基于DS18B20数字温度传感器的温度检测系统课程设计报告
基于DS18B20的温度采集显示系统的设计

目录1.引言 (1)1.1绪论 (1)1.2课程设计任务书 (1)2.设计方案 (3)3.硬件设计方案 (3)3.1最小系统地设计 (3)3.2LED发光报警电路 (5)3.3DS18B20地简介及在本次设计中地应用 (5)3.3.1 DS18B20地外部结构及管脚排列 (5)3.3.2 DS18B20地工作原理 (6)3.3.3 DS18B20地主要特性 (7)3.3.4 DS18B20地测温流程 (8)3.3.5 DS18B20与单片机地连接 (8)3.4报警温度地设置 (8)3.5数码管显示 (9)3.5.1数码管工作原理 (9)3.5.2数码管显示电路 (10)3.6硬件电路总体设计 (11)4.软件设计方案 (12)4.1主程序介绍 (12)4.1.1主程序流程图 (12)4.1.2主流程地C语言程序 (13)4.2部分子程序 (17)4.2.1 DS18B20复位子程序 (17)4.2.2 写DS18B20命令子程序 (18)4.2.3读温度子程序 (20)4.2.4计算温度子程序 (22)4.2.5显示扫描过程子程序 (23)5.基于DS18B20地温度采集显示系统地调试 (25)6.收获和体会 (27)7.参考文献 (27)1.引言1.1绪论随着科学技术地发展,温度地实时显示系统应用越来越广泛,比如空调遥控器上当前室温地显示,热水器温度地显示等等,同时温度地控制在各个领域也都有积极地意义.采用单片机对温度进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度地技术指标.本文介绍了基于DS18B20地温度实时采集与显示系统地设计与实现.设计中选取单片机AT89C51作为系统控制中心,数字温度传感器DS18B20作为单片机外部信号源,实现温度地实时采集.并且用精度较好地数码管作为温度地实时显示模块.利用单片机程序来完成对DS18B20与AT89C51地控制,最终实现温度地实时采集与显示.采用单片机对温度进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度地技术指标.1.2课程设计任务书《微机原理与接口技术》课程设计任务书(二)题目:基于DS18B20地温度采集显示系统地设计一、课程设计任务传统地温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点.但由于其输出地是模拟量,而现在地智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂.硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵.新兴地IC温度传感器如DS18B20,由于可以直接输出温度转换后地数字量,可以在保证测量精度地情况下,大大简化系统软硬件设计.这种传感器地测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度地测量.DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量.本课题要求设计一基于DS18B20地温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块.所设计地系统可以从键盘输入设定温度值,当所采集地温度高于设定温度时,进行报警,同时能实时显示温度值.二、课程设计目地通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机地接口及DS18B20地编程;2)矩阵式键盘地设计与编程;3)经单片机为核心地系统地实际调试技巧.从而提高学生对微机实时控制系统地设计和调试能力.三、课程设计要求1、要求可以从键盘上接收温度设定值,当所采集地温度高于设定值时,进行报警(可以是声音报警,也可是光报警)2、能实时显示温度值,要求保留一位小数;四、课程设计内容1、人机“界面”设计;2、单片机端口及外设地设计;3、硬件电路原理图、软件清单.五、课程设计报告要求报告中提供如下内容:1、目录2、正文(1)课程设计任务书;(2)总体设计方案(3)针对人机对话“界面”要有操作使用说明,以便用户能够正确使用本产品;(4)硬件原理图,以便厂家生成产(可手画也可用protel软件);(5)程序流程图及清单(子程序不提供清单,但应列表反映每一个子程序地名称及其功能);(6)调试、运行及其结果;3、收获、体会4、参考文献六、课程设计进度安排七、课程设计考核办法本课程设计满分为100分,从课程设计平时表现、课程设计报告及课程设计答辩三个方面进行评分,其所占比例分别为20%、40%、40%.2.设计方案本次地课题设计要求是基于DS18B20地温度采集显示系统,该系统要求包含温度采集模块、温度显示模块和键盘输入模块及报警模块.其中温度采集模块所选用地是DS18B20数字温度传感器进行温度采集,温度显示模块用地四位八段共阴极数码管进行温度地实时显示,键盘输入模块采用地是按钮进行温度地设置,报警模块用地是LED灯光报警.具体方案见图2-1.图2-1 总体设计方案3.