数学建模实验报告-统计回归模型

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

数学建模与数学实验-回归分析

数学建模与数学实验-回归分析

i1
i1
称 Qe 为残差平方和或剩余平方和.
2 的无偏估计为
ˆ
2 e
Qe
(n 2)
称ˆ
2 e
为剩余方差(残差的方差), ˆ
2 e
分别与ˆ0 、ˆ1
独立 。
ˆe 称为剩余标准差.
2019/10/19
返回 elecfans 电子发烧友
8
三、检验、预测与控制
1、回归方程的显著性检验
例1 测16名成年女子的身高与腿长所得数据如下:
身 高 1 4 31 4 51 4 61 4 71 4 91 5 01 5 31 5 41 5 51 5 61 5 71 5 81 5 91 6 01 6 21 6 4 腿 长 8 8 8 5 8 8 9 1 9 2 9 3 9 3 9 5 9 6 9 8 9 7 9 6 9 8 9 91 0 01 0 2
数 学 模 型 及 定 义
模 型 参 数 估 计
2019/10/19
检 验 、 预 测 与 控 制
性可 回线 归性 (化 曲的 线一 回元
数 学 模 型 及 定 义
模 型 参 数 估 计
归非
) 线elecfans 电子发烧友
检 验 与 预 测
多 元 线 性 回



逐 步 回 归 分 析
3
一、数学模型
15
11
10.5
10
9.5
9
8.5
8
7.5
7
6.5
6
2
4
6
8
10
12
14
16
散 点 图
此即非线性回归或曲线回归 问题(需要配曲线) 配曲线的一般方法是:

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

统计回归模型

统计回归模型

实验报告实验名称统计回归模型所属课程数学模型专业信息与计算科学2018年12月26日图1利用MATLAB 的统计工具箱可以得到回归系数及其置信区间(置信水平为0.05)、检验统计量2R ,F ,P 的结果。

见表2:参数参数估计值 参数置信区间 0β5.5863 [4.57436.5983] 1β-0.0031[-0.0056 -0.0006]20.819355R = 6.80359F = 0.0767782p =表2表2显示,20.819355R =指因变量y (单位成本)的81.93%可由模型确定,F 值超过F 检验的临界值,P 小于置信水平,因而模型从整体看是可用的。

表2的回归系数给出了模型中的0β,1β的估计值,则可得到一次线性关系式为y=5.5863-0.0031x (x ≤500)(2)对该模型做残差图:图2可以看出上面第二个点位异常点,去除第二个点后再进行拟合。

利用MATLAB 的统计工具箱可以得到回归系数及其置信区间(置信水平为0.05)、检验统计量2R ,F ,P 的结果。

见表3:参数参数估计值 参数置信区间 0β 5.5749 [5.0902 , 6.0596] 1β-0.0032[-0.0044 , -0.0020]20.976132R = F=40.8967 p=0.023882 表3表3显示,20.976132R =指因变量y (单位成本)的97.61%可由模型确定,F 值超过F 检验的临界值,P 小于置信水平,因而模型从整体看是可用的。

表3的回归系数给出了模型中的0β,1β的估计值,则可得到一次线性关系式为y=5.5749-0.0032x (x ≤500) (3)3.2模型二的建立与求解令生产批量为x ,单位成本为y 元,当x >500时,y 与x 满足一种线性关系,则可建立线性回归模型。

