △()FEM GEC ASA ≅,△EF EG =,△EFG 是等腰三角形,△60FEG ∠=︒,△EFG 是等边三角形;(2)△如图所示,过点A 作AT y ⊥轴交于点T ,△60ABC ∠=︒,△30TBA ∠=︒, △1722AT AB ==,BT == 过点E 作EH y ⊥轴交于点H ,交AB 于点K ,△EH CF ∥,△AKE 是等边三角形,△1AK KE AE ===,△6BK =,△sin 6sin 606BH BK BKH =⋅∠=⨯︒==132HK BK ==,△E ,△4HE HK KE =+=,△四边形ABCD 是菱形,△7BC AB ==,△(7,0)C ,21(2D , △CD 的解析式为373yx ,设(G x -, △EFG 是等边三角形,△22EG EF =,即2222(4)(34)x -+-=--+,解得:15=x 或212x =(舍去),当5x =时,y =-△(5,G -,当是菱形EFMG 时,(2,M --,当是菱形EFGM 时,M ,当是菱形FGEM 时,(M -,综上所述,(2,M --或(或(-;△如图,当N 在CD 上时,作CP AB ⊥于P ,点F '关于AB 的对称点N 在CD 上,△OF ON CP '==,CP BC ==△OF '=, 在Rt BOF '中,7sin 60OF OBF ''∠==︒, △14CF '=,如图,当N 在DE 上时,N 与F '关于AB 对称,AB 与DN 交于点Q , △60ABN ABC ∠=∠=︒,△60BAC ∠=︒,△60ABN BAC ∠=∠=︒,△BN AE ∥, △AE AQ BN QB=, △AD BC ∥,△ADE CME ,AQD BQM , △16AD AE MC CE ==,AQ AD QB MB =, △716MC =, △42MC =,△42735MB =-=, △71355AQ QB ==, △115BN =, △5BN =,△5BF BN '==,△752CF BC BF ''=-=-=,△214CF<<.6.解:由x2﹣4x﹣5=0,解得x=5或﹣1,∵OA是方程的根,∴OA=5,∴AB=OA=5,在Rt△ABE中,tan∠BAE=BEAE=43,AB=5,∴BE=4,AE=3,∴OE=OA+AE=5+3=8,∴B(8,4);(2)解:如图1中,当点F落在OB上时,AM=t,DM=45t,AD=35t,∵FM OA∥,∴FM MB OA BA=,∴45555tt-=,∴t=259,如图2中,当0<t≤259时,重叠部分是四边形ACFM,S=12•(AC+FM)•DM=14434 25555t t t t ⎛⎫⋅+-⋅ ⎪⎝⎭=25t2,如图3中,259<t ≤5时,重叠部分是五边形ACHGM , S =S 梯形ACFM ﹣S △FGH =()22211455225t t t ⎡⎤-⨯⨯--⎢⎥⎣⎦=﹣41100t 2+92t ﹣254;综上所述,S =25t 2(0<t ≤259)或S =﹣41100t 2+92t ﹣254(259<t ≤5). 7.(1)四边形ABCD 是正方形,AB BC ∴=,BAE CBF ∠=∠又,E F 的运动速度都是2cm/s ,2AE BF t ∴==BAE CBF ∴≌BCF ABE ∴∠=∠90ABE EBC ABC ∠+∠=∠=︒90BCF EBC ∴∠+∠=︒90MBC ∴∠=︒(2)△90CMB ∠=.△点M 在以CB 为直径的圆上,如图1,当t =0时,点M 与点B 重合;如图2,当t =3时,点M 为正方形对角线的交点.点M 的运动路径为14圆,其路径长13642ππ⨯=. 故答案为:32π (3)△如图3.由前面结论可知:90CME ∠=△△CME 的外接圆的圆心O 是斜边CE 的中点, 则12OM OC OE CE === 在Rt △CDE 中,90D ∠=,O 是CE 的中点. △12OD CE =, △OM OC OE OD ===△点D 、C 、M 、E 在同一个圆(O )上,即点D 在△CME 的外接圆O 上;. △304t <<. 如图4,当O 与AB 相切时,O 与正方形的各边共有5个交点,如图5则有6个交点,所以“当O 与AB 相切时”是临界情况.