数学模型实验报告

合集下载

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学模型试验报告

数学模型试验报告

福建农林大学计算机与信息学院数学类实验报告(一)系: 信息与计算科学 专业: 信息与计算科学 年级: 2007级 姓名: 刘丽芬 学号: 071152009 实验课程: 数学模型 实验室号:_ 田C-513 实验设备号: 09 实验时间: 09/10/28指导教师签字: 成绩:1.实验项目名称:数学规划模型建立及其软件求解2.实验目的和要求:了解数学规划的的基本理论和方法,并用于建立实际问题的数学规划模型;会用LINDO 和LINGO 软件解数学规划问题并对结果加以分析应用。

3.实验使用的主要仪器设备和软件:惠普微机;1.6LINDO 和0.9LINGO 版本4.实验的基本理论和方法:数学规划模型的一般形式为()..()0,1,2,,xi Min z f x s t g x i m =≤=其中()f x 表示目标函数,()0,1,2,,i g x i m ≤= 为约束条件。

通过对优化的目标和寻求的决策进行优化的数学模型的建立,确定相对应的目标函数和可行域来进行数学模型的规划。

在数学模型的基本指导思想和基本理论的基础上,通过相应的数学求解软件LINDO 和LINGO 的运用来达到最优计划的制订。

5.实验内容与步骤:问题一:某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A,B),按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A,B.已知原料甲,乙,丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/ t,16千元/ t ,10千元/t ,产品A,B的含硫量分别不能超过2.5%,1.5%,售价分别为9千元/t,15千元/t,根据市场信息,原料甲、乙、丙的供应量都不能超过500t;产品A,B的最大市场需求量分别为100t ,200t.(1) 应如何安排生产?(2) 如果产品A的最大市场需求量增长为600t,应如何安排生产?(3) 如果乙的进货价格下降为13千元/t,应如何安排生产?分别、对(1)、(2)两种情况进行讨论.问题分析这个优化问题的目标是使得生产出来的甲和乙利润最大,所要求的是分别买进多少的甲、乙、丙,并进行怎样的混合加工生产出产品A,B,最后能够获得最大的利润,由于原料甲、乙必须先混合再与丙混合生产,所以引入甲、乙在混合产品中的比例关系,根据决策所受到的约束,就可以建立以下的非线性规划模型。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。

