数学模型实验报告
数学建模实验报告

数学建模实验报告1.流⽔问题问题描述:⼀如下图所⽰的容器装满⽔,上底⾯半径为r=1m,⾼度为H=5m,在下地⾯有⼀⾯积为B0.001m2的⼩圆孔,现在让⽔从⼩孔流出,问⽔什么时候能流完?解题分析:这个问题我们可以采⽤计算机模拟,⼩孔处的⽔流速度为V=sqrt[2*g*h],单位时间从⼩孔流出的⽔的体积为V*B,再根据⼏何关系,求出⽔⾯的⾼度H,时间按每秒步进,记录点(H,t)并画出过⽔⾯⾼度随时间的变化图,当⽔⾯⾼度⼩于0.001m 时,可以近似认为⽔流完了。
程序代码:Methamatic程序代码:运⾏结果:(5)结果分析:计算机仿真可以很直观的表现出所求量之间的关系,从图中我们可以很⽅便的求出要求的值。
但在实际编写程序中,由于是初次接触methamatic 语⾔,对其并不是很熟悉,加上个⼈能⼒有限,所以结果可能不太精确,还请见谅。
2.库存问题问题描述某企业对于某种材料的⽉需求量为随机变量,具有如下表概率分布:每次订货费为500元,每⽉每吨保管费为50元,每⽉每吨货物缺货费为1500元,每吨材料的购价为1000元。
该企业欲采⽤周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。
(注:),(S s 策略指的是若发现存货量少于s 时⽴即订货,将存货补充到S ,使得经济效益最佳。
)问题分析:⽤10000个⽉进⾏模拟,随机产⽣每个⽉需求量的概率,利⽤计算机编程,将各种S 和s 的取值都遍历⼀遍,把每种S,s的组合对应的每⽉花费保存在数组cost数组⾥,并计算出平均⽉花费average,并⽤类answer来记录,最终求出对应的S和s。
程序代码:C++程序代码:#include#include#include#include#define Monthnumber 10000int Need(float x){int ned = 0;//求每个⽉的需求量if(x < 0.05)ned = 50;else if(x < 0.15)ned = 60;else if(x < 0.30)ned = 70;else if(x < 0.55)ned = 80;else if(x < 0.75)ned = 90;else if(x < 0.85)ned = 100;else if(x < 0.95)ned = 110;else ned = 120;return ned;}class A{public:int pS;int ps;float aver;};int main(){A answer;answer.aver=10000000;//int cost[Monthnumber+1]={0}; float average=0;int i;float x;int store[Monthnumber];//srand((int)time(0));for(int n=6;n<=12;n++){// int n=11;int S=10*n;for(int k=5;k{// int k=5;int s=k*10;average=0;int cost[Monthnumber+1]={0};for(i=1;i<=Monthnumber;i++){store[i-1]=S;srand(time(0));x=(float)rand()/RAND_MAX; //产⽣随机数//cout<<" "<//cout<int need=Need(x);if(need>=store[i-1]){cost[i]= 1000*S + (need - store[i-1])*1500 + 500;store[i]=S;}else if(need>=store[i-1]-s){cost[i]=1000*(need+S-store[i-1]) + 50*(store[i-1]-need) + 500; store[i]=S;}else{cost[i]=(store[i-1]-need)*50;store[i]=store[i-1]-need;}average=cost[i]+average;}average=average/Monthnumber;cout<<"n="<cout<<"花费最少时s应该为:"<cout<<"平均每⽉最少花费为:"<}运⾏结果:结果分析:⽤计算机模拟的结果和⽤数学分析的结果有⼀定的差异,由于计算机模拟时采⽤的是随机模型⽽我⽤time函数和rand函数产⽣真随机数,所以在每次的结果上会有所差异,但对于⼀般的⽣产要求亦可以满。
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学模型试验报告

福建农林大学计算机与信息学院数学类实验报告(一)系: 信息与计算科学 专业: 信息与计算科学 年级: 2007级 姓名: 刘丽芬 学号: 071152009 实验课程: 数学模型 实验室号:_ 田C-513 实验设备号: 09 实验时间: 09/10/28指导教师签字: 成绩:1.实验项目名称:数学规划模型建立及其软件求解2.实验目的和要求:了解数学规划的的基本理论和方法,并用于建立实际问题的数学规划模型;会用LINDO 和LINGO 软件解数学规划问题并对结果加以分析应用。