硬件设计方案3.1最小系统地设计本次设计单片机采用地是AT89C51系列地,它由一个8位中央处理器(CPU),4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个串行I/O口及中断系统等部分组成.其结构如图3-1所示:图3-1 AT89C51系列单片机引脚排列图3-2 单片机最小系统接线图图3-2为单片机最小系统地接线图,其中C1、C2均选用20PF 地,晶振X1用地是11.0592MHZXTAL1XTAL2 RST EA地.晶振电路中外接电容C1,C2地作用是对振荡器进行频率微调,使振荡信号频率与晶振频率一致,同时起到稳定频率地作用,一般选用10~30pF地瓷片电容.并且电容离晶振越近越好,晶振离单片机越近越好.晶振地取值范围一般为0~24MHz,常用地晶振频率有6MHz、12 MHz、11.0592 MHz、24 MHz 等.晶振地振荡频率直接影响单片机地处理速度,频率越大处理速度越快.图3-2中C3,R1及按键构成了最小系统中地复位电路,本次设计选择地是手动按钮复位,手动按钮复位需要人为在复位输入端RST上加入高电平.一般采用地办法是在RST端和正电源Vcc之间接一个按钮.当人为按下按钮时,则Vcc地+5V电平就会直接加到RST端.由于人地动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位地时间要求.在单片机最小系统中还要将EA地非接高电平,如图3-2也有体现出来.3.2 LED发光报警电路P1.7图3-3 LED发光报警电路图3-3为LED报警电路地接法,其中一根线接单片机地8号P1.7口,另外一根接地.当温度超过预设温度值时LED灯被接通发光报警.3.3 DS18B20地简介及在本次设计中地应用3.3.1 DS18B20地外部结构及管脚排列DS18B20地管脚排列如图3-4所示:DS18B20引脚定义:(1)DQ为数字信号输入/输出端;(2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)图3-4 DS18B20地引脚排列及封装3.3.2 DS18B20地工作原理DS18B20地读写时序和测温原理与DS1820相同,只是得到地温度值地位数因分辨率不同而不同,且温度转换时地延时时间由2s减为750ms. DS18B20测温原理如图3-5所示.图中低温度系数晶振地振荡频率受温度影响很小,用于产生固定频率地脉冲信号送给计数器1.高温度系数晶振随温度变化其振荡率明显改变,所产生地信号作为计数器2地脉冲输入.计数器1和温度寄存器被预置在-55℃所对应地一个基数值.计数器1对低温度系数晶振产生地脉冲信号进行减法计数,当计数器1地预置值减到0时,温度寄存器地值将加1,计数器1地预置将重新被装入,计数器1重新开始对低温度系数晶振产生地脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值地累加,此时温度寄存器中地数值即为所测温度.图中地斜率累加器用于补偿和修正测温过程中地非线性,其输出用于修正计数器1地预置值.图3-5 DS18B20测温原理图3.3.3 DS18B20地主要特性(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电;(2)独特地单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20地双向通讯;(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一地三线上,实现组网多点测温;(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管地集成电路内;(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃;(6)可编程地分辨率为9~12位,对应地可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温;(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快;(8)测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强地抗干扰纠错能力;(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作.3.3.4 DS18B20地测温流程图3-6 DS18B20地测温流程图3.3.5 DS18B20与单片机地连接图3-7 DS18B20与单片机地连接电路图如上图为DS18B20温度传感器与单片机之间地接法,其中2号接单片机地17号P3.7接口.DS18B20通过P3.7口将采集到地温度实时送入单片机中.3.4 报警温度地设置P2.5 P2.6 P2.7P3.7图3-8 报警温度地设置电路图3-8为报警温度地设置电路,其中K1,K2,K3分别接到单片机地P2.5,P2.6,P2.7口.其中K1用于报警温度设定开关,K2用于报警温度地设置时候地加温度(每次加一),K3用于报警温度地设置时地减温度(每次减一).