2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。

二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。

设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。

2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。

所以选择采用计算机模拟的方法, 求得近似结果。

(2)通过增加试验次数, 使近似解越来越接近真实情况。

3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。

而每行中1的个数代表在该楼层下的乘客的人数。

再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。

例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。

数学模型与数学实验报告

数学模型与数学实验报告

数学模型与数学实验报告数学模型与数学实验报告数学模型是数学在实际问题中的应用,通过建立数学模型可以对问题进行定量分析和预测。

而数学实验报告则是对数学模型进行实验验证和结果分析的报告。

本文将探讨数学模型与数学实验报告的重要性以及其在现实生活中的应用。

一、数学模型的重要性数学模型是将实际问题抽象化、形式化的工具,通过建立数学模型可以对复杂的问题进行简化和分析。

数学模型可以帮助我们理解问题的本质,找到问题的规律和关键因素,并提供解决问题的方法和策略。

数学模型的建立需要考虑问题的背景、目标、约束条件等因素,选择适当的数学工具和方法进行建模。

通过数学模型的建立,我们可以对问题进行定量分析,得到数值结果或者数学关系,从而更好地理解问题。

数学模型在科学研究、工程设计、经济管理等领域都有广泛的应用。

例如,在物理学中,通过建立数学模型可以描述物体的运动规律;在经济学中,通过建立数学模型可以分析市场供需关系和经济增长趋势。

二、数学实验报告的重要性数学实验报告是对数学模型进行实验验证和结果分析的报告,通过数学实验报告可以检验数学模型的有效性和可靠性。

数学实验报告是数学模型应用的重要环节,对于提高模型的准确性和可行性具有重要意义。

数学实验报告的内容通常包括实验设计、实验数据的收集和处理、结果分析和结论等部分。

实验设计需要考虑实验条件、实验方法和实验过程等因素,确保实验的可重复性和可比性。

实验数据的收集和处理需要采用合适的统计方法和计算工具,对实验数据进行分析和整理。

结果分析需要对实验结果进行解释和评价,找出模型的优点和不足,并提出改进建议。

最后,结论部分需要总结实验结果和经验教训,为模型的进一步应用提供指导。

数学实验报告的编写需要严谨和准确,要求对实验过程和结果进行详细的描述和解释。

通过数学实验报告,我们可以对数学模型的有效性进行评估,发现模型的问题和不足,并提出改进和优化的方法。

三、数学模型与数学实验报告的应用数学模型与数学实验报告在现实生活中有广泛的应用。

数学建模优秀实验报告

数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。

本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。

二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。

通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。

2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。

通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。

(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。

(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。

(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。

通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。

(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。

针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。

三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。

2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。

数学建模的实验报告

数学建模的实验报告

一、问题路灯照明问题。

在一条20m宽的道路两侧,分别安装了一只2kw和一只3kw的路灯,它们离地面的高度分别为5m和6m。

在漆黑的夜晚,当两只路灯开启时,两只路灯连线的路面上最暗的点和最亮的点在哪里?如果3kw的路灯的高度可以在3m到9m之间变化,如何路面上最暗点的亮度最大?如果两只路灯的高度均可以在3m到9m之间变化,结果又如何?二、数学模型已知P1为2kw的路灯,P2为3kw的路灯,以地面为X轴,路灯P1为Y轴,建立平面直角坐标系。

其中,P1、P2高度分别为h1、h2,水平距离为S=20m。

设有一点Q(x,0),P1、P2分别与其相距R1、R2。

如下图示。

经查阅资料得,光照强度公式为:,设光照强度k=1。

则,两个路灯在Q点的光照强度分别为:2 111 1sin RapI=2222 2sin RapI=其中:R12=h12+x2 R22=h22+(S-x)2则Q点的光照强度I x=I1+I2分别按照题目中的不同要求,带入不同数值,求导,令导数为零,求得极值,进一步分析对比,求得最值。

三、算法与编程1.当h1=5m,h2=6m时:symptoms x yx=0:0.1:20;y=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3);plot(x,y)grid on;在图中的0-20米范围内可得到路灯在路面照明的最亮点和最暗点①对Ix求导:syms xf=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3)②运用MATLAB求出极值点s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))');s1=vpa(s,8)s1 =.28489970e-18.5383043+11.615790*i19.9766969.33829918.5383043-11.615790*i③根据实际要求,x应为正实数,选择19.9767、9.3383、0.02849三个数值,通过MATLAB计算出相应的I值:syms xI=10/(25+x^2)^(3/2)+18/(36+(20-x)^2)^(3/2);subs(I,x,19.9767)subs(I,x,9.3383)subs(I,x,0.02849)ans =0.0845ans =0.0182ans =0.820综上,在19.3米时有最亮点;在9.33米时有最暗点2.当h1=5m,3m<h2<9m时:①对h2求偏导,并令其为0:②运用MATLAB求出极值点solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20-x)^2)^(5/2))=0')ans =20+2^(1/2)*h20-2^(1/2)*h③对x求偏导,并令其为0:④通过MATLAB,将步骤②中计算出的关于h2的表达式带入上式,并求出h2的值;solve('-30*(20-2^(1/2)*h)/((25+(20-2^(1/2)*h)^2)^(5/2))+9*h*(20-(20-2^(1/2)*h))/((h^2+(20-(20-2^(1/2)*h))^2)^(5/2))=0')ans =7.4223928896768612557104509932965⑤通过MATLAB,利用已求得的h2,计算得到x,并进一步计算得到Ih=7.42239;x=20-2^(1/2)*hI=10/((25+x^2)^(3/2))+(3*h)/((h^2+(20-x)^2)^(3/2)) x =9.5032I =0.01863.当h1,h2均在3m-9m之间时:①同上,通过MATLAB求解下面的方程组:solve('p1/(h1^2+x^2)^(3/2)-3*p1*h1^2/(h1^2+x^2)^(5/ 2)')solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20 -x)^2)^(5/2))=0')ans =2^(1/2)*h1-2^(1/2)*h1ans =20+2^(1/2)*h20-2^(1/2)*h②根据实际,选择x=h1,x=20-h2,带入第三个式中,得:③利用MATLAB,求得x值:s=solve('1/((20-x)^3)=2/(3*(x^3))');s1=vpa(s,6)s1 =9.325307.33738+17.0093*i7.33738-17.0093*i④按照实际需求,选择x=9.32525⑤带入求解I,并比较得到亮度最大的最暗点h1=(1/sqrt(2))*9.32525h2=(1/sqrt(2))*(20-9.32525)h1 =6.5939h2 =7.5482四、计算结果1.当h1=5m,h2=6m时:x=9.33m时,为最暗点,I=0.01824393;x=19.97m时,为最亮点,I=0.08447655。