022y X ββε=++(4)其中0β,2β是待估计的回归系数,ε是随机误差。

数学建模与数学实验 回归分析

数学建模与数学实验 回归分析

2、多项式回归
设变量 x、Y 的回归模型为 Y 0 1x 2 x2 ... p x p
其中 p 是已知的,i (i 1,2,, p) 是未知参数, 服从正态分布 N (0, 2 ) .
Y 0 1x 2 x2 ... k xk
腿长
88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi) 在平面直角坐标系上标出.
解答
102
100
98
y 0 1x
96
949290 Nhomakorabea88
86
84
140
145
150
155
160
165
2019/7/8
17
二、模型参数估计
1、对 i 和 2 作估计
用最小二乘法求0 ,..., k 的估计量:作离差平方和
n
Q yi 0 1xi1 ... k xik 2 i 1
选择 0 ,..., k 使 Q 达到最小。
解得估计值 ˆ
进行检验.
假设 H 0 : 1 0 被拒绝,则回归显著,认为 y 与 x 存在线性关 系,所求的线性回归方程有意义;否则回归不显著,y 与 x 的关系 不能用一元线性回归模型来描述,所得的回归方程也无意义.
2019/7/8
8
(Ⅰ)F检验法
当 H 0 成立时,
F
U
~F(1,n-2)
Qe /(n 2)
变量的值 x1* ,..., xk ,用 yˆ * ˆ0 ˆ1 x1* ... ˆk xk * 来预测

实验11_统计回归模型(4学时)要点

实验11_统计回归模型(4学时)要点

《数学建模实验》王平实验11 统计回归模型(4学时)(第10章统计回归模型)1. 牙膏的销售量p325~332下面给出一组数据,其中:第1列销售周期;第2列某公司牙膏销售价格(元)x4;第3列其它厂家平均价格(元)x3;第4列广告费用(百万元)x2;第5列价格差(元)x1(x3-x4);第6列销售量(百万支)y。

1.1(验证)基本模型p325~329先保存上面的p325.txt文件。

(1) 绘制y对x1的散点图[提示:dlmread将以ASCII码分隔的数值数据文件读入到矩阵(2) 确定y 对x 1的拟合,绘制散点图与拟合曲线组合图形从y 对x 1的散点图可以发现,可用线性模型(直线)011y x ββε=++(3) 绘制y对x2的散点图(4) 确定y 对x 2的的拟合,绘制散点图与拟合曲线组合图形从y 对x 2的散点图可以发现,可用二次函数模型201222y x x βββε=+++(5) y 对x 1, x 2的回归模型及其求解,销售量预测综上得回归模型20112232y x x x ββββε=++++变量x 1, x 2为回归变量,参数β0, β1, β2, β3为回归系数。

[提示:fprintf 输出到命令窗口或写数据到文本文件]见参考资料:MATLAB 函数和命令的用法。

1.2(验证,编程)模型改进p329~332仍使用题1的数据。

(1)(编程)y 对x 1, x 2的回归模型的改进和求解,销售量预测改进的模型20112232412y x x x x x βββββε=+++++参考题1(5)的程序,编写一个类似的程序,运行结果与教材p329~330的表3及相关结果相比较。

(2)(验证)完全二次多项式模型22011223124152y x x x x x x ββββββε=++++++用鼠标移动交互式画面中的十字线,或在图下方的窗口内输入,可改变x 1和x 2的数值。

改变x 1=0.2,x 2=6.5,观察窗口左边的y 估计值和预测区间。

回归模型实验报告

回归模型实验报告

北京建筑大学理学院信息与计算科学教研室实验报告课程名称数学建模实验名称回归模型实验地点大兴机房日期2014.5.14姓名渠娅静班级计122 学号04 指导教师靳旭玲成绩【实验目的】1、了解回归分析的基本原理,掌握Matlab实现的方法;2、练习用回归分析解决实际问题;【实验要求】1、独立完成各个实验任务;2、实验的过程保存成.m 文件,以备检查;3、完成实验报告。

【实验内容】1、为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量了最大积雪深度(x)与当年灌溉面积(y),得到连续10年的数据如表所示。

20和25的灌溉面积。

2、水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4有关,今测得一组数据如下,试用逐【实验步骤】一、试建立灌溉面积对于最大积雪深度的回归模型,对模型和回归系数进行检验,并预测最大积雪深度是20和25的灌溉面积。