如图4,当O 与AB 相切(切点为G ),连接OG ,并延长GO 交CD 于点H . △AB 与O 相切,△OG AB ⊥,又△AB CD ∥,132CH DC ∴== 设O 的半径为R .由题意得:在Rt △CHO 中,2223(6)R R +-=,解得154R =△159,22CE DE =△32AE =,即3t 4= △如图5,当304t <<时,O 与正方形的各边共有6个交点.8.(1)解:过点H 作HL △EF ,交AF 于L ,△菱形ABCD ,120ABC ∠=︒△△DAB =180°-18012060ABC ∠=-=︒︒︒,AD∥BC ,△△DAE =△AEB ,△15AEB ∠=︒,△△DAE =15°,△AE 绕点A 顺时针旋转60°得AF ,△△AEF为等边三角形,△△F=60°,△HL△EF,△△HLF=90°-△F=30°,△LF=2HF=2×4=8,根据勾股定理LH△△DAE+△EAH=△EAH+△HAF=60°△△DAE=△HAF=15°,△△HLF为△AHL的外角,△△AHL=△HLF-△HAF=30°-15°=15°,△△AHL=△HAF,△AL=LH=△AE=AF=AL+LF=;(2)证明:过B作BL△AC于L,过F作FK△AE于K,设AE=m,AC=n,△将AE绕点A逆时针旋转60°得AF,△AE=AF=m,△EAF=60°,△△AEF为等边三角形,△AF=EF,△FK△AE,△△AFK=△EFK=30°,AK=EK=12 m,在Rt△AKF中,FK==,△菱形ABCD ,120ABC ∠=︒,BL △AC ,△AL =CL =12n ,△CBL =△ABL =60°,△△LCB =90°-△CBL =30°,△BC =2BL ,在Rt △BCL 中,根据勾股定理222+BC BL CL =,即2224+BL BL CL =,解得2n BL ==, △点M 为CE 中点,△CM =EM =()1122EC m n =+, △MK =ME -KE =()111222m n m n +-=,M L=MC -CL =()111222m n n m +-=,在Rt △MKF 中,根据勾股定理FM =在Rt △MLB 中,根据勾股定理BM ,△BM =,△FM =;(3)解:连结SB ,过E 作TL △DE ,,过G 作GI △AD 于I ,过T 作TJ △AB 于J ,在TD 上截取TE ′=TE ,△将AB 沿AS 翻折得()120AE BAE ∠<︒,△△BAS =△EAS ,AB =AE ,在△ABS 和△AES 中,AB AE BAS EAS AS AS =⎧⎪∠=∠⎨⎪=⎩,△△ABS △△AES (SAS ),△△ABS =△AES ,△四边形ABCD 为菱形,△AD =AB =AE =6,△ABC =120°,△△ADE =△AED =△ABS ,△DAB =180°-△ABC =60°,△A 、S 、B 、D 四点共圆,△点S 在△ABD 的外接圆劣弧AB 上运动,△当AS △AB 时,AS 长最大,△△ADH =90°-△DAH =30°,△AH =3,DH=△点T 在以点A 为圆3为半径的圆上运动,当点A 关于TJ 直线的对称点在△ADH 的角平分线DT 上时,TD TE -的值最大,设点A 的对称点为G ,△△ADG =△HDG =1152ADH ∠=︒,GI △AD ,GH △DH , △GI =GH =m ,AG =AH –GH =3-m ,AI =AD -DI -DH=6-在Rt △AIG 中,根据勾股定理222+AG AI IG =即()(22236+m m -=-,解得9m =,在Rt △DGH 中,根据勾股定理DG△DT=DG +TG =3,△AG =12-△AJ =JG =6-△JH =AH -AJ =3-(6-=,△TJ △AB ,DE △AB ,TL △DE ,△△TJH =△JHL =△TLH =90°,△四边形JTLH 为矩形,△JH =TL =,在DL 上截取DN =TN ,△△NDT =△NTD =15°,△△FNL =△NDT +△NTD =30°,△DN =TN =2TL =6,在Rt △TNL 中,根据勾股定理,NL9=-△DL =DN +NL =6+93-=,在Rt △AHE 中,△EAH =60°,△DE =sin60°×AE△DE△LE =DE -DL ()3=TL ,△TE=△GT -TE 最大=3-.9.