代数几何综合题含答案

合集下载

专题九几何综合体、代数和几何综合题(含答案)

专题九几何综合体、代数和几何综合题(含答案)

2012年中考第二轮专题复习九:几何综合体、代数和几何综合题1(2011河北省)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA 的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当时,请直接写出的值.考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图。

分析:(1)由已知证明DE、DG所在的三角形全等,再通过等量代换证明DE⊥DG;(2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形;(4)由已知表示出的值.解答:(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△GDA,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°,∴DE⊥DG.(2)如图.(3)四边形CEFK为平行四边形.证明:设CK、DE相交于M点,∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,∴CK∥EF,∴四边形CEFK为平行四边形.(4)=.点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂2(2011新疆建设兵团)如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AB的长;(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.考点:等腰梯形的性质;二次函数的最值;菱形的性质;解直角三角形。

代数几何综合(含答案)

代数几何综合(含答案)

23.(本小题7分)如图,在平面直角坐标系中,A(-3,0),点C 在y 轴的正半轴上,BC ∥x 轴,且BC=5,AB 交y 轴于点D ,OD=23. (1)求出点C 的坐标; (2)过A 、C 、B 三点的抛物线与x 轴交于点E ,连接BE .若动点M 从点A 出发沿x 轴向x 轴正方向运动,同时动点N 从点E 出发,在直线EB 上作匀速运动,两个动点的运动速度均为每秒1个单位长度,请问当运动时间t 为多少秒时,△MON 为直角三角形? 23.解:(1)∵ BC ∥x 轴, ∴ △BCD ∽△AOD .∴ CD BC OD AO=. ∴ 535322CD =⨯=.∴ 53422CO =+=. ∴ C 点的坐标为 (0,4) . ……………………… 1分 (2)如图1,作BF ⊥x 轴于点F ,则BF= 4. 由抛物线的对称性知EF=3.∴BE=5,OE=8,AE=11. ………………………… 2分 根据点N 运动方向,分以下两种情况讨论: ① 点N 在射线EB 上.若∠NMO=90°,如图1,则cos ∠BEF=ME FENE BE=, ∴1135t t -=,解得558t =.……………… 3分 若∠NOM=90°,如图2,则点N 与点G 重合.∵ cos ∠BEF=OE FEGE BE=, ∴ 835t =,解得403t =. …………………… 4分∠ONM=90°的情况不存在. ………………………………………………………… 5分 ② 点N 在射线EB 的反向延长线上.若∠NMO=90°,如图3,则cos ∠NEM= cos ∠BEF ,∴ME FENE BE =. ∴ 1135t t -=,解得552t =. …………………… 6分 而∠NOM=90°和∠ONM=90°的情况不存在.…… 7分 综上,当558t =、403t =或552t =时,△MON 为直角三角形.(第23题图2)D(N)(第23题图3)D(第23题)25.(7分)已知,抛物线22y ax bx =+-与x 轴的两个交点分别为A (1,0),B (4,0),与y 轴的交点为C . (1)求出抛物线的解析式及点C 的坐标;(2)点P 是在直线x=4右侧的抛物线上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OCB 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由. 25.(7分)解:(1)据题意,有0164202a b a b =+-⎧⎨=+-⎩, . 解得 1252a b ⎧=-⎪⎪⎨⎪=⎪⎩, . ∴抛物线的解析式为:215222y x x =-+-.点C 的坐标为:(0,-2). ………………………(2)答:存在点P (x ,215222x x -+-),使以A ,P ,M ∵∠COB =∠AMP =90°,∴①当OC OBMP MA =时,△OCB ∽△MAP . ②当OC OB MA MP=时,△OCB ∽△MP A . ①OC MP OB MA =,∴215222241x x x -+=-. 解得:x 1=8,x 2=1(舍). ②OC MA OB MP =,∴221154222x x x -=-+. 解得:x 3=5,x 4=1(舍).综合①,②知,满足条件的点P 为:P 1(8,-14),P 2(5,-2). ……………………… 7分24. 在△ABC 中,∠A =∠B =30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1) 当点BB 的横坐标;(2) 如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:当a =,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由。