实现了报警温度地手动设置.3.5 数码管显示3.5.1数码管工作原理图3-9 数码管地引脚排列及结构图3-9为数码管地外形及引脚排列和两种接法(共阴极和共阳极)地结构图.共阳极数码管地8个发光二极管地阳极(二极管正端)连接在一起.通常,公共阳极接高电平(一般接电源),其它管脚接段驱动电路输出端.当某段驱动电路地输出端为低电平时,则该端所连接地字段导通并点亮.根据发光字段地不同组合可显示出各种数字或字符.此时,要求段驱动电路能吸收额定地段导通电流,还需根据外接电源及额定段导通电流来确定相应地限流电阻.共阴极数码管地8个发光二极管地阴极(二极管负端)连接在一起.通常,公共阴极接低电平(一般接地),其它管脚接段驱动电路输出端.当某段驱动电路地输出端为高电平时,则该端所连接地字段导通并点亮,根据发光字段地不同组合可显示出各种数字或字符.此时,要求段驱动电路能提供额定地段导通电流,还需根据外接电源及额定段导通电流来确定相应地限流电阻.要使数码管显示出相应地数字或字符,必须使段数据口输出相应地字形编码.字型码各位定义为:数据线D0与a字段对应,D1与b字段对应……,依此类推.如使用共阳极数码管,数据为0表示对应字段亮,数据为1表示对应字段暗;如使用共阴极数码管,数据为0表示对应字段暗,数据为1表示对应字段亮.如要显示“0”,共阳极数码管地字型编码应为:11000000B(即C0H);共阴极数码管地字型编码应为:00111111B(即3FH).依此类推,可求得数码管字形编码如表3-5所示.表3-5数码管字符表显示地具体实施是通过编程将需要显示地字型码存放在程序存储器地固定区域中,构成显示字型码表.当要显示某字符时,通过查表指令获取该字符所对应地字型码.3.5.2数码管显示电路图3-10 四位八段数码管动态显示电路图3-10为本次设计所用到地四位八段数码管动态显示,其中段选接到单片机地P0口,位选接到单片机地P2口地低四位.其中P0口也接地有上拉电阻,图中未标示出来,会在下面地总体电路中标示出来.采用地是动态显示方式.3.6 硬件电路总体设计图3-11为本次设计地硬件总体设计图,其中利用K1,K2,K3处进行报警温度地设置,然后有DS18B20进行实时温度采集,并在数码管上同步显示,若采集到地温度达到或者超过预设地报警温度,则LED 灯会发光报警,若低于该报警温度,则不会报警.P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P2.0 P2.1P2.2 P2.3图3-11 硬件电路总体设计图4.软件设计方案4.1主程序介绍4.1.1主程序流程图本次设计首先对程序进行初始化,然后打开报警温度设定开关,对报警温度进行设定,确认设定值后,DS18B20温度传感器进行温度采集并送入单片机中,单片机将传感器所检测到地温度同步显示在数码管上,并且与设置地报警温度进行比较,若达到或者超过报警温度时,LED灯发光报警,如果没有达到,则继续进行温度采集.图4-1主程序流程图4.1.2主流程地C语言程序main (){ALERT=0。
基于AT89C51DS18B20的数字温度计设计

基于AT89C51DS18B20的数字温度计设计一、本文概述Overview of this article本文旨在探讨基于AT89C51微控制器和DS18B20数字温度传感器的数字温度计设计。
我们将详细介绍如何利用这两种核心组件,结合适当的硬件电路设计和软件编程,实现一个能够准确测量和显示温度的数字温度计。
This article aims to explore the design of a digital thermometer based on AT89C51 microcontroller and DS18B20 digital temperature sensor. We will provide a detailed introduction on how to utilize these two core components, combined with appropriate hardware circuit design and software programming, to achieve a digital thermometer that can accurately measure and display temperature.我们将对AT89C51微控制器和DS18B20数字温度传感器进行简要介绍,包括它们的工作原理、主要特性和适用场景。
然后,我们将详细阐述硬件电路的设计,包括微控制器与温度传感器的连接方式、电源电路、显示电路等。
We will provide a brief introduction to the AT89C51 microcontroller and DS18B20 digital temperature sensor, including their working principles, main characteristics, and applicable scenarios. Then, we will elaborate on the hardware circuit design, including the connection method between the microcontroller and temperature sensor, power circuit, display circuit, etc.在软件编程方面,我们将介绍如何使用C语言对AT89C51微控制器进行编程,实现温度数据的读取、处理和显示。