(1) 解:由抛物线()()12y x x m m=+-开口向上,则m >0令x =0,则y =-2,即C 点坐标为(0,-2),OC =2令y =0,则()()102x x m m=+-,解得x =-2或x =m ,即点A (-2,0),点B (m ,0) △OA =2,OB =m△AB =m +2由勾股定理可得AC 2=(-2-0)2+[0-(-2)]2=8, BC 2=(m -0)2+[0-(-2)]2=m 2+4 △当ABC 为直角三角形时,仅有△ACB =90°△AB 2= AC 2+BC 2,即(m +2)2=8+m 2+4,解得m =2△AB =m +2=4△ABC 的面积为:12·AB ·OC =12×4×2=4.(2)解:设BC 所在直线的解析式为:y =kx +b则02mk b b =+⎧⎨-=⎩ ,解得22k m b ⎧=⎪⎨⎪=-⎩ △BC 所在直线的解析式为y =2m x -2 设直线AP 的解析式为y =2m x +c 则有:0=2m×(-2)+c ,即c =4m △线AP 的解析式为y =2m x +4m 联立()()1224y x x m m y x m m⎧=+-⎪⎪⎨⎪=+⎪⎩ 解得x =-2(A 点横坐标),x =m +2(P 点横坐标) △点P 的纵坐标为:()24822+m m m m⨯++= △点P 的坐标为(m +2,28m m +) △OQ =m +2△BQ =OQ -OB = m +2-m =2.(3)解:△点P 为抛物线()()12y x x m m=+-上一动点(点P 不与点C 重合).△设P (x ,()()12x x m m+-) △在△ABC 中,△BAC =45°△当以点A ,B ,P 为顶点的三角形和ABC 相似时,有三种情况:△a .若△ABC △△BAP △BP AC AB AB= 又△BP =AC△△ABC △△BAP 不符合题意;b . 若△ABP △△BAC △BP AB AB AC= 过P 作PQ △x 轴于点Q ,则△PQB =90°△△BPQ =90°-△PBQ =45°△PQ =BQ =m -x由于PQ =()()12x x m m +- △1(2)()m x x x m m-=+- △1()(2)10x m x m ⎡⎤-++=⎢⎥⎣⎦△x -m =0或1(2)10x m++= △x =m (舍去),x =-m -2△BQ =m -(-m -2)=2m +2△1)PB m ==+=△m 2-4m -4=0,解得:m =2-m =△m =2-△当△P AB =△BAC =45°时,分两种情况讨论:a . 若△ABP △△ABC ,则AP AC AB AB = ,点C 与点P 重合,不合题意; b . 若△ABP △△BAC ,则PB AB AB AC= , 过P 作PQ △x 轴于点Q ,则△PQA =90°△△APQ =90°-△P AB =45°△PQ =AQ =x +2由于PQ =()()12x x m m +- △12(2)()x x x m m+=+- △1(2)(2)10x x m ⎡⎤+++=⎢⎥⎣⎦△x +2=0或1()10x m m--= △x =-2(舍去),x =2m△AQ = =2m +2△1)AP m ==+=△m 2-4m -4=0,解得:m =2-m =△m =△当△APB=△BAC=45°时,分两种情况讨论:a.过点A作PM//BC交抛物线于点M,则△MAB=△ABC,△△MAB≠△P AB,△△P AB≠△ABC,△△P AB与△BAC不相似;b. 取点C关于x轴的对称点C',连接并延长BC'交抛物线于点N,则△NBA=△CBA,△△PBA≠△NBA,△△PBA≠△CBA,△△P AB与△BAC不相似;综上,m的值为m=2-m=10.解:如图1中,由翻折可知:CD=DC′,AC=AC′=3,设CD=DC′=x,在Rt△BDC中,△BD2=C′D2+C′B2,△(4-x)2=x2+22,解得:x=32,△AD==(2)如图2中,当点P在C'D左侧,AC=AC'=3,则PC'=3-x,△DP△10)y x =≤≤.当点P 在C 'D 右侧,同理可得10)y x =≤≤.