1、问题分析:求回归系数的点估计和区间估计、并检验回归模型: [b, bint,r,rint,stats]=regress(Y,X,alpha) Bint--回归系数的区间估计; r--残差; rint--置信区间; stats--用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p; alpha--显著性水平(缺省时为0.05) 2 、求解过程:(1)输入数据,建立模型:x=[28.6 19.3 40.5 35.6 48.9 45.0 29.2 34.1 46.7 37.4 ]'; X=[ones(10,1) x];Y=[15.2 10.4 21.2 18.6 26.4 23.4 13.5 16.7 24.0 19.1]'; (2)、回归分析及检验:[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats 3、实验结果:b = 2.3564 1.8129bint = -1.8587 6.5715 1.5962 2.0297stats = 0.9789 371.9453 0.0000 2.0133 4、结果分析:即01ˆˆ 2.3564 1.8129ββ==;0ˆβ的置信区间为[-1.8587,6.5715], 1ˆβ的置信区间为[1.5962,2.0297]; r2=0.9789, F=371.9453, p=0.0000,p<0.05, 可知回归模型 y=2.3564+1.8129x 成立.预测最大积雪深度是20和25的灌溉面积: X=20时,y =38.6144 X=25时,y = 47.6789 残差分析,作残差图: rcoplot(r,rint)预测及作图:z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')二、水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.1、问题分析:○1逐步回归的命令是: stepwise(x,y,inmodel,alpha)X--自变量数据, 阶矩阵; y--因变量数据, 阶矩阵; inmodel--矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量); alpha--显著性水平(缺省时为0.5).○2运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.2、求解过程及结果:(1)输入数据,建立模型:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';(2)逐步回归:先在初始模型中取全部自变量x=[x1 x2 x3 x4];stepwise(x,y)(2)对变量y和x1、x2、x3、x4作线性回归X=[ones(13,1) x1 x2 x3 x4];b=regress(y,X)结果:b = 62.40541.55110.51020.1019-0.14413、结果分析:故最终模型为:y=62.4054+1.5511x1+0.5102x2+0.1019x3-0.1441x4【实验小结】心得体会:根据题目建立数学模型来求解,熟悉掌握MATLAB中线性规划的命令,注意自变量是X还是Y;总之多多练习、多多交流来不断提高自己应用MATLAB的能力。

数学建模 回归分析模型

数学建模 回归分析模型

非线性回归模型的实际应用
预测人口增长
非线性回归模型可以用来描述人口增长的动态变 化,预测未来人口数量。
医学研究
在医学研究中,非线性回归模型可以用来分析药 物对病人体内生理指标的影响。
经济预测
在经济领域,非线性回归模型可以用来预测经济 增长、通货膨胀等经济指标。
多元回归模型的实际应用
01
社会学研究
模型检验
对模型进行检验,包括残差分析、拟 合优度检验等,以确保模型的有效性 和可靠性。
非线性回归模型的参数估计
最小二乘法
梯度下降法
通过最小化预测值与实际值之间的平方误 差,求解出模型中的未知参数。
通过迭代计算,不断调整参数值,以最小 化预测值与实际值之间的误差。
牛顿法
拟牛顿法
基于泰勒级数展开,通过迭代计算,求解 出模型中的未知参数。
线性回归模型的评估与检验
残差分析
分析残差分布情况,检查是否 存在异常值、离群点等。
拟合优度检验
通过计算判定系数、调整判定 系数等指标,评估模型的拟合 优度。
显著性检验
对模型参数进行显著性检验, 判断每个自变量对因变量的影 响是否显著。
预测能力评估
利用模型进行预测,比较预测 值与实际值的差异,评估模型
基于牛顿法的改进,通过迭代计算,求解 出模型中的未知参数,同时避免计算高阶 导数。
非线性回归模型的评估与检验
残差分析
对模型的残差进行统计分析,包括残差 的分布、自相关性、异方差性等,以评
估模型的可靠性。
预测能力评估
使用模型进行预测,比较预测值与实 际值的误差,评估模型的预测能力。
拟合优度检验
通过比较实际值与预测值的相关系数 、决定系数等指标,评估模型的拟合 优度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二. 建立公司销售额对全行业的回归模型, 并用 DW 检验诊断随机误差项的 自相关性。
1.模型求解结果:
2
b= -1.4548 0.1763 bint = -1.9047 -1.0048 0.1732 0.1793 stats = 1.0e+004 * 0.0001 1.4888
0
0.0000
Residual Case Order Plot
%自相关性检验 Y=b0(1)+b0(2).*x0; Et=y0-Y; figure %模型残差
dw1=sum((Et(2:19,1)-Et(1:18,1)).^2); dw2=sum((Et(2:19,1)).^2); DW0=dw1/dw2
三. 建立消除了随机误差项自相关性之后的回归模型
1.广义差分变换 原模型: yt 0 1 xt t , t t 1 ut 变换:
《数学建模与数学实验》实验报告
实验 2
专业、班级 课程编号 实验(上机)地点 任课教师 学号 实验类型 教七楼数学实验中心 验证性 完成时间 评分
统计回归模型
姓名 学时 2
一、实验目的及要求
1.掌握数学软件 Matlab,c++的基本用法和一些常用的规则,能用该软件进行编程; 2.能够借助数学软件进行统计回归数学模型问题的求解和分析; 3.理解统计回归数学模型的数学原理,并能够分别利用统计回归数学模型进行实际问题的建模。