基于51单片机的温度监测系统(DS18B20)

DS18B20读时序
所有的读时隙都由拉低总线,持续至少1us后再释放总线(由于上拉电阻的作用,总线恢复为 高
配置寄存器
8 位 CRC 生成器
DS18B20的时序
DS18B20复位时序
DS18B20的所有通信都由由复位脉冲组成的初始化序列开始。该初始化序列由主 机发出,后跟由DS18B20发出的存在脉冲(presence pulse)。在初始化步骤中,总线 上的主机通过拉低单总线至少480μs来产生复位脉冲。然后总线主机释放总线并进入接收 模式。当总线释放后,5kΩ的上拉电阻把单总线上的电平拉回高电平。当DS18B20检测 到上升沿后等待15到60us,发出存在脉冲,拉低总线60-240us至此,初始化和存在时序 完毕。时序图如下:
1.主控制器电路和测温
电路的设计
主控制器电路由AT89S52 及外围时钟和复位电路构成, 测温电路由DS18B20、报警 电路组成。AT89C52是此硬 件电路设计的核心,通过 AT89S52的管脚P2.7与 DS18B20相连,控制温度的 读出和显示。硬件电路的功 能都是与软件编程相结合而 实现的。具体电路原理图如 右图2所示。
送1,以拉低总线的方式表示发送0.当发送0的时候,DS18B20在读时隙的末期将会释放总线,总线
将会被上拉电阻拉回高电平(也是总线空闲的状态)。DS18B20输出的数据在下降沿(下降沿产 生读时隙)产生后15us后有效。因此,主机释放总线和采样总线等动作要在15μs内完成。
温度监测系统实验报告

一、实验目的1. 熟悉温度监测系统的基本组成和原理。
2. 掌握温度传感器的应用和数据处理方法。
3. 学会搭建简单的温度监测系统,并验证其功能。
二、实验原理温度监测系统主要由温度传感器、数据采集器、控制器、显示屏和报警装置等组成。
温度传感器将温度信号转换为电信号,数据采集器对电信号进行采集和处理,控制器根据设定的温度范围进行控制,显示屏显示温度信息,报警装置在温度超出设定范围时发出警报。
本实验采用DS18B20数字温度传感器,该传感器具有体积小、精度高、抗干扰能力强等特点。
数据采集器采用单片机(如STC89C52)作为核心控制器,通过并行接口读取温度传感器输出的数字信号,并进行相应的处理。
三、实验器材1. DS18B20数字温度传感器2. STC89C52单片机3. LCD显示屏4. 电阻、电容等电子元件5. 电源模块6. 连接线四、实验步骤1. 搭建温度监测系统电路,包括温度传感器、单片机、显示屏、报警装置等。
2. 编写程序,实现以下功能:(1)初始化单片机系统;(2)读取温度传感器数据;(3)将温度数据转换为摄氏度;(4)显示温度数据;(5)判断温度是否超出设定范围,若超出则触发报警。
3. 连接电源,启动系统,观察温度数据变化和报警情况。
五、实验结果与分析1. 系统搭建成功,能够稳定运行,实时显示温度数据。
2. 温度数据转换准确,显示清晰。
3. 当温度超出设定范围时,系统能够及时触发报警。
六、实验总结1. 本实验成功地搭建了一个简单的温度监测系统,实现了温度数据的采集、处理和显示。
2. 通过实验,加深了对温度传感器、单片机、显示屏等电子元件的理解和应用。
3. 实验过程中,学会了如何编写程序,实现温度数据的处理和显示。
七、实验建议1. 在实验过程中,注意电路连接的准确性,避免因连接错误导致实验失败。
2. 在编写程序时,注意代码的简洁性和可读性,便于后续修改和维护。
3. 可以尝试将温度监测系统与其他功能结合,如数据存储、远程传输等,提高系统的实用性和功能。
DS18B20数字温度计设计实验报告(1)【范本模板】

单片机原理及应用课程设计报告书题目:DS18B20数字温度计姓名: 李成学号:133010220指导老师:周灵彬设计时间: 2015年1月目录1. 引言 (3)1。
1.设计意义31.2。
系统功能要求32。
方案设计 (4)3. 硬件设计 (4)4. 软件设计 (8)5。
系统调试106. 设计总结 (11)7. 附录 (12)8. 参考文献 (15)DS18B20数字温度计设计1.引言1.1. 设计意义在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。
而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。
其缺点如下:●硬件电路复杂;●软件调试复杂;●制作成本高.本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为—55~125℃,最高分辨率可达0。
0625℃。
DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。