3.实验使用的主要仪器设备和软件:惠普微机;1.6LINDO 和0.9LINGO 版本4.实验的基本理论和方法:数学规划模型的一般形式为()..()0,1,2,,xi Min z f x s t g x i m =≤=其中()f x 表示目标函数,()0,1,2,,i g x i m ≤= 为约束条件。
通过对优化的目标和寻求的决策进行优化的数学模型的建立,确定相对应的目标函数和可行域来进行数学模型的规划。
在数学模型的基本指导思想和基本理论的基础上,通过相应的数学求解软件LINDO 和LINGO 的运用来达到最优计划的制订。
5.实验内容与步骤:问题一:某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A,B),按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A,B.已知原料甲,乙,丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/ t,16千元/ t ,10千元/t ,产品A,B的含硫量分别不能超过2.5%,1.5%,售价分别为9千元/t,15千元/t,根据市场信息,原料甲、乙、丙的供应量都不能超过500t;产品A,B的最大市场需求量分别为100t ,200t.(1) 应如何安排生产?(2) 如果产品A的最大市场需求量增长为600t,应如何安排生产?(3) 如果乙的进货价格下降为13千元/t,应如何安排生产?分别、对(1)、(2)两种情况进行讨论.问题分析这个优化问题的目标是使得生产出来的甲和乙利润最大,所要求的是分别买进多少的甲、乙、丙,并进行怎样的混合加工生产出产品A,B,最后能够获得最大的利润,由于原料甲、乙必须先混合再与丙混合生产,所以引入甲、乙在混合产品中的比例关系,根据决策所受到的约束,就可以建立以下的非线性规划模型。
数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。
2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。
所以选择采用计算机模拟的方法, 求得近似结果。
(2)通过增加试验次数, 使近似解越来越接近真实情况。
3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。
例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。
数学模型与数学实验报告

数学模型与数学实验报告数学模型与数学实验报告数学模型是数学在实际问题中的应用,通过建立数学模型可以对问题进行定量分析和预测。
而数学实验报告则是对数学模型进行实验验证和结果分析的报告。
本文将探讨数学模型与数学实验报告的重要性以及其在现实生活中的应用。
一、数学模型的重要性数学模型是将实际问题抽象化、形式化的工具,通过建立数学模型可以对复杂的问题进行简化和分析。
数学模型可以帮助我们理解问题的本质,找到问题的规律和关键因素,并提供解决问题的方法和策略。
数学模型的建立需要考虑问题的背景、目标、约束条件等因素,选择适当的数学工具和方法进行建模。
通过数学模型的建立,我们可以对问题进行定量分析,得到数值结果或者数学关系,从而更好地理解问题。
数学模型在科学研究、工程设计、经济管理等领域都有广泛的应用。
例如,在物理学中,通过建立数学模型可以描述物体的运动规律;在经济学中,通过建立数学模型可以分析市场供需关系和经济增长趋势。
二、数学实验报告的重要性数学实验报告是对数学模型进行实验验证和结果分析的报告,通过数学实验报告可以检验数学模型的有效性和可靠性。
数学实验报告是数学模型应用的重要环节,对于提高模型的准确性和可行性具有重要意义。
数学实验报告的内容通常包括实验设计、实验数据的收集和处理、结果分析和结论等部分。
实验设计需要考虑实验条件、实验方法和实验过程等因素,确保实验的可重复性和可比性。
实验数据的收集和处理需要采用合适的统计方法和计算工具,对实验数据进行分析和整理。
结果分析需要对实验结果进行解释和评价,找出模型的优点和不足,并提出改进建议。
最后,结论部分需要总结实验结果和经验教训,为模型的进一步应用提供指导。
数学实验报告的编写需要严谨和准确,要求对实验过程和结果进行详细的描述和解释。
通过数学实验报告,我们可以对数学模型的有效性进行评估,发现模型的问题和不足,并提出改进和优化的方法。
三、数学模型与数学实验报告的应用数学模型与数学实验报告在现实生活中有广泛的应用。
数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
数学建模的实验报告

一、问题路灯照明问题。
在一条20m宽的道路两侧,分别安装了一只2kw和一只3kw的路灯,它们离地面的高度分别为5m和6m。
在漆黑的夜晚,当两只路灯开启时,两只路灯连线的路面上最暗的点和最亮的点在哪里?如果3kw的路灯的高度可以在3m到9m之间变化,如何路面上最暗点的亮度最大?如果两只路灯的高度均可以在3m到9m之间变化,结果又如何?二、数学模型已知P1为2kw的路灯,P2为3kw的路灯,以地面为X轴,路灯P1为Y轴,建立平面直角坐标系。
其中,P1、P2高度分别为h1、h2,水平距离为S=20m。