DW
e
t 2
n
t
et 1 2
2 t
e
t 2
n
21
e e
t 2 n
n
t t 1
e
t 2
2 t
2 1
做矩阵运算(减法、乘法等)求得 DW 值。其中求和号可用函数 sum。
-0.1104
5
0.1691 stats1 = 1.0e+003 * 0.0010
0.1829
2.9374
0
0.0000
Residual Case Order Plot
0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 2 4 6 8 10 Case Number 12 14 16 18
结果分析: y 的 100%可由模型确定, F=16752 远超过 F 检验的临界值, p 远小于 0.05 ,
0 , 1 的置信区间 bint 不包含零点,数据点的残差置信区间 rint 均包含零点,所以模型
4
yt -1.6093 0.1773xt ,从整体上看成立。
3.自相关性的定量诊断——DW 检验
结果分析: y 的 100%可由模型确定, F=2937.4 远超过 F 检验的临界值, p 远小于 0.05 ,
* 0 , 1 的置信区间不包含零点,但从图中看出,第 12 个点的残差的置信区间不包含零
点,应作为异常去掉。 代码:
%新模型求解 X1=[ones(18,1) x1]; [b1,bint1,r1,rint1,stats1]=regress(y1,X1); b1,bint1,stats1,rcoplot(r1,rint1)
2.广义差分法
关键是通过变换 yt* yt yt 1 , xt* xt xt 1 1 DW 得到新模型。 2
四、参考文献
[1] 姜启源,谢金星,叶俊.数学模型(第三版) ,高等教育出版社,2003 [2]邓薇.MATLAB 函数速查手册,人民邮电出版社,2010 DW 检验表
3.新模型的自相关性检验定量诊断——DW 检验
由 DW 值的大小确定自相关性:查 D-W 分布表,得到检验水平 0.05 ,样本容量 n=18,回归变 量数目 k=2 时,对应的检验临界值: d L 1.16, dU 1.39 。 因为结果求得 1.39 dU DW1 1.6537 4 - dU 2.61 ,所以新模型无自相关。
代码:
%新模型自相关性检验 Y1=b1(1)+b1(2).*x1;
6
Residuals
Et1=y1-Y1; %模型残差 Y1(:,1)=b1(1)+b1(2).*x1(:,1); Et1(:,1)=y1(:,1)-Y1(:,1); %模型残差 dw3=sum((Et1(2:18,1)-Et1(1:17,1)).^2); dw4=sum((Et1(2:18,1)).^2); DW1=dw3/dw4
7
由 DW 值的大小确定自相关性: 查 D-W 分布表, 得到检验水平 0.05 ,样本容量 n=19, 回归变量数目 k=2 时,对应的检验临界值: d L 1.18, dU 1.40 。 因为结果求得 DW 0 0.6412 d L 1.18 ,所以该模型存在正自相关。 代码:
yt* yt yt 1 , xt* xt xt 1
* * 新模型: yt* 0 1 xt* ut , 0 0 1


