数学建模方法回归分析共52页文档
数学建模之回归分析

实际帐目数——x2 同类商品竞争数——x3 地区销售潜力——x4
第二十九页,共56页。
X= x1
11
5.5
2
2.5
31
8.0
41
3.0
51
3.0
6
2.9
7.
8.0
8.
9.0
9 10
.
4.0 6.5
11 1
5.5
12 13
1
5.0 6.0
14 1
5.0
15 16
1
3.5 8.0
17 1
问题分析:
钢材消费量--------试验指标(因变量)Y; 国民收入-----------自变量 x;
建立数据拟合函数 y = E(Y | x)= f(x); 作拟合曲线图形分析。
第四页,共56页。
y=a+bx
钢材消费量y与国民收入x的散点图
第五页,共56页。
回归分析是研究变量间相关关系的一种统计分析。
输入:[Y,delta]=polyconf(p,x,S);Y
结果: Y= 22.5243
28.3186 27.0450 22.5243 26.0582 27.0450 24.1689
26.0582 24.1689 27.9896 19.6904
27.9896 19.6904 28.3186
拟合效果图:
假设:
1、因变量Y是随机变量,并且它服从正态分布; 2、f(x1,x2,x3,x4)是线性函数(非线性);
模型: Y 0 1 x1 2 x2 3 x3 4 x4 ~ N (0, 2 )
第三十一页,共56页。
知识介绍
2、多元线性回归模型
回归分析方法-数学建模

1、插 值 法
在生产和实验中,常常需要根据一张表格表示的函 数推算该表中没有的函数值.解决此类问题的简单途径之 一利用插值法。
插值在数学发展史上是一个老问题,它是和Gauss, Lagrange, Newton等在著名数学家连在一起的。它最初 来源于天体计算——由若干观测值计算人一时刻星球的 位置。现在,插值法在工程技术和数据处理有许多直接 应用,而且也是数值积分、数值微分的基础。
1.2.2 分段线性插值
分段线性插值: matalb调用格式:
分段线性插值的构造:
yi=interp1(x,y,xi,’linear’)
设f(x)是定义在[a,b]上的函数,在[a,b]上节点 a= x0<为 y0 , y1 ,y2 ,…yn-1 ,yn 。
1.1 插值概念与基础理论
1.1.1 插值问题的提法 对于给定的函数表
x
x0 x1
Y=f(x) y0 y1
……. xn …….. yn
(1)
(其中 y f (x)在[a,b]上连续, x0, x1,…,xn 是 [a,b]上的 n+1个互异的点),在某函数类{(x) }中求一个函数(x) ,使
成一个n+1维线性空间。其基有各种不同的取法。因此 尽管满足条件(4)的n次插值多项式是唯一的,然而它 的表达式可以有多种不同的形式。如果取满足条件:
0, i k
l k( xi) 1, i k
(9)
的一组n次多项式l0 x,l1 x,l2 x,,ln x 作为上述
折线段带代替曲线,故分段线性插值又称为折线插值.
实际上是连接点(xk , yk ) , i 0,1, , n的一条折线
分段线性插值曲线图:
数学建模多元回归分析

2. 线性化方法
▪ 两端取对数得:lny = ln + b x ▪ 令:y' = lny,则有y' = ln + b x
3. 图像
b0
b0
几种常见的非线性模型
幂函数
1. 基本形式: y x b
2. 线性化方法
▪ 两端取对数得:lg y = lg + b lg x ▪ 令:y' = lgy,x'= lg x,则y' = lg + b x'
1. 用线性模型:y =b0b1x+ ,有
2.
y = 2.671+0.0018x
2. 用指数模型:y = b x ,有
3.
y =4.05(1.0002)x
3. 比较
4. 直线的残差平方和=5.3371<指数模型的残 差平方和=6.11。直线模型略好于指数模型
本章小结
1. 相关系数与相关分析 2. 一元线性回归模型、回归方程与估计的回
4. R2 1,说明回归方程拟合的越好; R20,说明
回归方程拟合的越差
5. 等于多重相关系数的平方,即R2=(R)2
修正的多重样本决定系数
(修正的多重判定系数 R2 )
1. 由于增加自变量将影响到因变量中被估计的 回归方程所解释的变异性的数量,为避免高 估这一影响,需要用自变量的数目去修正R2 的值
数学建模多元回归 分析
多元线性回归模型
(概念要点)
1. 一个因变量与两个及两个以上自变量之间的回归
2. 描述因变量 y 如何依赖于自变量 x1 , x2 ,…, xp 和误差项 的方程称为多元线性回归模型
3. 涉及 p 个自变量的多元线性回归模型可表示为
数学建模案例分析回归分析实用教案