设有一点Q(x,0),P1、P2分别与其相距R1、R2。
如下图示。
经查阅资料得,光照强度公式为:,设光照强度k=1。
则,两个路灯在Q点的光照强度分别为:2 111 1sin RapI=2222 2sin RapI=其中:R12=h12+x2 R22=h22+(S-x)2则Q点的光照强度I x=I1+I2分别按照题目中的不同要求,带入不同数值,求导,令导数为零,求得极值,进一步分析对比,求得最值。
三、算法与编程1.当h1=5m,h2=6m时:symptoms x yx=0:0.1:20;y=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3);plot(x,y)grid on;在图中的0-20米范围内可得到路灯在路面照明的最亮点和最暗点①对Ix求导:syms xf=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3)②运用MATLAB求出极值点s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))');s1=vpa(s,8)s1 =.28489970e-18.5383043+11.615790*i19.9766969.33829918.5383043-11.615790*i③根据实际要求,x应为正实数,选择19.9767、9.3383、0.02849三个数值,通过MATLAB计算出相应的I值:syms xI=10/(25+x^2)^(3/2)+18/(36+(20-x)^2)^(3/2);subs(I,x,19.9767)subs(I,x,9.3383)subs(I,x,0.02849)ans =0.0845ans =0.0182ans =0.820综上,在19.3米时有最亮点;在9.33米时有最暗点2.当h1=5m,3m<h2<9m时:①对h2求偏导,并令其为0:②运用MATLAB求出极值点solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20-x)^2)^(5/2))=0')ans =20+2^(1/2)*h20-2^(1/2)*h③对x求偏导,并令其为0:④通过MATLAB,将步骤②中计算出的关于h2的表达式带入上式,并求出h2的值;solve('-30*(20-2^(1/2)*h)/((25+(20-2^(1/2)*h)^2)^(5/2))+9*h*(20-(20-2^(1/2)*h))/((h^2+(20-(20-2^(1/2)*h))^2)^(5/2))=0')ans =7.4223928896768612557104509932965⑤通过MATLAB,利用已求得的h2,计算得到x,并进一步计算得到Ih=7.42239;x=20-2^(1/2)*hI=10/((25+x^2)^(3/2))+(3*h)/((h^2+(20-x)^2)^(3/2)) x =9.5032I =0.01863.当h1,h2均在3m-9m之间时:①同上,通过MATLAB求解下面的方程组:solve('p1/(h1^2+x^2)^(3/2)-3*p1*h1^2/(h1^2+x^2)^(5/ 2)')solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20 -x)^2)^(5/2))=0')ans =2^(1/2)*h1-2^(1/2)*h1ans =20+2^(1/2)*h20-2^(1/2)*h②根据实际,选择x=h1,x=20-h2,带入第三个式中,得:③利用MATLAB,求得x值:s=solve('1/((20-x)^3)=2/(3*(x^3))');s1=vpa(s,6)s1 =9.325307.33738+17.0093*i7.33738-17.0093*i④按照实际需求,选择x=9.32525⑤带入求解I,并比较得到亮度最大的最暗点h1=(1/sqrt(2))*9.32525h2=(1/sqrt(2))*(20-9.32525)h1 =6.5939h2 =7.5482四、计算结果1.当h1=5m,h2=6m时:x=9.33m时,为最暗点,I=0.01824393;x=19.97m时,为最亮点,I=0.08447655。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建农林大学计算机与信息学院(数学类课程)实验报告课程名称:数学模型姓名:系:信息与计算科学专业:信息与计算科学年级:2007级学号:071152035指导教师:姜永职称:副教授2009年12月18日实验项目列表1.实验项目名称:数学规划模型建立及其软件求解 2.实验目的和要求:了解数学规划的的基本理论和方法,并用于建立实际问题的数学规划模型;会用LINDO 和LINGO 软件解数学规划问题并对结果加以分析应用。
3.实验使用的主要仪器设备和软件:惠普微机;1.6LINDO 和0.9LINGO 版本4.实验的基本理论和方法:数学规划模型的一般形式为mi x g t s x f z Min i x,,2,1,0)(..)( =≤=其中)(x f 表示目标函数,),,2,1(0)(m i x g i =≤为约束条件。
