数学建模与数学实验报告
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学模型与数学实验报告

数学模型与数学实验报告数学模型与数学实验报告数学模型是数学在实际问题中的应用,通过建立数学模型可以对问题进行定量分析和预测。
而数学实验报告则是对数学模型进行实验验证和结果分析的报告。
本文将探讨数学模型与数学实验报告的重要性以及其在现实生活中的应用。
一、数学模型的重要性数学模型是将实际问题抽象化、形式化的工具,通过建立数学模型可以对复杂的问题进行简化和分析。
数学模型可以帮助我们理解问题的本质,找到问题的规律和关键因素,并提供解决问题的方法和策略。
数学模型的建立需要考虑问题的背景、目标、约束条件等因素,选择适当的数学工具和方法进行建模。
通过数学模型的建立,我们可以对问题进行定量分析,得到数值结果或者数学关系,从而更好地理解问题。
数学模型在科学研究、工程设计、经济管理等领域都有广泛的应用。
例如,在物理学中,通过建立数学模型可以描述物体的运动规律;在经济学中,通过建立数学模型可以分析市场供需关系和经济增长趋势。
二、数学实验报告的重要性数学实验报告是对数学模型进行实验验证和结果分析的报告,通过数学实验报告可以检验数学模型的有效性和可靠性。
数学实验报告是数学模型应用的重要环节,对于提高模型的准确性和可行性具有重要意义。
数学实验报告的内容通常包括实验设计、实验数据的收集和处理、结果分析和结论等部分。
实验设计需要考虑实验条件、实验方法和实验过程等因素,确保实验的可重复性和可比性。
实验数据的收集和处理需要采用合适的统计方法和计算工具,对实验数据进行分析和整理。
结果分析需要对实验结果进行解释和评价,找出模型的优点和不足,并提出改进建议。
最后,结论部分需要总结实验结果和经验教训,为模型的进一步应用提供指导。
数学实验报告的编写需要严谨和准确,要求对实验过程和结果进行详细的描述和解释。
通过数学实验报告,我们可以对数学模型的有效性进行评估,发现模型的问题和不足,并提出改进和优化的方法。
三、数学模型与数学实验报告的应用数学模型与数学实验报告在现实生活中有广泛的应用。
数学建模实习报告

一、实习背景随着科学技术的不断发展,数学建模作为一种有效的解决实际问题的方法,在各个领域得到了广泛应用。
为了提高自身的实践能力和综合素质,我参加了数学建模实习。
本次实习旨在通过实际案例的建模与分析,提升对数学建模方法的掌握,以及在实际问题中的应用能力。
二、实习目的1. 掌握数学建模的基本原理和方法;2. 学会运用数学工具解决实际问题;3. 提高团队合作能力和沟通能力;4. 增强对数学在实际应用中的认识。
三、实习内容本次实习主要围绕以下几个方面展开:1. 案例分析:通过对实际案例的分析,了解数学建模的应用领域和实际意义;2. 模型建立:根据实际问题,运用数学方法建立相应的数学模型;3. 模型求解:运用计算机软件对数学模型进行求解;4. 模型验证:对求解结果进行验证,确保模型的准确性;5. 模型优化:根据实际需求,对模型进行优化,提高模型的适用性。
四、实习过程1. 案例分析实习初期,我们通过查阅相关文献,了解了数学建模在各个领域的应用,如经济学、生物学、环境科学等。
在此基础上,我们选取了以下几个具有代表性的案例进行分析:(1)鱼在水中游动的能量消耗问题;(2)城市交通流量优化问题;(3)传染病传播模型。
2. 模型建立针对上述案例,我们分别建立了以下数学模型:(1)鱼在水中游动的能量消耗模型:根据鱼在水中游动的受力分析,建立了鱼在水中游动的受力模型,并考虑了鱼在游动过程中的能量消耗与运动路线的关系;(2)城市交通流量优化模型:以城市道路网络为研究对象,建立了交通流量优化模型,并利用线性规划方法求解;(3)传染病传播模型:以传染病传播过程为研究对象,建立了传染病传播模型,并利用差分方法求解。