人教版数学中考专题:代数几合综合问题含答案

人教版数学中考专题:代数几合综合问题含答案

人教版数学中考专题:代数几合综合问题含答案 Revised by BETTY on December 25,2020中考数学专题:代数几何综合问题一、填空题1. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的 C点的坐标为______________.2.如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是______.二,选择题3.如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A. B.B. D.C.D. 4. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()E.F.G.三、解答题H. 5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以厘米/秒的速度沿BC向终点C运动.过点P作I.PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).J.(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗请说明理由;K.(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么L.(3)当t为何值时,△EDQ为直角三角形.M.N.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)O.(1)求线段AB的长;当t为何值时,MN∥OC?P.(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值若有最小值,最小值是多少Q.R.7. 条件:如下图,A、B是直线l同旁的两个定点.S.T.问题:在直线l上确定一点P,使PA+PB的值最小.U.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).V.模型应用:W.(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;X.(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;Y.(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB 上的动点,求△PQR周长的最小值.Z.8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.9.(1)求N点、M点的坐标;10.(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;11.(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;12.②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S 是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.13.14.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. (2018成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a <0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y 轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系点F 是否在直线NE上请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.【答案与解析】一、填空题1.【答案】(0,0),(0,10),(0,2),(0,8)2.【答案】(2×3n﹣1,0).【解析】∵点B1、B2、B3、…、Bn在直线y=2x的图象上,∴A1B1=4,A2B2=2×(2+4)=12,A3B3=2×(2+4+12)=36,A4B4=2×(2+4+12+36)=108,…,∴An Bn=4×3n﹣1(n为正整数).∵OAn =AnBn,∴点An的坐标为(2×3n﹣1,0).故答案为:(2×3n﹣1,0).二、选择题3.【答案】A.【解析】分两种情况:①当0≤t<4时,作OG⊥AB于G,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,AD=AB=BC=4cm,∵O是正方形ABCD的中心,∴AG=BG=OG=AB=2cm,∴S=APOG=×t×2=t(cm2),②当t≥4时,作OG⊥AB于G,如图2所示:S=△OAG的面积+梯形OGBP的面积=×2×2+(2+t﹣4)×2=t(cm2);综上所述:面积S(cm2)与时间t(s)的关系的图象是过原点的线段,故选A.4.【答案】A.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD==,∵PE∥BC,解得PE=,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=,∴∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=,∴解得t=(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在 Rt△ACD中,∵AC=4,CD=3,∴AD=,∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,∴ t=(秒).综上所述,当 t=秒或t=秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当时,,,.∵,,∴,即(秒).(2)过点作轴于点,交的延长线于点,∵,∴,.即,.,.,∴.即().由,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36 解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则,解得,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S=﹣.最大9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)设点E(m,a(m+1)(m﹣3)),yAE =k1x+b1,则,解得:,∴yAE=a(m﹣3)x+a(m﹣3),∴S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得x1=﹣1,x2=4,∴D(4,5a),∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P1(1,m),①若AD是矩形的一条边,由AQ∥DP知xD ﹣xP=xA﹣xQ,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),m=yD +yQ=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=,∵a<0,∴a=﹣,∴P1(1,﹣).②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形ADPQ为矩形,∴∠APD=90°,∴AP2+PD2=AD2,∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,∵a<0,∴a=﹣,∴P2(1,﹣4).综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上.(2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。