△y 关于x 的函数解析式为10)y x =≤≤. (3) 如图3中,△当P A =PD 时,设P A =PD =m , 在Rt △PCD 中,△PD 2=DC ′2+C ′P 2,△2223((3))2m m =+-,解得:158=m , △P A =158.△当AD =AP P 在P′时,△ADP 是等腰三角形, △当PD =AD 时,点P 在AB 的延长线上.如图4,AP =2AC '=6.综上所述,满足条件的P A 的值为1586. 11. (1)解:把A (﹣3,0)和C (1,0)代入y =ax 2+bx ﹣3,得,093303a b a b =--⎧⎨=+-⎩,解得,12a b =⎧⎨=⎩,△抛物线解析式为y =x 2+2x ﹣3; (2)解:设P (x ,x 2+2x ﹣3),直线AB 的解析式为y =kx +b , 由抛物线解析式y =x 2+2x ﹣3, 令x =0,则y =﹣3, △B (0,﹣3),把A (﹣3,0)和B (0,﹣3)代入y =kx +b ,得,033k b b=-+⎧⎨-=⎩,解得,13k b =-⎧⎨=-⎩,△直线AB 的解析式为y =﹣x ﹣3, △PE △x 轴, △E (x ,﹣x ﹣3),△P在直线AB下方,△PE=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+32)2+94,当x=﹣32时,y=x2+2x﹣3=154-,△当PE最大时,P点坐标为(﹣32,154-);(3)存在,理由如下,△x=﹣221⨯=-1,△抛物线的对称轴为直线x=-1,设Q(-1,a),△B(0,-3),A(-3,0),△当△QAB=90°时,AQ2+AB2=BQ2,△22+a2+32+32=12+(3+a)2,解得:a=2,△Q1(-1,2),△当△QBA=90°时,BQ2+AB2=AQ2,△12+(3+a)2+32+32=22+a2,解得:a=﹣4,△Q2(-1,﹣4),△当△AQB=90°时,BQ2+AQ2=AB2,△12+(3+a)2+22+a2=32+32,解得:a1a1△Q3(-1,Q4(-1,综上所述:点Q的坐标是(-1,2)或(-1,﹣4)或(-1-1,.12.解:∵顶点D的坐标为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,得0=a(﹣1﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3,∴该抛物线的解析式为y=x2﹣2x﹣3;(2)解:∵抛物线对称轴为直线x=1,A(﹣1,0),∴B(3,0),设直线BD解析式为y=kx+e,∵B(3,0),D(1,﹣4),∴304k ek e+=⎧⎨+=-⎩,解得:26ke=⎧⎨=-⎩,∴直线BD解析式为y=2x﹣6,过点C作CP1∥BD,交抛物线于点P1,设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,得﹣3=2×0+d,解得:d=﹣3,∴直线CP1的解析式为y=2x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,解得:x1=0(舍),x2=4,故P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,∵OB=OC,∠BOC=∠OBG=∠OCG=90°,∴四边形OBGC是正方形,设CP1与x轴交于点E,则2x﹣3=0,解得:x=32,∴E(32,0),在x轴下方作∠BCF=∠BCE交BG于点F,∵四边形OBGC 是正方形,∴OC =CG =BG =3,∠COE =∠G =90°,∠OCB =∠GCB =45°, ∴∠OCB ﹣∠BCE =∠GCB ﹣∠BCF , 即∠OCE =∠GCF , ∴△OCE ≌△GCF (ASA ),∴FG =OE =32,∴BF =BG ﹣FG =3﹣32=32,∴F (3,﹣32),设直线CF 解析式为y =k 1x +e 1,∵C (0,﹣3),F (3,﹣32),∴1113332e k e =-⎧⎪⎨+=-⎪⎩,解得:11123k e ⎧=⎪⎨⎪=-⎩, ∴直线CF 解析式为y =12x ﹣3,结合抛物线y =x 2﹣2x ﹣3,可得x 2﹣2x ﹣3=12x ﹣3, 解得:x 1=0(舍),x 2=52,∴P 2(52,﹣74),综上所述,符合条件的P 