数学模型实训总结总结(共5篇)

数学模型实训总结总结(共5篇)

数学模型实训总结总结(共5篇)第一篇:数学模型实训总结总结数学模型实训总结从12月19日至25日,我们在数理系机房进行了为期一周的数学模型的实训。

为了锻炼大家之间的配合能力,而且数学建模本来就是团队团结合作完成的,我们都被分成了差不多三人一组。

在这几天的机房实训中,我们相互分工合作,首先分析了我们选择的数学模型问题—教师薪金的确定,然后进行假设,再根据假设建设基本的模型。

在这个过程中,我们每个人都分配有不同的任务,充分发挥了每个人的特长。

最后把每个部分整合在一起的时候,我们接受不同意见,讨论了每一部分的可行性以及与相邻部分能否有效衔接,发现了其中的一些不足之处,并及时改正,不过在有些数据处理方面,我们还不是很熟悉。

然后我们对数学模型的数据进行求解、分析、检验,认为这个数学模型的建立满足假设条件,符合现实中的设定。

最后我们把实训问题按照数学建模的标准模式进行了整理,制成一份完整的实训报告。

至此,这次数学模型的实训已经基本完成,剩下来的就是对实训报告的检查以及改进。

通过仔细认真的检查,这次实训报告虽然还存在一些小的问题,但已经基本满足了实训的目的。

目前,数学模型的实训已经结束,我们学到了很多东西。

数学模型是一门与现实很接近的学科,在社会中的应用是比较广泛的,在解决一些社会性问题上有着很广阔的前景。

例如美国曼哈顿项目中原子弹的研究,还有2008年我国奥运会场馆周边服务平台的建设等等很多问题都离开数学模型的身影。

通过这些可以看出,我们学习数学模型的作用还是很大的。

希望经过这次数学模型培训,我们的数学知识有进一步的提高。

第二篇:数学模型总结【数学建模】数学模型总结四类基本模型优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

数学建模实验报告4

数学建模实验报告4

数学建模实验报告班级:姓名:学号:元件可靠性问题一、实验问题:给出3种不同情况的元件连接方式, 分别求解他们的正常运行概率。

其中每个元件的正常运行概率均为p。

元件数为N, 方式2与方式3用到了与A元件相同的N个B元件。

连接方式如图:方式1:方式2:方式3:二、问题分析:N个元件的连接方式, 相当于电阻的串并联, 所以可以用电阻串并联的关系去分析各无件之间的关系:对于方式一来说, 相当于电阻的串联。

所以, 他的正常运行的概率为p^n.对于方式二来说, 相当于电阻先串联再并联。

所以, 他的正常运行的概率为:1-(1-P^n)(1-P^n)=2P^n-P^2n.对于方式三来说, 相当于电阻先并联再串联。

所以, 他的正常运行的概率为:(1-(1-P^n)^2)^n=(2p-p^2)^n现在再比较三个系统正常工作概率大小P1- P2= p^n–(2p^n-p^2n )= p^2n–p^n 由于0<p<1,所以易知P^2n-P^n<0。