专题代数几何综合课后练习及详解

专题代数几何综合课后练习及详解

代数几何综合课后练习题一:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C (0,3).(1)求抛物线的解析式及顶点M坐标;(2)在抛物线的对称轴上找到点P,使得△PAC的周长最小,并求出点P的坐标.题二:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-4,0),B(1,0),与y轴交于点D(0,4),点C(-2,n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE,AC请判断△AC E的形状,并说明理由.C的横坐标)(代数几何综合课后练习参考答案题一: (1)y=214x --+(),M (1,4);(2)P (1,2). 详解:(1)∵抛物线y =ax 2+bx+c (a≠0)过A (-1,0)、B (3,0), C (0,3)三点,∴93003a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得12c=3a b =-⎧⎪=⎨⎪⎩.[来源:Zxx k.Com]故抛物线的解析式为222314y x x x =-++=--+(),故顶点M 为(1,4); (2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC 与抛物线对称轴交于一点,即为所求点P .设对称轴与x 轴交于点H , 题二: (1)y=-x 2-3x+4,C (-2,6);(2)△ACE 为等腰直角三角形.详解:(1)∵抛物线经过A 、B 、D 三点,∴代入抛物线解析式可得164004a b c a b c c -+⎧⎪++⎨⎪⎩===,解得134a b c -⎧⎪-⎨⎪⎩===,∴抛物线的解析式为 y=-x 2-3x+4,∵点C (-2,n )也在此抛物线上,∴n=-4+6+4=6,∴C 点坐标为(-2,6);∴AE2+CE2=20+20=40=AC 2,且AE=CE,∴△ACE为等腰直角三角形.详解:(1)①连接OB,过点B作轴的交点,),.详解:(1)①如图1所示,过点E作⊙O ∴∠OE R=30°,的关联点,则需点H=60°,可得点2019-2020学年数学中考模拟试卷一、选择题1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°2.小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间t(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分其中正确的有()A.①④B.②③C.②③④D.②④3.某游客为爬上3千米高的山顶看日出,先用1小时爬了1千米,休息0.5小时后,再用1.5小时爬上山顶.游客爬山所用时间l与山高h间的函数关系用图形表示是()A. B.C. D.4.我们探究得方程x+y=2的正整数解只有1组,方程x+y=3的正整数解只有2组,方程x+y=4的正整数解只有3组,……,那么方程x+y+z=10的正整数解得组数是()A.34 B.35 C.36 D.375.实数在数轴上对应点的位置如图所示,则正确的结论是()A. B. C. D.6.在半径为8cm 的圆中,垂直平分半径的弦长为( )A .4cmB .C .8cmD .7.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0)直线y=kx-3k+4与交于B 、C 两点,则弦BC 的长的最小值为( )A .22B .24C .D . 8.如图,抛物线2y ax bx c =++与x 轴相交于A 、B 两点,点A 在点B 左侧,顶点在折线M-P-N 上移动,它们的坐标分别为(1,4)M -、(3,4)P 、(3,1)N .若在抛物线移动过程中,点A 横坐标的最小值为-3,则a b c -+的最小值是( )A .-15B .-12C .-4D .-29.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为( )A .5B .6C .8D .1010.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O ,顺次连接四边形ABCD 各边中点E ,F ,G ,H ,则所得四边形EFGH 的形状为( )A.对角线不相等的平行四边形B.矩形C.菱形D.正方形11.下列图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .12.已知二次函数()2y x h =-+(h 为常数),当自变量x 的值满足25x ≤≤时,其对应对的函数值y 的最大值为1-,则h 的值为( ) A.3-或6- B.1-或6-C.1-或3-D.4-或6-二、填空题13.如图,AB ∥CD .若∠ACD=82°,∠CED=29°,则∠ABD 的大小为______度.14.一次函数y=ax+b 和反比例函数y=bx在同一坐标系内的大致图象如上图所示,则a___0,b___0.15.如图,AB 、BC 是⊙O 的弦,OM ∥BC 交AB 于点M ,若∠AOC=100°,则∠AMO=___.16.36的算术平方根是 .17.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x 人,小和尚y 人,可列方程组为______.18.某校抽查50名九年级学生对艾滋病三种主要传授途径的知晓情况,结果如表估计该校九年级600名学生中,三种传播途径都知道的有_____人.三、解答题19.如图,在▱ABCD中,E是对角线BD上的一点,过点C作CF∥BD,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF.(2)若∠BFC﹣∠ABE=90°,sin∠ABE=23,BF=4,求BE的长.20.如图,点P是AB所对弦AB上一动点,点Q是AB与弦AB所围成的图形的内部的一定点,作射线PQ交AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,B,C两点间的距离为y2cm.(当点P与点A重合时,x的值为0).小平根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小平的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值;x/经测量m的值是(保留一位小数).(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△BCP为等腰三角形时,AP的长度约为cm.21.为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求.学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题.(1)求m、n的值;(2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?22.消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为( )A.13B.49C.59D.2323.一只不透明的袋子中装有1个蓝球和2个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到蓝球的概率为;(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求至少有1次摸到红球的概率.24.如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若BC是⊙O的切线,求证:∠B+∠FED=90°;(2)若FC=6,DE=3,FD=2.求⊙O的直径.25.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系;(2)如果规定每天漆器笔筒的销售量不低于260件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3490元,试确定该漆器笔筒销售单价的范围.【参考答案】***一、选择题二、填空题13.5314.< >15.5016.17.100131003x yx y+=⎧⎪⎨+=⎪⎩18.300三、解答题19.(1)见解析(2)6【解析】【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)想证明四边形ABFE是平行四边形,得出AE=BF=4,由△ADE≌△BCF,得出∠AED=∠BFC,由三角形的外角性质证出∠BAE=90°,再由三角函数定义即可求出BE的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF在△ADE与△BCF中,DE CFADE CBF AD BC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BCF(SAS).(2)解:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∴AE=BF=4,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠BFC﹣∠ABE=90°,∴∠AED﹣∠ABE=90°,∵∠AED=∠ABE+∠BAE,∴∠BAE=90°,∵sin∠ABE=AEBE=23,∴BE=32BE=6.【点睛】此题考查平行四边形的性质与判定、全等三角形的判定与性质、三角形的外角性质、三角函数等知识;熟练掌握平行四边形的性质和判定,和全等三角形的判定以及菱形的判定解答.20.(1)3;(2)详见解析;(3)1.2或1.6或3.0.【解析】【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找PB长关于x的函数:直线y=-x+6与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可.