点坐标为:(4,5)或(52,﹣74);(3)解:(3)设直线AC 解析式为y =m 1x +n 1,直线BC 解析式为y =m 2x +n 2, ∵A (﹣1,0),C (0,﹣3),∴11103m n n -+=⎧⎨=-⎩,解得:1133m n =-⎧⎨=-⎩,∴直线AC 解析式为y =﹣3x ﹣3, ∵B (3,0),C (0,﹣3),∴222303m n n +=⎧⎨=-⎩, 解得:2213m n =⎧⎨=-⎩,∴直线BC 解析式为y =x ﹣3, 设M (t ,t ﹣3),则N (t ,t 2﹣2t ﹣3), ∴MN =|t 2﹣2t ﹣3﹣(t ﹣3)|=|t 2﹣3t |,①当△QMN 是以NQ 为斜边的等腰直角三角形时,此时∠NMQ =90°,MN =MQ ,如图2,∵MQ ∥x 轴, ∴Q (﹣13t ,t ﹣3),∴|t2﹣3t|=|t﹣(﹣13t)|,∴t2﹣3t=±43 t,解得:t=0(舍)或t=53或t=133,∴154 (,) 33M-,154 (,)93Q--;2134 (,) 33M,2134 (,)93Q-;②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,∵NQ∥x轴,∴Q(223t t-+,t2﹣2t﹣3),∴NQ=|t﹣223t t-+|=13|t2+t|,∴|t2﹣3t|=13|t2+t|,解得:t=0(舍)或t=5或t=2,∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);③当△QMN是以MN为斜边的等腰直角三角形时,此时∠MQN=90°,MQ=NQ,如图4,过点Q作QH⊥MN于H,则MH=HN,∴H(t,262t t--),∴Q(26t t-+,262t t--),∴QH=|t﹣26t t-+|=16|t2+5t|,∵MQ=NQ,∴MN=2QH,∴|t2﹣3t|=2×16|t2+5t|,解得:t=7或1,∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);综上所述,点M及其对应点Q的坐标为:154 (,) 33M-,154 (,)93Q--;2134 (,) 33M,2134 (,)93Q-;M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).13.解:(1)△抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(-3,0),△OB=3,△OC=OB,△OC=3,△c=3,△30 9330a ba b++=⎧⎨-+=⎩,解得:12ab=-⎧⎨=-⎩,△所求抛物线解析式为:223y x x=--+;(2)如图2,连接BC,过点E作EF△x轴于点F,设E(a,-a2-2a+3)(-3<a<0),△EF=-a2-2a+3,BF=a+3,OF=-a,△S△BEC=S四边形BOCE-S△BOC=12BF•EF+12(OC+EF)•OF-12•OB•OC=1 2(a+3)•(-a2-2a+3)+12(-a2-2a+6)•(-a)-92=-32a2-92a=-32(a+32)2+278,△当a=-32时,S△BEC最大,且最大值为278.。

中考数学压轴题专题-动点综合问题

中考数学压轴题专题-动点综合问题

专题15动点综合问题【考点1】动点之全等三角形问题【例1】1.如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s 的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_______秒时,△BCA与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)【变式1-1】已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是线段OB、OC上的动点(1)如果动点E 、F 满足BE =OF (如图),且AE ⊥BF 时,问点E 在什么位置?并证明你的结论;(2)如果动点E 、F 满足BE =CF (如图),写出所有以点E 或F 为顶点的全等三角形(不得添加辅助线).