* * (新模型是以 0 , 1 为回归系数的普通回归模型,由数据 yt* , xt* 可估计系数 0 , 1 )
二、借助数学软件,研究、解答以下问题
某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了 1977—1981 年公 司的销售额和行业销售额的分季度数据(单位:百万元) (1) 画出数据的散点图,观察用线性回归模型拟合是否合适。 (2) 建立公司销售额对全行业的回归模型,并用 DW 检验诊断随机误差项的自相关性。 (3) 建立消除了随机误差项自相关性之后的回归模型 年 1977 季 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 公司销售额 y 20.96 21.40 21.96 21.52 22.39 22.76 23.48 23.66 24.10 24.01 24.54 24.30 25.00 25.64 26.36 26.98 27.52 27.78 28.24 28.78 行业销售额 x 127.3 130.0 132.7 129.4 135.0 137.1 141.2 142.8 145.5 145.3 148.3 146.4 150.2 153.1 157.3 160.7 164.2 165.6 168.7 171.7
4.消除了随机误差项自相关性之后的回归模型:
yt 0.3948 0.1305yt 1 0.1738xt 0.1096xt 1

三、本次实验的难点分析 1.DW 检验——DW 的求解
(1)难点:DW 的求解不仅涉及模型残差,而且计算公式复杂,需要掌握数组及矩阵的相关运算, 并使用 FOR-END 循环。 (2)解决:先利用已求得的回归系数 0 , 1 写出模型,以此得估计值 y t ;然后做数组减法 y t y t 得 e t ,最后由以下公式:
170
175
代码:
x=[127.3,130.0,132.7,129.4,135.0,137.1,141.2,142.8,145.5,145.3,... 148.3,146.4,150.2,153.1,157.3,160.7,164.2,165.6,168.7,171.7]'; y=[20.96,21.40,21.96,21.52,22.39,22.76,23.48,23.66,24.10,24.01,... 24.54,24.30,25.00,25.64,26.36,26.98,27.52,27.78,28.24,28.78]'; plot(x,y,'.') title('数据散点图') xlabel('行业销售额 x'); ylabel('公司销售额 y')
0.3
0.2
0.1
Residuals
0
-0.1
-0.2
-0.3 2 4 6 8 10 12 Case Number 14 16 18 20
结果分析: y 的 100%可由模型确定, F=14888 远超过 F 检验的临界值, p 远小于 0.05 ,
0 , 1 的置信区间 bint 不包含零点,但是,从图中可以看出,第 4 个点的残差的置信区
1978
1979
1980
1981
1
一.画数据的散点图如下,观察发现用线性回归模型 yt 0 1 xt t 拟合 比较合适。
数据散点图 29 28 27 26
公司销售额y
25 24 23 22 21 20 125
130
135
140
145 150 155 行业销售额x
160
165
间 rint 不包含零点,应作为异常点去掉。 代码:
figure %模型求解 X=[ones(20,1) x]; [b,bint,r,rint,stats]=regress(y,X); b,bint,stats,rcoplot(r,rint)
2.去掉第 4 个异常点后的模型求解 结果:
3
b0 = -1.6093 0.1773 bint0 = -2.0403 -1.1783 0.1744 0.1802 stats0 = 1.0e+004 * 0.0001 1.6752
代码:
%广义差分变换 low=1-DW0/2; x1=zeros(18,1); y1=zeros(18,1); for t=2:19 y1(t-1,1)=y0(t)-low*y0(t-1); x1(t-1,1)=x0(t)-low*x0(t-1); end
2.新模型求解结果:
相关文档
最新文档