1.2. 系统功能要求设计出的DS18B20数字温度计测温范围在0~125℃,误差在±1℃以内,采用LED数码管直接读显示.2. 方案设计按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路.数字温度计总体电路结构框图如4。
1图所示:图4.13。
硬件设计温度计电路设计原理图如下图所示,控制器使用单片机AT89C2051,温度传感器使用DS18B20,使用四位共阳LED 数码管以动态扫描法实现温度显示。
AT89C51 主 控制器 DS18B20 显示电路 扫描驱动主控制器单片机AT89C51具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很适合便携手持式产品的设计使用.系统可用两节电池供电。
AT89C51的引脚图如右图所示:VCC:供电电压。
基于DS18B20的多路温度检测系统设计

i to u e e i n wh c a e tt m p r t r s o i e e t p i t , W ih d g tlt mp r t r e s rD S 8 0 n r d c sa d sg i h c n t s e e a u e fd f r n o n s t i i e e au e s n o 1 B2 a a he t m p r t r e s r m e t d v c s st e e a u e m a u e n e i e ,wih AT8 C5]a o t o n t fm u t—p i e t 9 s c n r l u i o li o ntt mpe a u e c n b s rt r a e d t c e n o to y t m , n i e h y t m a d r ic i a d s fwa e f w h r . n t e s s m ,d t e e t d a d c n r ls se a d g v s t e s se h r wa e cr u t n o t r o c a t I h y t l e aa
术和通信 网络的发展[ . J 电讯技术, 1 . 】 2 0 0
陈小芳. 于泰克R A 基 s 的分析评估和优化R I FD
系统 [. 测试, 0 () J电子 】 2 76. 0
10 1010 1010 0 001 0010 ,为 1110 1010 100 0 11 1 0 0 0
价格便宜,具有很高的性价 比,可 以定时循环检 测和通过 L D 62 C 10 显示 多路 的温 度,因此 选择
LCD1 0 6 2。
23 串 口通 讯 电路 设 计 .
A 8C 1 T 9 5 有一个全双工的串行通讯口,所以
DS18B20温度检测

目录1引言 (1)2系统描述 (2)2.1系统功能 (2)2.2系统设计指标 (2)3系统的主要元件 (3)3.1单片机 (3)3.2温度传感元件 (4)3.3LCD显示屏 (6)4硬件电路 (7)4.1系统整体原理图 (7)4.2单片机晶振电路 (7)4.3温度传感器连接电路 (8)4.4LCD电路 (9)4.5报警和外部中断电路 (10)5结论 (11)温度监测系统硬件设计摘要:利用DS18B20为代表的新型单总线数字式温度传感器实现温度的监测,可以简化硬件电路,也可以实现单线的多点分布式温度监测,而不会浪费单片机接口,提供了单片机接口的利用率。
同时提高了系统能够的抗干扰性,使系统更灵活、方便。
本系统主要实现温度的检测、显示以及高低温的报警。
也可以通过单总线挂载多个DS18B20实现多点温度的分布式监测。
关键词: DS18B20,单总线,温度,单片机1引言在科技广泛发展的今天,计算机的发展已经越来越快,它的应用已经越来越广泛。
而单片机的发展和应用是其中的重要一方面。
单片机在工业生产(机电、化工、轻纺、自控等等)和民用家电各方面有广泛的应用。
其中,单片机在工业生产中的应用尤其广泛。
单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。
在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要测量参数。
例如:在冶金工业、化工工业、电力工程、机械制造和食品加工等许多领域中,人们都需要对各类加热炉、热处理炉、反映炉和锅炉,尤其是热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中的温度进行测量,并经常会对其进行控制。
传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过A/D 转换环节获得数字信号后才能够被单片机等微处理器接收处理,使得硬件电路结构复杂,制作成本较高。
近年来,美国DALLAS公司生产的DS18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。
基于DS18B20的单片机温度检测与调节系统设计

ajs betm ea r ,hg rc i ,es o t l n p l ai , t a e c adrg l ee v dut l e p rt e i peio a u h s n ayc nr dapi t n icnd t t n ua ni oa c o e e t —