【详解】解:(1)(1)∵PA=0时,点P与点A重合,AB=6,PC=AC=5.37,BC=2.68,∴AB2=PC2+BC2,∴∠ACB=90°,∴AB是直径.当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)如图;(3)观察图象可知:当x=y,即当PB=PC或PB=BC时,x=3或1.2,当y1=y2时,即PC=BC时,x=1.6,或x=6(与P重合,△BCP不存在)综上所述,满足条件的x的值为1.2或1.6或3,.故答案为1.2或1.6或3.0.【点睛】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.21.(1)m=40,n=60;(2)该校喜欢踢足球的学生人数是400人.【解析】【分析】(1)根据喜爱篮球的人数÷其所占的百分比得到总人数,再由总人数乘以喜爱排球的人数所占百分比得到n,用总人数-喜爱篮球人数-喜爱排球的人数-喜爱其他人数,即可确定出m的值;(2)求出喜欢踢足球的学生人数所占的百分比,乘以2000即可得到结果.【详解】(1)70÷35%=200(人)n=200×30%=60,m=200﹣70﹣60﹣40=40;(2)2000×40200=400 (人)答:该校喜欢踢足球的学生人数是400人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.C【解析】【分析】画树状图展示所有9种等可能的结果数,找出两人中至少有一个给“好评”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,两人中至少有一个给“好评”的结果数为5,所以两人中至少有一个给“好评”的概率=59.故选C.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.23.(1)13;(2)89.【解析】【分析】(1)由共有3种等可能结果,其中摸到蓝球可能的结果有1种,根据概率公式求解可得;(2)画树状图列出所有等可能结果,再根据概率公式求解可得.【详解】解:(1)∵袋中共有3个球,∴共有3种等可能结果,其中摸到蓝球可能的结果有1种.∴P(摸到蓝球)=13,故答案为:13;(2)将2个红球编号为红球1,红球2,用树状图表示出所有可能出现的结果,由树状图知,共有9种等可能结果,其中至少有一次摸到红球可能的结果有8种.∴P (至少有1次摸到红球)=89. 【点睛】本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率. 24.(1)见解析;(2)⊙O 的直径为9. 【解析】 【分析】(1)利用圆内接四边形对角互补以及邻补角的定义得出∠FED=∠A ,进而得出∠B+∠A=90°,求出答案; (2)利用相似三角形的判定与性质首先得出△FED ∽△FAC ,进而求出即可. 【详解】(1)证明:∵∠A+∠DEC =180°,∠FED+∠DEC =180°, ∴∠FED =∠A , ∵BC 是⊙O 的切线, ∴∠BCA =90°, ∴∠B+∠A =90°, ∴∠B+∠FED =90°;(2)解:∵∠CFA =∠DFE ,∠FED =∠A , ∴△FED ∽△FAC ,∴DE DFAC FC =, ∴326AC =, 解得:AC =9,即⊙O 的直径为9. 【点睛】此题主要考查了相似三角形的判定与性质以及切线的性质等知识,得出△FED ∽△FAC 是解题关键.25.(1)10700y x =-+;(2)销售单价为44元时,每天获取的利润最大,3640W =最大元;(3)4456x ≤≤.【解析】 【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3490元时,对应x 的值,根据增减性,求出x 的取值范围. 【详解】(1)设y kx b =+y=k x+b ∴ 经过点(40,300),(55,150)4030055150k b k b +=⎧∴⎨+=⎩ 解得10700k b =-⎧⎨=⎩故y 与x 的关系式为:10700y x =-+ (2)30<44x ≤设利润为(30)(30)(10700)w x y x x =-⋅=--+221010002100010(50)4000w x x x =-+-=--+100-<∴x<50时,w 随x 的增大而增大, ∴当44x =时,3640W =最大 (2)由题意,得 -10x+700≥260, 解得x≤44, ∴30<x≤44,设利润为w=(x-30)•y=(x-30)(-10x+700), w=-10x 2+1000x-21000=-10(x-50)2+4000, ∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=44时,w 最大=-10(44-50)2+4000=3640,答:当销售单价为44元时,每天获取的利润最大,最大利润是3640元; (3)w-150=-10x 2+1000x-21000-150=3490, -10(x-50)2=-360, x-50=±6, x 1=56,x 2=44, 如图所示,由图象得:当44≤x≤56时,捐款后每天剩余利润不低于3490元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.2019-2020学年数学中考模拟试卷一、选择题1.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.5B.﹣5C.3D.﹣32.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形 B.菱形 C.角 D.平行四边形3.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.4.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A.小青B.小何C.小夏D.小雨5.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A.①和②B.②和③C.①和③D.①和④6.已知二次函数y=ax2+(a+2)x﹣1(a为常数,且a≠0),()A.若a>0,则x<﹣1,y随x的增大而增大B.若a>0,则x<﹣1,y随x的增大而减小C.若a<0,则x<﹣1,y随x的增大而增大D.若a<0,则x<﹣1,y随x的增大而减小7.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是( )A .B .C .D .8 ( ) A .16的平方根B .16的算术平方根C .±4D .±29.下列运算正确的是( ) A .3x 2•4x 2=12x 2B .x 3+x 5=x 8C .x 4÷x=x 3D .(x 5)2=x 710.如图,在△ABC 中,点D 在AB 边上,点E 在AC 边上DE ∥BC ,点B 、C 、F 在一条直线上,若∠ACF =140°,∠ADE =105°,则∠A 的大小为( )A .75°B .50°C .35°D .30°11.在同一直角坐标平面内,如果直线y =k 1x 与双曲线2k y x=没有交点,那么k 1和k 2的关系一定是( ) A.k 1+k 2=0B.k 1•k 2<0C.k 1•k 2>0D.k 1=k 212.如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sin θ=13,则该圆锥的侧面积是( )A .B .24πC .16πD .12π二、填空题 13.反比例函数y =kx与一次函数y =kx+m 的图象有一个交点是(﹣2,1),则它们的另一个交点的坐标是_____.14.从1,2,3,4四个数中任取一个数作为AC的长度,又从4,5中任取一个数作为BC的长度,6AB ,则AB AC BC、、能构成三角形的概率是_____.15.二次函数y=x2﹣2x﹣5的最小值是______.16﹣|﹣2|=_____.17.已知⊙O的半径为2cm,弦AB长为,则这条弦的中点到弦所对劣弧中点的距离为_____cm.18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.三、解答题19.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:(1)将上面表格补充完整;(2)某天王先生和李女士从甲地到乙地,试用树状图或列表法求在早高峰期间刚好都坐同一条线路的概率;(3)小张从甲地到乙地,早高峰期间用时不超过45分钟,请问小张应该选择哪条线路?请说明理由.20.(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为_____;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为_____,综上可得∠BPC的度数为_____;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB,PC=1,求∠APC的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=12AD.∠BAC=2∠ADC,请直接写出BD的长.21.计算:020194sin60|2|(1)--+-.22.解不等组533(1)131922x xx x->+⎧⎪⎨-<-⎪⎩并求出其整数解.23.某汽车专卖店销售甲,乙两种型号的新能源汽车,上周售出甲型汽车和乙型汽车各2辆,销售额为88万元;本周售出3辆甲型汽车和1辆乙型汽车,两周的销售额为184万元.(1)求每辆甲型汽车和乙型汽车的售价;(2)某公司拟向该店购买甲,乙两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?24.已知O的直径为10,点A,B,C在O上,CAB∠的平分线交O于点D.(I)如图①,当BC为OO的直径时,求BD的长;(Ⅱ)如图②,当BD=5时,求∠CDB的度数。