3. 模型求解针对上述模型,我们利用计算机软件(如MATLAB、Python等)进行求解。
具体操作如下:(1)鱼在水中游动的能量消耗模型:利用MATLAB软件,对受力模型进行数值求解,得到鱼在水中游动过程中的能量消耗;(2)城市交通流量优化模型:利用MATLAB软件,对交通流量优化模型进行求解,得到最优交通流量分配方案;(3)传染病传播模型:利用Python软件,对传染病传播模型进行求解,得到传染病传播的动态过程。
数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
数学建模实习报告4篇

数学建模实习报告4篇数学建模实习报告篇1大一第二学期的第九周,我们建筑工程学院的学生在陈金陵院长,彭莉英和梁桥等老师的带领下进行了为期一周的认知实习。
众说周知。
建筑工程行业是相当注重实际经验的。
身为一名应用型本科土木专业的学生,经验对我们来说就更加重要了。
这次我们终于有机会去众多的建筑工地实地考察了。
一周以来,前两天天气炎热,后两天大于瓢泼,天气一直不好,我们先后去了长沙和湘潭等地考察,时间紧,路途远,是比较累的。
但一周以来,我却始终怀着兴奋的心情,认真听着老师和施工员,监理人员的实地讲解,这使我收获很大。
这不但使我对本专业的认识进一步加强,也是我对今后工作的选择有了初步的认识。
下面就是我本次实习的具体行程和我的体会。
一、实习地点及日程安排:2023年4月13日实习动员参观主校区2023年4月15日上午参观莲城大桥金屏村铁路桥晚上“招标与投标”专业知识讲座2023年4月16日上无参观并解工业厂房与民用住宅的异同观看湘潭市体育公园施工过程二、实习目的:认识实习是整个实习教学计划中的一个有机组成部分,是土木工程专业的一个重要的实践性环节。
通过组织参观和听取一些专题技术报告,收集一些与实习课题有关的资料和素材,为顺利完成实习打下坚实基础。
通过实习应达到以下目的:1.了解普通住宅结构2.初步了解体育馆结构设计及施工过程3.了解桥梁道路铁路桥梁等设计及结构4.了解工用与民用建筑的区别联系5.了解建筑结构领域的最新动态和发展方向6.提高艺术修养,加深对建筑与艺术的了解7.培养专业兴趣,明确学习目的三、实习过程及内容:2023年4月13号星期一晴上午,在图书馆第二报告厅内,我们认真聆听了陈院长和湘潭市建筑设计院的专家讲说。
陈院长概括了我们这次实习的行程安排,接着设计院的专家细致的为我们介绍了现在设计院内的工作要求,也就是告诉我们要达到怎们样的水平才有机会计入设计院工作。
这对我们既是鞭策是鼓励。
下午天气温和,我们怀着兴奋的心情,在陈院长的带领下参观我们学校的新校区。
《数学建模与数学实验》上机实验报告

成都信息工程大学《数学建模与数学实验》上机实验报告专业信息与计算科学班级姓名学号实验日期成绩等级教师评阅日期[问题描述]下表给出了某一海域以码为单位的直角坐标Oxy 上一点(x,y)(水面一点)以英尺为单位的水深z,水深数据是在低潮时测得的,船的吃水深为5英尺,问在矩形区域(75,200)x (-50,150)里那些地方船要避免进入。
[模型]设水面一点的坐标为(x,y,z),用基点和插值函数在矩形区域(75,200)*(-50,150)内做二维插值、三次插值,然后在作出等高线图。