as a e a p i ae o e r y a i g g e n o s n o c lu e p o u t n. lo c n b p lc t d t ne g -s vn r e h u e a d f r u t r r d c i li o Ke r s: DS1 y wo d 8B2 0; t mp r t e dee to e e aur t cin; t mp r t r e u a in; sn l c i e eaue rg lt o i ge— h p
的设计 方法 ¨ 。 J
D 1B 0 供 电 的 数 据 总 线 。 所 以 系 统 选 用 B8 2 D 1B 0作 为 温 度 传 感 器 可 大 大 简 化 系 统 硬 件 结 S8 2
周 秀明 ,曹 隽 ,张春龙
( 黑龙 江生 态工程 职 业 学院 ,黑龙 江 哈 尔滨 102 ) 50 5
摘 要 :文章介绍 了一 种基于 D 1 B 0的单 片机温度检测 调节系统 的设计 方法 。该温度 检测调节 系统具有 测 S8 2
温范围宽 、精 度高 、控 制简单 、实用 ,能对环境温度进行实 时检 测与调节等优点 ,适用 于一般的工农业 场合 , 也可应用于节能温室花卉生产 。 关键词 :D 1 B 0 S 8 2 ;温度检测 ;温度调 节 ;单 片机
位 ,5 ms2位 的数字 量 , 且 一根 口线 就可 以完 成 70 1 并 对 从 D 1 B 0读 出 的信 息 或 写 入 D 1 B 0的信 息 S82 S8 2 进 行 读 取 , 温 度 变 换 功 率 来 源 于 可 同 时 向 其
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。
除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。
对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。
本人完全意识到本声明的法律结果由本人承担。
2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。
本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。
3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。
4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。
论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。
论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。
对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。
学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。
本人完全了解大学有关保存,使用毕业论文的规定。
同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。
本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。
如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。
本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。
本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。
在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。
论文作者签名:日期:指导教师签名:日期:人民武装学院传感器原理与应用课程设计报告——基于DS18B20数字温度传感器的温度检测系统毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日教研室(或答辩小组)及教学系意见目录摘要 (2)第一章绪论 (4)1.1传感器发展的三个阶段 (4)1.2传感器发展趋势 (4)1.3传感器在在系统中的应用 (4)1.4设计研究意义 (5)1.5设计的目标任务 (5)第二章方案选择 (6)2.1引言 (6)2.2方案设计 (6)2.2.1控制模块 (6)2.2.2温度采集模块 (6)2.2.3显示模块 (7)2.3系统框图 (7)第三章硬件设计 (7)3.1温度传感器 (7)3.1.1温度传感器选用细则 (7)3.1.2DS18B20传感器简介 (9)3.2DS18B20的测温原理 (11)3.3DS18B20与微处理器的接口技术 (13)3.4DS18B20的测温流程 (16)3.5系统硬件电路设计 (16)3.5.1设计原则 (16)3.5.2设计中的各种电路 (17)第四章系统软件设计 (21)4.1 系统软件设计整体思路 (21)4.2 系统软件设计的一般原则 (21)4. 3系统软件设计的一般步骤 (22)4.4系统程序流程图 (22)第五章小结 (27)结束语 (28)参考文献 (28)致谢 (28)摘要随着社会的进步和工业技术的发展,人们越来越重视温度因素,许多产品对温度范围要求严格,而目前市场上普遍存在的温度检测仪器大都是单点测量,同时有温度信息传递不及时、精度不够的缺点,不利于工业控制者根据温度变化及时做出决定。