代数几何综合题(含答案)

代数几何综合题(含答案)

代数几何综合题1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长. 3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0<x 2.(1)求m 的取值范围;(2)设点C 在y 轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值; (3)在上述条件下,若点D 在第二象限,△DAB ≌△CBA ,求出直线AD 的函数解析式.4.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

①求直线AC 的解析式;②若M 为AC 与BO 的交点,点M 在抛物线285y x kx =-+上,求k 的值; ③将纸片沿CE 对折,点B 落在x 轴上的点D 处,试判断点D 是否在②的抛物线上,并说明理由。

1、已知抛物线)0(22>--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。

(1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示);(2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。

2022年中考复习《代数几何综合》专项练习附答案

2022年中考复习《代数几何综合》专项练习附答案

代数几何综合1、〔2021年潍坊市压轴题〕如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.〔1〕求抛物线的解析式;〔2〕假设直线平分四边形OBDC 的面积,求k 的值.〔3〕把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不管k 取何值,直线PM 与PN 总是关于y 轴对称?假设存在,求出P 点坐标;假设不存在,请说明理由.答案:〔1〕因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . 〔2〕由〔1〕知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 〔3〕由〔1〕知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -= 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 那么〔1〕式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以〔t+2〕(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入221x y -=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入〔2〕得t=2,符合条件,故在y 轴上存在一点P 〔0,2〕,使直线PM 与PN 总是关于y 轴对称.考点:此题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式确实定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:此题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。

中考数学复习专题 代数与几何综合(含答案)

中考数学复习专题 代数与几何综合(含答案)
第- 6 -页 共 8 页
5. 如图 2-5-16,在矩形 ABCD 中,AB=10。cm,BC=8cm.点 P 从 A 出发,沿 A→B→C→D 路线运动,到 D 停止;点 Q 从 D 出发,沿 D→C→B→A 路线运动,到 A 停止,若点 P、 点 Q 同时出发,点 P 的速度为 1cm/s,点 Q 的速度为 2cm/s,a s 时点 P、点 Q 同时改变 速度,点 P 的速度变为 bcm/s,点 Q 的速度变为 d cm/s,图 2-5-17 是点 P 出发 x 秒 后△APD 的面积 S1(cm2)与 x(s)的函数关系图象;图 2-5-18 是点 Q 出发 xs 后面 AQD 的面积 S2(cm2)与 x(s)的函数关系图象. ⑴ 参照图 2-5-17,求 a、b 及图中 c 的值; ⑵ 求 d 的值; ⑶ 设点 P 离开点 A 的路程为 y1(cm),点 Q 到点 A 还需走的路程为 y2(cm),请分别写出 动点 P、Q 改变速度后,y1、y2 与出发后的运动时间 x(s)的函数解析式,并求出 P、 Q 相遇时 x 的值. ⑷ 当点 Q 出发_______s 时,点 P、点 Q 在运动路线上相距的路程为 25cm.
第- 6 -页 共 8 页
答案 一、ABDCB DAACD
二、1、 3 2、 2 -1
三、1、(1)y=- 1 x2+x 2
3、 11
6
4、(-502,502)
(2)x 取最大整数为-1,∴ y=- 1 ×(-1)2-1=– 3 ∴AC= 3
2
2
2
由△BOQ∽△CAQ,可得 BO = OQ
AC AQ
C. y x
D. y 3 x 2
7.如图,反比例函数 y 4 的图象与直线 y 1 x 的