[求解方法]使用matlab求解:M文件:water.mx=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5];y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.584 -33.5];z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9];cx = 75:0.5:200;cy = -50:0.5:150;[cx,cy]=meshgrid(cx,cy);作出曲面图:代码如下:>> water>> cz=griddata(x,y,z,cx,cy,'cubic');>> meshz(cx,cy,cz)>> xlabel('X'),ylabel('Y'),zlabel('Z')>>作出等高线图:代码如下:>> water>> cz=griddata(x,y,z,cx,cy,'cubic');>> figure(2)>> contour(cx,cy,cz,[-5,-5],'r')>> hold on>> plot(x,y,'*')>> xlabel('X'),ylabel('Y')[结果]插值结果等值图:[结果分析及结论]根据等值图可看出:红色区域为危险区域,所以船只要避免进入。
数学建模实验报告范文

数学建模实验报告范文实验目的本次实验旨在运用数学建模的方法和技巧,对给定的问题进行分析和求解,以提高我们的问题解决能力和创新思维。
实验背景在现实生活中,我们经常面临各种各样的问题,但是如何从复杂的问题中提取关键信息,并通过数学建模的方法进行求解,是一个非常有挑战性的任务。
通过本次实验的学习和训练,我们可以更好地应对复杂问题,提高解决问题的能力和效率。
实验过程和方法本次实验我们选择了一个关于货车配送问题的案例进行研究。
具体过程如下:1. 问题理解:我们首先详细了解了货车配送问题的背景和要求,明确问题的目标和限制条件。
根据问题的描述,我们可以得到基本的数学模型:- 假设有N个配送点,每个配送点有固定的货物数量和配送时长。
- 有M辆货车,每辆货车的最大载重量和最大配送时长是已知的。
- 目标是使得总配送时间最短的同时,不超过货车的最大载重量。
2. 数据处理:我们将问题中给出的具体数据转化为计算机可处理的数据结构,并进行必要的预处理工作。
包括计算各个点之间的距离、货物数量等信息。
3. 建模与求解:我们根据问题的特点和要求,选用相应的数学模型和求解方法。
在本次实验中,我们选择了基于图论的算法,如最短路径算法和旅行商问题算法,来优化货车的配送路径和时间。
4. 结果分析:我们根据得到的结果,对货车的配送路径和时间进行分析和评估。
通过对比不同算法和参数设置的结果,找出最优解,并对结果进行可视化展示。
实验结果经过模型求解和分析,我们得到了一组满足条件的最优解。
在我们的实验中,总配送时间最短的方案是:...通过对比和分析不同算法和参数设置的结果,我们可以发现...实验总结本次实验通过对货车配送问题的研究和实践,我们学习了数学建模的基本方法和技巧。
通过模型建立、求解和分析的全过程,我们深入理解了数学建模的重要性和应用价值。
在实验过程中,我们遇到了一些困难和挑战,如如何选择合适的数学模型和求解算法等。
通过克服这些困难,我们不断提高了自己的问题解决能力和创新思维。
数学建模实验报告范文

一、实验目的通过本次数学建模实验,使学生掌握数学建模的基本步骤和方法,提高学生运用数学知识解决实际问题的能力,培养学生的创新意识和团队合作精神。
二、实验内容本次实验以某城市交通拥堵问题为背景,建立数学模型,并进行求解和分析。
三、问题分析近年来,随着城市化进程的加快,交通拥堵问题日益严重。
为了缓解交通拥堵,提高城市交通效率,需要建立数学模型对交通拥堵问题进行分析。
四、模型假设1. 交通流量的变化服从泊松分布;2. 交通信号灯周期固定,绿灯时间、红灯时间比例不变;3. 交通事故发生概率服从泊松分布;4. 交通拥堵程度用道路上的车辆数表示。
五、模型构建1. 建立交通流量模型:假设道路上车流量为λ,则道路上的车辆数N(t)满足泊松分布,即N(t)~Poisson(λt)。