所以有P1< P2P2- P3=(2p^n- p^2n)- (2p-p^2)^n= p^n[(2- p^n)-(2-p)^n]因为p^n>0,所以只要比较[(2- p^n)-(2-p)^n]大小即可。

对此式求导有-n[p^(n-1)-(2-p)^n-1]可见此式恒大于零,所以函数单调递增。

当p=1时, [(2- p^n)-(2-p)^n]=0.所以P2- P3 <0, 再由上求导可知所以P2<P3所以P3最大。

即其的可靠性最高。

理发店问题实验题目:(1)某单人理发店有4反椅子接待顾客排队理发, 当4把椅子都坐满人时, 后来的顾客就不进店而离去。

顾客平均到达速率为4人/H, 理发时间平均10min/人。

设到达过程为泊松流, 服务时间服从负指数颁布。

求:(2)顾客一到达就能理发的概率;(3)系统中顾客数的期望值和排队等待顾客数的期望值;(4)顾客在理发店内逗留的全部时间的期望值;(5)在可能到达的顾客中因客满离开的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型实验报告
实验内容1.
实验目的:学习使用lingo和MATLAB解决数学模型问题
实验原理:
实验环境:MATLAB7.0
实验结论:
源程序
第四章:实验目的,学会使用lingo解决数学模型中线性规划问题1.习题第一题
实验原理:
源程序:
运行结果:
Range:
结果分析:(1)求解结果中variable那一项表示的是最优解,容易看出x1,x2,x3,x4,x5取值分别为以上结果时,收益最大。

即证券A,C,E分别投资2.181818百万元,7.363636百万元,0.4545455百万元,最大收益为0.2983636百万元。

上面Row那一项中Slack or surplus 表示的是投资款项剩余值。

Dual 表示增加一单位,投资利润增加量。

(2)range 表示变化范围:variable那个项目表示的是最优解不变,系数的允许的变化范围。

Row那个项目表示的是影子价格(即在最优解下资源增加一个单位时效益的增量)。

3.习题第三题lingo算式:
源程序:
实验结果:
结果分析:最优解为:x1=3,x2=4,y1=0,y2=2,y3=0,y4=0,y5=1时,min=820.此时费用最小。

在九个工作时间点的生于劳动力分别为3,6,5,0,1,2,0,0,0,个。

第五章:5.6节人口的预测和控制
实验目的:用MATLAB 模型解决数学模型中人口预测和控制问题 实验原理: 指数增长模型:
模型假设:年增长率保持不变
记今年人口为x0,k 年后人口为xk,年增长率为r,则 xk=x0(1+r)^k (1)
记t 时刻的人口为x(t),当考察一个国家或一个较大地区的人口时,是一个很大的整数,x(0)=x0,利用微积分求得 x(t)=x0e^rt (4) 表示人口随时间无限增长
组织增长模型---logistic 模型
组织增长用体现在对人口增长率的影响上,使r 随着人口数量x 的增加而下降 假定r(x)=r-sx(r,s>0)(5)
这里r 称固有增长率,表示人口很少时(理论上是0x =)的增长率。

为了确定系数s 的意义,引入自然资源和环境条件所能容纳的最大人口数量m x ,称人口容量。

当m x x =时人口不再增长,即增长率()0m r x =,代入(5)式的m s r x =,于是()()1m r x r x x =-,将()r x 代入方程(4),得
1m d x x rx dt x ⎛⎫=- ⎪
⎝⎭,
()00x x =
(6)
方程(6)右端的因子rx 体现人口自身的增长趋势,因子1m x x ⎛⎫
- ⎪⎝⎭则体
现了环境和资源对人口增长的阻滞作用。