代数几何综合题含答案

代数几何综合题含答案

争分夺秒 分秒必争 我的人生 我做主 只要认真做事 一切皆有可能 东升求实学校2015届初三数学培优资料专题三 代数几何综合题1、(2014•广东)如图,在△ABC 中,AB=AC ,AD ⊥AB 于点D ,BC=10cm ,AD=8cm .点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(t >0).(1)当t=2时,连接DE 、DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的△PEF 的面积存在最大值,当△PEF 的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使△PEF 为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.考点:相似形综合题.分析: (1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF 的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解. 解(1)证明:当t=2时,DH=AH=2,则H 为AD 的中点,如答图1所示.答: 又∵EF ⊥AD ,∴EF 为AD 的垂直平分线,∴AE=DE ,AF=DF .∵AB=AC ,AD ⊥AB 于点D ,∴AD ⊥BC ,∠B=∠C . ∴EF ∥BC ,∴∠AEF=∠B ,∠AFE=∠C , ∴∠AEF=∠AFE ,∴AE=AF ,∴AE=AF=DE=DF ,即四边形AEDF 为菱形.(2)解:如答图2所示,由(1)知EF ∥BC ,∴△AEF ∽△ABC , ∴,即,解得:EF=10﹣t .S △PEF =EF •DH=(10﹣t )•2t=﹣t 2+10t=﹣(t ﹣2)2+10 ∴当t=2秒时,S △PEF 存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E 为直角顶点,如答图3①所示, 此时PE ∥AD ,PE=DH=2t ,BP=3t . ∵PE ∥AD ,∴,即,此比例式不成立,故此种情形不存在;②若点F 为直角顶点,如答图3②所示,争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F 作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t .在Rt △EMP中,由勾股定理得:PE2=EM2+PM2=(2t )2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t ,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN 2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF 2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.25.(9分)(2013•汕头)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC=_________度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料考点:相似形综合题.专题:压轴题.分析:(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在Rt△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I )当0≤x≤2时,如答图1所示;(II)当2<x≤6﹣时,如答图2所示;(III)当6﹣<x≤6时,如答图3所示.解答:解:(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE=,∴tan∠DFE==,∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE﹣∠ABC=60°﹣45°=15°;(2)如题图3所示,当EF经过点C时,FC====;(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB 为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△BDG﹣S△BFM=BD•DG﹣BF•MN=(x+4)2﹣x •x=x2+4x+8;(II)当2<x≤6﹣时,如答图2所示:争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S △ABC﹣S △BFM=AB•AC﹣BF•MN=×62﹣x•x=x 2+18;(III)当6﹣<x≤6时,如答图3所示:由BF=x,则AF=AB ﹣BF=6﹣x,设AC与EF 交于点M,则AM=AF•tan60°=(6﹣x).y=S△AFM =AF•AM=(6﹣x)•(6﹣x)=x2﹣x+.综上所述,y与x的函数解析式为:y=.点评:本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.25.(2014年广东汕尾)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M 的坐标;(3)设点C关于抛物线对称轴的对称点为B ,在抛物线上是否存在点P ,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料分析:(1)令y=0,解方程x2﹣x﹣3=0可得到A点和D点坐标;令x=0,求出y=﹣3,可确定C点坐标;(2)根据抛物线的对称性,可知在在x轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴上方,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;(3)根据梯形定义确定点P,如图所示:①若BC∥AP1,确定梯形ABCP1.此时P 1与D点重合,即可求得点P1的坐标;②若AB∥CP 2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C 点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x 轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC ,∴四边形ABCP1为梯形;②若AB∥CP 2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x ﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线与坐标轴的交点坐标求法,三角形的面积,梯形的判定.综合性较强,有一定难度.运用数形结合、分类讨论及方程思想是解题的关键.22.(2014年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC 并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP ﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据B,D 两点求出BD 表达式为y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为y=x 又在直线DO 上的点P的横坐标为2,所以p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且MC=,故C(2,﹣1)过D 作DH⊥x 轴于H,设MC 与x 轴交于K,则△ACK∽△ADH,又∵DC=4AC,故DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料∴BD⊥AB ,BD为⊙M的切线;(3)解:取点A 关于直线MC 的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2014年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE ,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m ﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.22.(9分)(2014•珠海)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.考点:二次函数综合题分析:(1)求解析式一般采用待定系数法,通过函数上的点满足方程求出.(2)平行四边形对边平行且相等,恰得MN为OF,即为中位线,进而横坐标易得,D为x轴上的点,所以纵坐标为0.(3)已知S范围求横坐标的范围,那么表示S是关键.由PH不为平行于x轴或y轴的线段,所以考虑利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来解题,此法底为两点纵坐标得差,高为横坐标的差,进而可表示出S,但要注意,当Q在O点右边时,所求争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料三角形为两三角形的差.得关系式再代入,求解不等式即可.另要注意求解出结果后要考虑Q本身在R、E之间的限制.解答:解:(1)如图1,过G作GI⊥CO于I,过E作EJ ⊥CO于J,∵A(2,0)、C(0,2),∴OE=OA=2,OG=OC=2,∵∠GOI=30°,∠JOE=90°﹣∠GOI=90°﹣30°=60°,∴GI=sin30°•GO==,IO=cos30°•GO==3,JO=cos30°•OE==,JE=sin30°•OE==1,∴G(﹣,3),E(,1),设抛物线解析式为y=ax2+bx+c,∵经过G、O、E三点,∴,解得,∴y=x2﹣x.(2)∵四边形OHMN为平行四边形,∴MN∥OH,MN=OH,∵OH=OF,∴MN为△OGF 的中位线,∴x D=x N=•x G=﹣,∴D(﹣,0).(3)设直线GE的解析式为y=kx+b,∵G(﹣,3),E(,1),争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料∴,解得,∴y=﹣x+2.∵Q 在抛物线y=x2﹣x上,∴设Q的坐标为(x,x 2﹣x),∵Q在R、E两点之间运动,∴﹣<x<.①当﹣<x<0时,如图2,连接PQ,HQ ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),∵S△PKQ=•(y K﹣y Q)•(x Q﹣x P),S△HKQ=•(y K﹣y Q)•(x H﹣x Q),∴S△PQH=S△PKQ+S△HKQ=•(y K﹣y Q)•(x Q﹣x P)+•(y K﹣y Q)•(x H﹣x Q)=•(y K﹣y Q)•(x H﹣x P)=•[﹣x+2﹣(x2﹣x)]•[0﹣(﹣)]=﹣x2+.②当0≤x<时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料同理S△PQH=S△PKQ﹣S△HKQ=•(y K﹣y Q)•(x Q﹣x P )﹣•(y K﹣y Q)•(x Q﹣x H)=•(y K ﹣y Q)•(x H ﹣x P)=﹣x 2+.综上所述,S△PQH=﹣x2+.∵,∴<﹣x2+≤,解得﹣<x <,∵﹣<x<,∴﹣<x<.点评:本题考查了一次函数、二次函数性质与图象,直角三角形及坐标系中三角形面积的表示等知识点.注意其中“利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来表示面积”是近几年中考的考查热点,需要加强理解运用.24.(本小题满分14分)已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,顶点为C.点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式与顶点C 的坐标.(2)当∠APB为钝角时,求m的取值范围.(3)若,当∠APB为直角时,将该抛物线向左或向右平移t ()个单位,点P、C移动后对应的点分别记为、,是否存在t,使得首尾依次连接A、B、、所构成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.【考点】动点问题.(1)二次函数待定系数法;(2)存在性问题,相似三角形;(3)最终问题,轴对称,两点之间线段最短【答案】(1)解:依题意把的坐标代入得: ;解得:争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料抛物线解析式为顶点横坐标,将代入抛物线得(2)如图,当时,设,则过作直线轴,(注意用整体代入法)解得,当在之间时,或时,为钝角.(3)依题意,且设移动(向右,向左)连接则又的长度不变四边形周长最小,只需最小即可将沿轴向右平移5各单位到处沿轴对称为∴当且仅当、B、三点共线时,最小,且最小为,此时,设过的直线为,代入争分夺秒分秒必争我的人生我做主只要认真做事一切皆有可能东升求实学校2015届初三数学培优资料∴即将代入,得:,解得:∴当,P、C向左移动单位时,此时四边形ABP’C’周长最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数几何综合题1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y )(1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ; (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)若AO +CD =11,求AB 的长. 3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0<x 2. (1)求m 的取值范围;(2)设点C 在y 轴的正半轴上,∠ACB=90°,∠CAB=30°,求m 的值; (3)在上述条件下,若点D 在第二象限,△DAB ≌△CBA ,求出直线AD 的函数解析式.4.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