2. 建立交通信号灯模型:假设绿灯时间为t_g,红灯时间为t_r,信号灯周期为T,则有t_g + t_r = T。
3. 建立交通事故模型:假设交通事故发生概率为p,则在时间t内发生交通事故的次数X(t)满足泊松分布,即X(t)~Poisson(pt)。
4. 建立交通拥堵模型:假设道路上的车辆数为N(t),则交通拥堵程度U(t)可以用N(t)表示。
六、模型求解1. 根据泊松分布的性质,求解N(t)的期望值和方差,即E(N(t))=λt,Var(N(t))=λt。
2. 根据信号灯模型,求解绿灯时间t_g和红灯时间t_r。
3. 根据交通事故模型,求解交通事故发生次数X(t)的期望值和方差,即E(X(t))=pt,Var(X(t))=pt。
4. 根据交通拥堵模型,求解交通拥堵程度U(t)的期望值和方差。
七、结果分析与解释1. 根据模型求解结果,分析不同时间段内的交通流量、交通事故和交通拥堵程度。
2. 结合实际情况,分析影响交通拥堵的关键因素,并提出相应的缓解措施。
3. 通过模型求解,为相关部门制定交通管理政策提供依据。
八、实验总结通过本次数学建模实验,学生掌握了数学建模的基本步骤和方法,提高了运用数学知识解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模与数学实验报告
指导教师__郑克龙___ 成绩____________
组员1:班级:工管0803 姓名:何红强 学号:20083416
组员2:班级:工管0801 姓名:陈振辉 学号:20085291
实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。
建立M 文件fun1.m 解:x=linspace(0, pi,30); y=cos(tan(pi*x)); plot(x,y)
x=linspace(0, pi,30); y=cos(tan(pi*x)); plot(x,y)
(2)用surf,mesh 命令绘制曲面2
2
2z x y =+,将其程序及图形粘贴在此。
(注:图形注意拖放,不要太大)(20分)
建立M 文件fun3.m 解:x=-3:0.1:3; y=1:0.1:5;
[X,Y]=meshgrid(x,y); Z=2*X.^2+Y .^2; mesh(X,Y ,Z)
4
实验2.
1、某校60名学生的一次考试成绩如下:
93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55
1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 解:1)建立数据文件chengji.mat ,和M 文件tjl.m 代码:load chengji mean=mean(x) std=std(x)
range=range(x)
skewness=skewness(x) kurtosis=kurtosis(x) hist(x,10)
运行得:
mean =80.1000 std =9.7106 range =44
skewness =-0.4682
结论:从上图图形形态来看符合正态分布
3)假设 正态分布的参数为:mu=80 sigma=10 检验:首先取出数据,用以下命令: load chengji.mat 然后用以下命令检验
[h,sig,ci] = ztest(price1,80,10)
返回:h =0 sig = 0.9383 ci =[77.5697 , 82.6303]
检验结果: 1. 布尔变量h=0, 表示不拒绝零假设. 说明提出的假设均值80是合理的.
2. sig-值为0.8668, 远超过0.5, 不能拒绝零假设
3. 95%的置信区间为[77.5697 , 82.6303], 它完全包括80, 且精度很高.