2021/11/8
14
第第1十4四页页,/共共525页2。页
通常(tōngcháng)选择的六类曲线如下:
2021/11/8
返回(fǎnhuí)
解例 2.由散点图我们选配到指数曲线 y=a eb / x 根据线性化方法,算得 bˆ = 1.1107 , Aˆ = 2.4587
2021/11/8
17
第第1十7七页页,/共共525页2。页
2021/11/8
返回 (fǎnhuí)
18
第1第8十八页页,/共共525页。2页
三、多元线性回归(huíguī)中的检验与 预测
(Ⅰ)F 检验法
(Ⅱ)r 检验法
2021/11/8
第1第9十九页页,/共共525页。2页
(残差平方和)
19
性
逐 步 回 归
回分
归析
中
的
检
1
第第1一页页,/共共525页2。页
一、数学模型
例1 测16名成年女子的身高与腿长所得(suǒ dé)数据如下:
以身高x为横坐标,以腿长y为纵坐标将这些(zhèxiē)数据点(xi,yi)在平面直角坐标系上标出.
解答(jiědá)
散点图
2021/11/8
2
第第2二页页,/共共525页2。页
(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)
其中 x=(x1,x2,…,xn),y=(y1,y2,…,yn); p=(a1,a2,…,am+1)是多项式 y=a1xm+a2xm-1+…+amx+am+1 的系数;S 是一个矩阵,用来估计预测误差.
数学建模之回归分析法

什么就是回归分析回归分析(regression analysis)就是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析与多元回归分析;按照自变量与因变量之间的关系类型,可分为线性回归分析与非线性回归分析。
如果在回归分析中,只包括一个自变量与一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量与自变量之间就是线性关系,则称为多元线性回归分析。
回归分析之一多元线性回归模型案例解析多元线性回归,主要就是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差, 其中随机误差分为:可解释的误差与不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须就是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:(数据可以先用excel建立再通过spss打开)点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内, 将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,您也可以选择其它的方式,如果您选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果您选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该就是跟“因变量”关系最为密切,贡献最大的,如下图可以瞧出,车的价格与车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0、05,当概率值大于等于0、1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果您需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“与”共线性诊断“两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值) 点击继续。
数学模型_回归分析