①求直线AC 的解析式;②若M 为AC 与BO 的交点,点M 在抛物线285y x kx =-+上,求k 的值;③将纸片沿CE 对折,点B 落在x 轴上的点D 处,试判断点D 是否在②的抛物线上,并说明理由。

1、已知抛物线)0(22>--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。

(1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。

B2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于A (-1,0)、B (3,0)、C (0,3)三点,其顶点为D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积;(3)试判断△BCD 与△COA 是否相似?若相似写出证明过程;若不相似,请说明理由.3、如图,Rt ΔABC 中,∠ACB=90°,AC=4,BA=5,点P不与A 、C 重合)设PC=x,点P 到AB 的距离为y 。

(1)求y 与x 的函数关系式; (2)试讨论以P 为圆心,半径为x 的圆与AB 相应的x 的取值范围。

4、如图,在正方形ABCD 中,AB=2,E 是AD 边上一点(点E 平分线交AB 于M ,交DC 于N .(1)设AE=x ,四边形ADNM 的面积为S ,写出S 关于x (2)当AE 为何值时,四边形ADNM 的面积最大?最大值是多少?5.如图,已知:AB 是定圆的直径,O 是圆心,点C 在⊙O 的半径AO 上运动,PC ⊥AB 交⊙O 于E ,交AB 于C ,PC=5。

PT 是⊙O 的切线(T 为切点)。

(1)当CE 正好是⊙O 的半径时,PT=3,求⊙O 的半径; (2)当C 点与A 点重合时,求CT 的长;(3)设PT 2=y ,AC=x ,写出y 关于x 的函数关系式,并确定x 的取值范围。