实验 3. 在研究化学动力学反应过程中,建立了一个反应速度和反应物含量的数学模型,形式为
3423125
3
211x x x x
x y βββββ+++-=
其中51,,ββ 是未知参数,321,,x x x 是三种反应物(氢,n 戊烷,异构戊烷)的含量,y 是反应速度.今测得一组数据如表4,试由此确定参数51,,ββ ,并给出置信区间.51,,ββ 的参考值为 (1,0.05, 0.02, 0.1, 2).(20分)
序号 反应速度y 氢x 1 n 戊烷x 2
异构戊烷x 3
1 8.55 470 300 10
2 3.79 285 80 10
3 4.82 470 300 120
4 0.02 470 80 120
5 2.75 470 80 10
6 14.39 100 190 10
7 2.54 100 80 65
8 4.35 470 190 65
9 13.00 100 300 54 10 8.50 100 300 120 11 0.05 100 80 120 12 11.32 285 300 10 13
3.13
285
190
120
解:先建立vol.m文件
代码如下:
function y=vol(beta,X)
beta=[beta(1) beta(2) beta(3) beta(4) beta(5)];
x1=X(:,1);
x2=X(:,2);
x3=X(:,3);
y=(beta(1)*x2-x3./beta(5))./(1+beta(2)*x1+beta(3)*x2+beta(4)*x3);
然后建立ll1.m文件
代码如下:
X=[470 285 470 470 470 100 100 470 100 100 100 285 285
300 80 300 80 80 190 80 190 300 300 80 300 190
10 10 120 120 10 10 65 65 54 120 120 10 120]';
y=[8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13];
beta0=[1 0.05 0.02 0.1 2]';
[beta,r,J]=nlinfit(X , y','vol',beta0);
beta
运行结果为:
beta =1.2526 0.0628 0.0400 0.1124 1.1914
实验4.某设备上安装有四只型号规格完全相同的电子管,已知电子管寿命为1000--2000小时之间的均匀分布。
当电子管损坏时有两种维修方案,一是每次更换损坏的那一只;二是当其中一只损坏时四只同时更换。
已知更换时间为换一只时需1小时,4只同时换为2小时。
更换时机器因停止运转每小时的损失为20元,又每只电子管价格10元,试用模拟方法决定哪一个方案经济合理?(20分)function allcost=weixiu(n)
t1=unifrnd(1000,2000,1,n);
t2=zeros(1,n);
Q=0;
if(n/4>fix(n/4))
disp('error NO');
break
end
k=n/4;
for i=2:n
t2(i)=exprnd(0,1000,1,1);
t1(i)=t1(i-1)+t2(i);
end
for i=1:k
Q=Q+(t2(4*k-3)+2*t2(4*k-2)+3*t2(4*k-1))*20;
end
Q2=30*n; %方案一
Q1=Q+n*10+n/4*2*20; %方案二
allcost=[Q1 Q2];
实验5.(1)利用matlab 的相关命令以及编写相应的函数文件求解非线性规划问题
2
212min
(3)(2)f x x =-+- (10分)
s.t. 12212
400x x x x +-=⎧⎨-≥⎩(附上所有程序及运行结果)
解:写成标准形式:
2
212min
(3)(2)f x x =-+-
x1+x2-4=0 s.t.
-x1^2+x2<=0
先建立M-文件 fun4.m: function f=fun4(x); 然后建立mycon.m 文件: function [g,ceq]=mycon(x) g=-x(1)^2+x(2);
ceq=x(1)+x(2)-4; 再建立主程序zuoye51.m : x0=[2;2];
A=[1 1;1 -1]; b=[-4 0]; Aeq=[];beq=[]; VLB=[]; VUB=[];
[x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,VLB,VUB,'mycon') 运行结果为:x = 2 2 fval = 1
(2)利用matlab 求解下列两个微分方程 (i )''
2,(0)2,(1)1y y x y y -=-==
(ii)
'''
(1)24,(0)0,(1)2(1)0
x y y y y y
+=-=-=(附上求解命令及运行结果)(10分)
解:(1)求二阶导为:y’’-y’-1=0
建立wf1.m文件
代码为:y=dsolve('D2y-Dy-1=0','y(0)=2,y(1)=1','x')
运行结果为:y =2-x
(2)求二阶导为:y’*(1+x)+y=2*y’→1+x=2-y/y’带入原方程得:2*y’-3y+4=0 建立wf2.m文件
代码为:
y=dsolve('D2y*(1+x)-Dy=0','y(0)=0,y(1)-2*Dy(1)=0','x')
运行结果为:y =-2/3+2/3*(1+x)^2。