【变式1-2】如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC 、EDF ,其中AB =8cm ,BC =6cm ,AC =10cm .现将△ABC 和△EDF 按如图②的方式摆放(点A 与点D 、点B 与点E 分别重合).动点P 从点A 出发,沿AC 以2cm /s 的速度向点C 匀速移动;同时,动点Q 从点E 出发,沿射线ED 以acm /s (0<a <3)的速度匀速移动,连接PQ 、CQ 、FQ ,设移动时间为ts (0≤t ≤5).(1)当t =2时,S △AQF =3S △BQC ,则a =;(2)当以P 、C 、Q 为顶点的三角形与△BQC 全等时,求a 的值;(3)如图③,在动点P 、Q 出发的同时,△ABC 也以3cm /s 的速度沿射线ED 匀速移动,当以A 、P 、Q 为顶点的三角形与△EFQ 全等时,求a 与t 的值.【考点2】动点之直角三角形问题【例2】如图,在四边形纸片ABCD 中,//AB CD ,60A ∠=︒,30B ∠=︒,2CD =,4BC =,点E 是AB 边上的动点,点F 是折线A D C --上的动点,将纸片ABCD 沿直线EF 折叠,使点A 的对应点A '落在AB 边上,连接A C ',若A BC ' 是直角三角形,则AE 的长为________.【变式2-1】(2019·辽宁中考模拟)如图,已知二次函数y =ax 2+bx+4的图象与x 轴交于点A(4,0)和点D(﹣1,0),与y 轴交于点C ,过点C 作BC 平行于x 轴交抛物线于点B ,连接AC(1)求这个二次函数的表达式;(2)点M 从点O 出发以每秒2个单位长度的速度向点A 运动;点N 从点B 同时出发,以每秒1个单位长度的速度向点C 运动,其中一个动点到达终点时,另一个动点也随之停动,过点N 作NQ 垂直于BC 交AC 于点Q ,连结MQ.①求△AQM 的面积S 与运动时间t 之间的函数关系式,写出自变量的取值范围;当t 为何值时,S 有最大值,并求出S 的最大值;②是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,说明理由.【变式2-2】如图,在矩形OAHC 中,8,12OC OA ==,B 为CH 中点,连接AB .动点M 从点O 出发沿OA 边向点A 运动,动点N 从点A 出发沿AB 边向点B 运动,两个动点同时出发,速度都是每秒1个单位长度,连接,,CM CN MN ,设运动时间为t (秒)(010)t <<.则t =_____时,CMN ∆为直角三角形【考点3】动点之等腰三角形问题【例3】如图,AB 是⊙O 的直径,BC 是弦,10cm AB =,6cm BC =.若点P 是直径AB 上一动点,当PBC 是等腰三角形时,AP =__________cm .【变式3-1】如图①,已知正方形ABCD 边长为2,点P 是AD 边上的一个动点,点A 关于直线BP 的对称点是点Q ,连结PQ 、DQ 、CQ 、BQ .设AP=x.(1)当1x =时,求BP 长;(2)如图②,若PQ 的延长线交CD 边于E ,并且90CQD ∠=o ,求证:CEQ ∆为等腰三角形;(3)若点P 是射线AD 上的一个动点,则当CDQ ∆为等腰三角形时,求x 的值.【变式3-2】(2019·河南中考模拟)如图,抛物线y=ax 2+bx+3交y 轴于点A ,交x 轴于点B (-3,0)和点C (1,0),顶点为点M .(1)求抛物线的解析式;(2)如图,点E 为x 轴上一动点,若△AME 的周长最小,请求出点E 的坐标;(3)点F 为直线AB 上一个动点,点P 为抛物线上一个动点,若△BFP 为等腰直角三角形,请直接写出点P 的坐标.【变式3-3】(2019·广西中考真题)已知抛物线2y mx =和直线y x b =-+都经过点()2,4M -,点O 为坐标原点,点P 为抛物线上的动点,直线y x b =-+与x 轴、y 轴分别交于A B 、两点.(1)求m b 、的值;(2)当PAM ∆是以AM 为底边的等腰三角形时,求点P 的坐标;(3)满足(2)的条件时,求sin BOP ∠的值.【考点4】动点之相似三角形问题【例4】如图,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC 是相似三角形,求AP的长.