解:(1)ΘPC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090,ΘA (2,0),C (2,y )在直线a 上 ∴=PO AC BO PA ,∴=+||||||x y x 22, (2)Θx <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32设Q 点坐标为()m ,0,则AQ m =-2∴Q 点坐标为()870,答案: 练习1、(1)连结BC 交OA 于点E 略(2)∵CD ∥AO ,∴∠3=∠4. ∵AB 是⊙O 的切线,DB 是直径, ∴∠BCD =∠ABO =90°∴△BDC ∽△AOB. ∴BD DC AO OB =∴6x y 3= ∴18y x= ∴0<x <6(3)由已知和(2)知 x y 11xy 18⎧⎨⎩+==解这个方程组得:1212x 2x 9y 9 y 2⎧⎧⎨⎨⎩⎩==(舍去)== ∴AB =22937262-==. 2.解:(1)由题意,得 22-4(m-3)=16-m>0① x 1x 2=m-3<O . ② ①得m<4. 解②得m<3.所以m 的取值范围是m<3. (2)由题意可求得∠OCB=∠CAB=30°. 所以BC=2BO ,AB=2BC=4BO . 所以A0=3BO(4分)从而得 x 1=-3x2. ③ 又因为 x 1+x 2=-2. ④ 联合③、④解得x 1=-3,x 2=1. 代入x 1·x 2=m-3,得m=O .(3)过D 作DF ⊥轴于F .从(2)可得到A 、B 两点坐标为A(-3,O)、B(1,O). 所以BC=2,AB=4,OC=3 因为△DAB ≌△CBA ,所以DF=CO=3,AF=B0=1,OF=A0-AF=2. 所以点D 的坐标为(-2,3). 直线AD 的函数解析式为y=3x=333. 4、5.(1)根据题意,C 、C ′两点关于直线DE 成轴对称,DE 是线段CC ′的垂直平分线,故DC =DC ′,GC =EC ′,∠C ′EG =∠CEG由C ′H ⊥DC ,BC ⊥DC 得:C ′G ∥CE , ∴∠C ′GE =∠GEC ,∵∠C ′EG =∠CEG ,∴∠C ′GE =∠C ′EG ,∴C ′G =C ′E , ∴C ′G =C ′E =EC =GC ,∴四边形CGCE 为菱形(2)解法一:由题意知:在△RtDCE 中,sin ∠CDE =DECE=x由(1)得:CC ′⊥CE ,又DC ⊥CE , ∴Rt △C ′EF ∽Rt △DEC ′, ∴''EC EF DE E C =, 即EF DE E C •=2'∴222222121,)('x DE EF DE GE DE DE DG x DE CE DEE C DE EF -=-=-==== ∴221''x x DEDGDE E C DE DG E C -+=+=+,即122++-=x x y解法二:设DE =a ,由sin ∠CDE=DECE=x ,则CE=ax ,又DC ⊥CE ,CF ⊥DE ,∴△DCE ∽△CFE∴2)(22CE EF ,ax DECE DE FE CE aax ===∴=DG =DE -2EF =a-2ax 2,∴22212'x x aax a ax DE DG CE DE DG E C -+=-+=+=+∴y=-2x 2+x+1 (3)由(2)得:y=-2x 2+x+1=89)41(22+--x可见,当x=41时,此函数的图象达到最高点,此时87811212=-=-=x DE DG∵GH ∥CE ,∴87==DE DG DC DH ,由DH =2,得DG =47在Rt △DHC ′中41516494''22=-=-=DH DC H C ∴BC =415能力训练1、(1)所求对称轴为直线x =1 C (0,-m ) C ′(2,-m )(2)满足条件的P 、Q 坐标为P (-1,3-m ),Q (1,3-m );P ′(3,3-m )。

Q (1,3—m );P ″(1,-1-m ),Q ′(1,1-m )。

(3)所求平行四边形周长为1024+或24。

2、解:(1)322++-=x x y(2)由(1)可知4)1(2+--=x y∴顶点坐标为D (1,4),设其对称轴与x 轴的交点为E ∵OC AO S AOC •=∆213121⨯⨯=23= (3)△DCB 与△AOC 相似证明:过点D 作y 轴的垂线,垂足为F∵D (1,4),∴Rt △DFC 中,DC =2,且∠DCF =45°在Rt △BOC 中,∠OCB =45°,BC =23 ∴∠AOC =∠DCB =90°12==CO BC AO DC ∴△DCB ∽△AOC 3、(1)过P 作PQ ⊥AB 于Q ,则PQ=y , 312(04)55y x x =-+<<(2)令x ≤y ,得:31255x x ≤-+,解得:32x ≤∴当302x <<时,圆P 与AB 所在直线相离;32x =时,圆P 与AB 所在直线相切;342x <<时,圆P 与AB 所在直线相交 4.解:(1)连接ME ,设MN 交BE 于P ,根据题意,得MB=ME ,MN ⊥BE .过N 作AB 的垂线交AB 于F , 在Rt △MBP 和Rt △MNF 中,∠MBP+∠BMN=90°,∠FNM+∠BMN=90°, ∴∠MBP=∠MNF .又AB=FN ,∴RT △EBA ≌Rt △MNF ,故MF=AE=x在Rt △AME 中,AE=x ,ME=MB=2-AM ,∴(2-AM)2=x 2+AM 2. 解得AM=2411x -所以四边形ADNM 的面积即所求关系式为2212++-=x x s . (2) ()()22211515221122222S x x x x x =-++=--++=--+.∴当AE=x=1时,四边形ADNM 的面积s 的值最大。

最大值是25. 5.解:(1)∵ MO ⊥AB ,∴ OA =OB.∵ A 点坐标为(-3,0),∴ B 点坐标为(3,0). ∵ CD 是⊙O 的切线,∴ CD 2=CB ·CA =2×8=16.∴ CD =4. (3)∵ AD 是直径,∴ DB ⊥AB ,∴ BD =DC 2-BC 2=42-22=2 3.A B C DE MxyO 8-5图∵ DE ∥BA ,∴ AE ⌒=DB ⌒. ∴ AD =DB, ∴ AE =2 3. 6.。

相关文档
最新文档