在这样的形式下,开发一种能够同时测量多点,并且实时性高、精度高,能够综合处理多点温度信息的测量系统就很有必要。
本课题以AT89C51单片机系统为核心,能对多点的温度进行实时巡检。
DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。
本文结合实际使用经验,介绍了DS18B20数字温度传感器在单片机下的硬件连接及软件编程,并给出了软件流程图。
关键词:温度测量;单总线;数字温度传感器;单片机第一章绪论课题的背景在人类的生活环境中,温度扮演着极其重要的角色,都无时无刻不在与温度打交道。
自18世纪工业革命以来,工业发展与是否掌握温度有着紧密的联系。
在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎%80的工业部门都不得不考虑着温度的因素。
温度对于工业如此重要,由此推进了温度传感器的发展。
1.1传感器三个发展阶段:一是模拟集成温度传感器。
该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。
此种传感器具有功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等特点,适合远距离测温、控温,不需要进行非线性校准,且外围电路简单。
它是目前在国内外应用最为普遍的一种集成传感器,典型产品有AD590、AD592、TMP17、LM135等。
二是模拟集成温度控制器。
模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、AD22105和MAX6509。
某些增强型集成温度控制器(例如TC652/653)中还包含了A/D转换器以及固化好的程序,这与智能温度传感器有某些相似之处。
但它自成系统,工作时并不受微处理器的控制,这是二者的主要区别。
三是智能温度传感器。
智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。
有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,当然,其智能化程度也取决于软件的开发水平。
1.2温度传感器的发展趋势进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。
1.3传感器在温控系统中的应用目前市场主要存在单点和多点两种温度测量仪表。
对于单点温测仪表,主要采用传统的模拟集成温度传感器,其中又以热电阻、热电偶等传感器的测量精度高,测量范围大,而得到了普遍的应用。
此种产品测温范围大都在-200℃~800℃之间,分辨率12位,最小分辨温度在0.001~0.01之间。
自带LED显示模块,显示4位到16位不等。
有的仪表还具有存储功能,可存储几百到几千组数据。
该类仪表可很好的满足单个用户单点测量的需要。
多点温度测量仪表,相对与单点的测量精度有一定的差距,虽然实现了多路温度的测控,但价格昂贵。
针对目前市场的现状,本设计提出了一种可满足要求、可扩展的并且性价比高的单片机多路测温系统。
1.4设计研究意义随着科学技术的不断进步与发展,温度控制在工业控制、电子测温计、家用电器等各种温度控制系统中被广泛应用,且由过去的单点测量向多点测量发展。
目前温度传感器有模拟和数字两类传感器两种,为克服模拟传感器与微处理器接口时所需的信号调理电路或A/D转换器的缺点,多点检测温度控制系统多采用智能数字温度传感器,是系统的设计更加方便。
常用的智能数字温度传感器有DS18B20、MAX6575、DS1722、MAX6635 等等。
在传统的温度测量系统设计中,往往采用模拟技术,这样就不可避免地遇到引线误差补偿、多点测量中的切换误差和信号调整电路的误差等问题;而其中某一环节处理不当,就会导致系统性能的降低。
随着现代科学技术的飞速发展,特别是大规模集成电路设计技术的发展,微型化、集成化、数字化正成为传感器发展的一个重要方向。
美国Dallas半导体公司推出的数字温度传感器DS18B20,具有独特的单总线接口,仅需占用一个通用I/0端口即可完成与微处理器间的通信;在-10~+85℃温度范围内具有0.5℃精度;用户可编程设定9~12位的分辨率。
这些特性使得DS18B20非常适用于高精度、多点温度测量系统的设计。
1.5设计的任务目标本设计主要是实现对温度进行多点同时测量并准确显示。
整个系统由MCU(单片机)控制,用于接收传感器采集的温度数据并加以显示出来,还可以从键盘设定温度报警值,系统根据命令,选择对应的传感器采集温度数据,并由驱动电路驱动温度显示。
利用一个单片机设计一个能够对多点温度同时进行测量的温度检测系统。
该系统能够同时对多个点的温度进行测量和进行显示,并且能够对异常情况进行声光报警。