【变式4-1】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=3 4AC(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【变式4-2】如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.(1)请找出图中一对相似三角形,并证明;(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.【考点5】动点之平行四边形问题(含特殊四边形)【例5】如图,抛物线23y ax bx =++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 是抛物线上的动点,且满足2PAO PCO S S ∆∆=,求出P 点的坐标;(3)连接BC ,点E 是x 轴一动点,点F 是抛物线上一动点,若以B 、C 、E 、F 为顶点的四边形是平行四边形时,请直接写出点F 的坐标.备用图【变式5-1】(2019·江西中考真题)在图1,2,3中,已知,,点为线段上的动点,连接,以为边向上作菱形,且.(1)如图1,当点与点重合时,________°;(2)如图2,连接.①填空:_________(填“>”,“<”,“=”);②求证:点在的平分线上;(3)如图3,连接,,并延长交的延长线于点,当四边形是平行四边形时,求的值.【变式5-2】(2019·湖南中考真题)如图,二次函数213y x bx c =-++的图象过原点,与x 轴的另一个交点为()8,0(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线1y m=,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(0t>).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.【变式5-3】.如图,在平面直角坐标系中,AOB∆的顶点O是坐标原点,点A坐标为()1,3,A、B两点关于直线y x=对称,反比例函数()0ky xx=>图象经过点A,点P是直线y x=上一动点.(1)B点的坐标为______;(2)若点C是反比例函数图象上一点,是否存在这样的点C,使得以A、B、C、P四点为顶点的四边形是平行四边形?若存在,求出点C坐标;若不存在,请说明理由;(3)若点Q 是线段OP 上一点(O 不与O 、P 重合),当四边形AOBP 为菱形时,过点Q 分别作直线OA 和直线AP 的垂线,垂足分别为E 、F ,当QE QF QB ++的值最小时,求出Q 点坐标.【考点6】动点之线段面积问题【例6】如图,在平面直角坐标系中,平行四边形如图放置,将此平行四边形绕点O 顺时针旋转90°得到平行四边形.抛物线经过点A 、C 、A′三点.(1)求A 、A′、C 三点的坐标;(2)求平行四边形和平行四边形重叠部分的面积;(3)点M 是第一象限内抛物线上的一动点,问点M 在何处时,的面积最大?最大面积是多少?并写出此时M 的坐标.【变式6-1】(1)发现:如图1,点A 为线段BC 外一动点,且BC =α,AB b =(0)a b >>,当点A 位于时,线段AC 的长取得最大值,最大值为(用含,a b 的式子表示);(2)应用:如图2,点A 为线段BC 外一动点,4BC =,2AC =,以AB 为边作等边ABD ∆,连接CD ,求线段CD 的最大值;(3)拓展:如图3,线段3AB =,点P 为线段AB 外一动点,且2AP =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时PBM ∆的面积.【变式6-2】如图,矩形ABCD 中,3,4AD AB ==,点P 是对角线AC 上一动点(不与A C 、重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,以线段,PE PB 为邻边作矩形BPEF ,过点P 作GH CD ⊥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档