基本数学模型-回归分析

回归分析在数学建模中的应用

回归分析在数学建模中的应用回归分析是一种统计分析方法,用于研究自变量和因变量之间的关系。
它可以用于在数学建模中预测和解释变量之间的关系。
在本文中,我将讨论回归分析在数学建模中的应用以及其在解决实际问题中的重要性。
回归分析有两种主要类型:简单线性回归和多元线性回归。
简单线性回归是指只有一个自变量和一个因变量之间的关系,而多元线性回归是指有多个自变量和一个因变量之间的关系。
无论是简单线性回归还是多元线性回归,都可以用于预测和解释变量之间的关系。
在数学建模中,回归分析可以用于预测未知值。
通过分析一组已知的自变量和因变量之间的关系,可以建立一个数学模型,以便预测因变量的值。
这种预测能力可以在许多领域中得到应用,例如经济学、金融学、社会科学等。
举一个简单的例子,假设我们要建立一个模型来预测一个人的身高。
我们可以收集一组数据,包括自变量(例如年龄、性别、父母身高等)和因变量(身高)。
然后,我们可以使用回归分析来建立一个模型,以便根据给定的自变量来预测一个人的身高。
此外,回归分析还可以用来解释变量之间的关系。
通过分析已知的自变量和因变量之间的关系,可以得出结论,了解自变量对因变量的影响程度。
这对于解决实际问题非常重要。
例如,在经济学中,回归分析可以用来解释消费者支出与收入之间的关系。
通过分析已知的收入和消费者支出数据,可以得出结论,了解收入对消费者支出的影响程度。
这有助于制定经济政策和预测市场需求。
回归分析还可以用来评估自变量之间的相互作用。
在多元线性回归中,我们可以引入交互项,以考虑自变量之间的相互影响。
通过分析已知的自变量和因变量之间的关系,可以确定自变量之间的相互作用,并加以解释。
总的来说,回归分析在数学建模中有广泛的应用。
它可以用于预测和解释变量之间的关系,评估自变量之间的相互作用,解释因变量的变化程度,并评估模型的拟合程度。
回归分析在解决实际问题中起着重要的作用,帮助我们从数据中提取有价值的信息,并进行合理的预测和解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yˆ (x) y, yˆ (x) y 要求 y y 2 (x) .若 yˆ (x) y, yˆ (x) y 分别有解 x 和 x,即 yˆ (x) y, yˆ (x) y .
则 x, x 就是所求的 x 的控制区间.
四、可线性化的一元非线性回归 (曲线回归)
回归分析
一元线性回归
多元线性回归
* *
* *
数 学 模 型 及 定 义
模 型 参 数 估 计
检 验 、 预 测 与 控 制
性可 回线 归性 (化 曲的 线一 回元 归非 )线
数 学 模 型 及 定 义
模 型 参 数 估 计
检 验多 与元 预线 测性
回 归
逐 步 回 归 分 析
中
的
一、数学模型
例1 测16名成年女子的身高与腿长所得数据如下:
1
2n
n
其Lx中 x (xix)2 xi2nx2
i 1
i 1
(Ⅲ)r 检验法
n
( x i x ) y i ( y )
记 r i 1
n
n
( x i x ) 2( y i y ) 2
i 1
i 1
当|r|> r1 时,拒绝 H0;否则就接受 H0.
其中 r1
1
1 n 2 F1 1, n 2
102
100
98
96
94
92
90
88
86
84
140
145
150
155
160
165
散点图
y01x
解答
一般地,称由 y 0 1x 确定的模型为一元线性回归模型,
记为
y 0 1x E 0, D 2 固定的未知参数 0 、 1 称为回归系数,自变量 x 也称为回归变量.
Y 0 1x ,称为 y 对 x 的回归直线方程.
其 中 ( x 0 ) ˆ e t 1 2 ( n 2 ) 1 1 n x 0 L x x 2 x
特别,当 n 很大且 x0 在 x 附近取值时,
y 的置信水平为1 的预测区间近似为
yˆ
ˆ
e u1 2
,
yˆ
ˆ
e u1 2
(2)控制
要 求 : y 0 1 x 的 值 以 1 的 概 率 落 在 指 定 区 间 y , y
2. 2 的无偏估计
n
记 Qe Q(ˆ0 , ˆ1 )
yi ˆ0 ˆ1xi 2 n ( yi yˆi )2
i 1
i 1
称 Qe 为残差平方和或剩余平方和.
2 的无偏估计为
ˆ
2 e
Qe
(n 2)
称
ˆ
2 e
为剩余方差(残差的方差),
ˆ
2 e
分别与
ˆ0
、
ˆ1
独立.
ˆ e 称为剩余标准差.
三、检验、预测与控制
1.回归方程的显著性检验
对 回 归 方 程 Y 01 x的 显 著 性 检 验 , 归 结 为 对 假 设 H 0:1 0 ;H 1:1 0
进 行 检 验 .
假设 H0 : 1 0 被拒绝,则回归显著,认为 y 与 x 存在线性关 系,所求的线性回归方程有意义;否则回归不显著,y 与 x 的关系 不能用一元线性回归模型来描述,所得的回归方程也无意义.
一元线性回归分析的主要任务是: 1.用试验值(样本值)对 0 、 1 和 作点估计; 2.对回归系数 0 、 1 作假设检验;
3.在 x= x0 处对 y 作预测,对 y 作区间估计.
二、模型参数估计
1.回归系数的最小二乘估计
有 n 组独立观测值(x1,y1),(x2,y2),…,(xn,yn)
(Ⅰ)F检验法
当 H 0 成立时,
F
U
~F(1,n-2)
Qe /(n 2)
n
其中 U yˆi y2 (回归平方和) i 1
故 F> F1 (1, n 2) ,拒绝 H 0 ,否则就接受 H 0 .
(Ⅱ)t 检验法 当 H 0 成立时,T
Lxx ˆ1 ~t(n-2) ˆ e
故 T t (n 2) ,拒绝 H 0 ,否则就接受 H 0 .
例2 出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀, 容积不断增大.我们希望知道使用次数与增大的容积之间的关 系.对一钢包作试验,测得的数据列于下表:
使用次数
2 3 4 5 6 7 8 9
增大容积
6.42 8.20 9.58 9.50 9.70 10.00 9.93 9.99
2.回归系数的置信区间
0 和 1 置 信 水 平 为 1 - α 的 置 信 区 间 分 别 为
ˆ 0 t1 2 ( n 2 )ˆ e1 n L x x 2 ,x ˆ 0 t1 2 ( n 2 )ˆ e1 n L x x 2 x
和 ˆ 1 t( n 2 )ˆ e /L x,x ˆ 1 t( n 2 )ˆ e /L x x
1 2
1 2
2 的置信水平为 1- 的置信区间为
2 1
2
Qe (n
2)
,
2
2
Qe (n
2)
3.预测与控制
(1)预测
用 y0 的回归值 yˆ0 ˆ0 ˆ1x0 作为 y0 的预测值.
y 0 的 置 信 水 平 为 1 的 预 测 区 间 为
y ˆ 0 ( x 0 ) y ˆ 0 ( x 0 ) ,
ˆ
0
y
ˆ1 x
ˆ
1
xy x y x2 x2
n x i x y i y
或 ˆ 1 i 1 n
x i x 2
i 1
其中x
1 n
n i 1
xi , y
1 n
n i 1
yi
, x2
1 n
n i 1
xi 2 , xy
1 n
n i 1
xi yi
.
( 经 验 ) 回 归 方 程 为 : y ˆ ˆ 0 ˆ 1 x y ˆ 1 ( x x )
身高
143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164
(cm)
腿长
88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102
(cm)
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xi,yi) 在平面直角坐标系上标出.
设
yi 0 x1 i ,i 1, 2,..., n
E
i
0,
D i
2
且1 2 ,..., n相互独立
n
n
记
Q Q(0 , 1)
2 i
yi 0 1xi 2
i 1
i 1
最小二乘法就是选择 0 和 1 的估计 ˆ0 , ˆ1 使得
Q(ˆ0
,
ˆ1 )
min
0 ,1
Q( 0
,
1 )