显然,x 越大,前一因子越大,后一因子越小,人口增长是两个因子共同作用的结果,(6)称为阻滞增长模型。

三、模型的参数估计、检验和预报
用指数增长模型或阻滞增长模型进行人口预报,先要作参数估计。

除了初始人口0x 外,指数增长模型要估计r ,阻滞增长模型则要估计r 和m x 。

它们可以用人口统计数据拟合得到,也可以辅之以专家的估计。

为了估计指数增长模型(2)或(3)中的参数r 和0x ,需将(3)式取对数,得
0,l n ,l n y r t a y x a x =+== (8) 如书上图:
以美国人口实际数据为例(将表3数据列为表4第1,2列),对(8)式作数据拟合,如用1790年至1900年的数据,得到r =0.2743/(10年),0x =4.1884;如用全部数据可得r =0.2022/(10年),0x =6.0450。

也可以令0x =3.9(1790年实际人口),只计算r 。

用得到的r 和0x 代入(3)式,将计算结果与实际数据作比较。

表4中计算人口1x 是用1790年至1900年数据拟合的结果,2x 是用全部数据拟合的结果,图3()a 和图3()b 是它们的图形表示(+号是实际数据,曲线是计算结果). 为了估计阻滞增长模型(6)或(7)中的参数r 和m x ,我们不用(7)式而将方程(6)表为
,m
dx
r dt r sx s x x =-=
(9)
(9)式左端可以从实际人口数据用数值微分算出,右端对参数,r s 是线性的。

为了简单起见,可利用()1990x 和方程(6)作如下计算:
()
()()()()200019901990199011990/m x x x x r x
x x π=+∆=+-
⎡⎤⎣⎦
(10)
得到()2000274.5x =百万,与实际数据281.4百万的误差约2.5%,可以认为该模型是相当满意的。

为了预报美国2010年的人口,应将2000年的实际数据加进去重新估计参数,可得0.249r =/(10年),433.9886m x =。

然后再用模型检验中的计算方法进行预报,得到()2010306.0x =百万。

据美国人口普查局2010年12月21日公布,截止到2010年4月1日,美国总人口为3.087亿,预报误差不到1%。

【实验过程】(实验步骤、记录、数据、分析) 实验步骤①
对于阻滞增长模型:
为了用数据进行线形最小二乘法的计算,故将方程(4)两边取对数得到()0ln ln *rt x t x e =,即()0ln ln x t x rt
=+,令()ln y x t =,0ln a x =,所以可得y rt a =+。

根据所提供的数据用MATLAB 函数(),,1p polyfit t x =拟合一次多项式,然后用画图函数()()''''0,,,,*exp ,plot t x t x rt +-,画出实际数据与计算结果之间的图形,看结果如何。

源程序:
结果:a = 0.0214 -36.6198 r = 0.0214
x0 =1.2480e-016
源程序:
兰亭序
永和九年,岁在癸丑,暮春之初,会于会稽山阴之兰亭,修禊事也。

群贤毕至,少长咸集。

此地有崇山峻岭,茂林修竹;又有清流激湍,映带左右,引以为流觞曲水,列坐其次。

虽无丝竹管弦之盛,一觞一咏,亦足以畅叙幽情。

是日也,天朗气清,惠风和畅,仰观宇宙之大,俯察品类之盛,所以游目骋怀,足以极视听之娱,信可乐也。

夫人之相与,俯仰一世,或取诸怀抱,晤言一室之内;或因寄所托,放浪形骸之外。

虽取舍万殊,静躁不同,当其欣于所遇,暂得于己,快然自足,不知老之将至。

及其所之既倦,情随事迁,感慨系之矣。

向之所欣,俯仰之间,已为陈迹,犹不能不以之兴怀。

况修短随化,终期于尽。

古人云:“死生亦大矣。

”岂不痛哉!
每览昔人兴感之由,若合一契,未尝不临文嗟悼,不能喻之于怀。

固知一死生为虚诞,齐彭殇为妄作。

后之视今,亦犹今之视昔。

悲夫!故列叙时人,录其所述,虽世殊事异,所以兴怀,其致一也。

后之览者,亦将有感于斯文。

相关文档
最新文档