LINDO/LINGO 是美国LINDO 系统公司开发的一套专门用于求解最优化问题的软件包。
LINDO 用于求解线性规划和二次规划问题,LINGO 除了具有LINDO 的全部功能外,还可以用于求解非线性规划问题,也可以用于一些线性和非线性方程(组)的求解,等等。
LINDO/LINGO 软件的最大特色在于可以允许优化模型中的决策变量是整数,而且执行速度很快。
线性优化求解程序通常使用单纯形算法,对LINDO/LINGO 软件,为了能解大规模问题,也可以使用内点算法。
非线性优化求解程序采用的是顺序线性规划法,即通过迭代求解一系列线性规划来达到求解非线性规划的目的。
5.实验内容与步骤: 题一:问题阐述:某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A ,B ),按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A ,B .已知原料甲,乙,丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/ t ,16千元/ t ,10千元/t ,产品A ,B 的含硫量分别不能超过2.5%,1.5%,售价分别为9千元/t ,15千元/t ,根据市场信息,原料甲、乙、丙的供应量都不能超过500t ;产品A ,B 的最大市场需求量分别为100t ,200t .(1) 应如何安排生产?(2) 如果产品A 的最大市场需求量增长为600t ,应如何安排生产? (3) 如果乙的进货价格下降为13千元/t ,应如何安排生产?分别、对(1)、(2)两种情况进行讨论. 建立模型:(1)设A 中含甲乙原料混合物1y 吨,含丙原料1z 吨;B 中含甲乙原料混合物2y 吨,含丙原料2z 吨;甲乙原料混合物中,甲原料占比例为1x ,乙原料占比例为2x (即121=+x x )。
安排生产应该让公司的利润最高,即销售价格-成本最大,得到目标函数为:22211121)1015()16615()109()1669(z y x x z y x x Max -+--+-+--=约束条件:1)A 的含硫量不能超过2.5%:%5.202.001.003.01111211≤+++z y z y x y x2)B 的含硫量不能超过1.5%:%5.102.001.003.02222221≤+++z y z y x y x3)原料甲、乙、丙的供应量都不能超过500吨:5005005002122122111≤+≤+≤+z z y x y x y x y x4)产品A 的最大市场需求量为100吨:10011≤+z y 5)产品B 的最大市场需求量为200吨:20022≤+z y 6)混合物中甲乙比例相加为1:121=+x x 7)变量全为非负数:0,,,,,212121≥z z y y x x 写出程序:model :max =(9-6*x1-16*x2)*y1+(9-10)*z1+(15-6*x1-16*x2)*y2+(15-10)*z2; 3*x1*y1+x2*y1+2*z1-2.5*(y1+z1)<=0; 3*x1*y2+x2*y2+2*z2-1.5*(y2+z2)<=0; x1*y1+x1*y2<=500; x2*y1+x2*y2<=500; z1+z2<=500; y1+z1<=100; y2+z2<=200; x1+x2=1; x1>=0; x2>=0; y1>=0; y2>=0; z1>=0; z2>=0; end结论分析:运行后得到结果。
该结果表明,在甲乙混合物中,只使用乙原料而不使用甲原料。
不生产A ,只生产B ,且B 中混合物的含量为100吨,丙原料的含量也为100吨时,该公司的利润最大,为400千元。
(2)产品A 的最大市场需求量增长为600吨。
那么(1)中的10011≤+z y 将变为60011≤+z y 。
相应的程序变更为:由之前的“y1+z1<=100”变更为“y1+z1<=600”。
设成全局最优解得到结果。
该结果表明,在甲乙混合物中,只使用甲原料而不使用乙原料。
只生产A ,不生产B ,且A 中混合物的含量为300吨,丙原料的含量也为300吨时,该公司的利润最大,为600千元。
(3)当乙的进货价格下降为13千元/吨,A 的最大需求量为100吨时,目标函数变为22211121)1015()13615()109()1369(z y x x z y x x Max -+--+-+--=相应程序如下:model :max =(9-6*x1-13*x2)*y1+(9-10)*z1+(15-6*x1-13*x2)*y2+(15-10)*z2; 3*x1*y1+x2*y1+2*z1-2.5*(y1+z1)<=0; 3*x1*y2+x2*y2+2*z2-1.5*(y2+z2)<=0; x1*y1+x1*y2<=500; x2*y1+x2*y2<=500; z1+z2<=500; y1+z1<=100; y2+z2<=200; x1+x2=1; x1>=0; x2>=0; y1>=0; y2>=0; z1>=0; z2>=0; end运行后得到结果。
该结果表明甲乙混合物比例分别为25%与75%,且不生产A 产品,不采购丙原料。
制作的甲乙混合物为200吨,且都用来生产B 产品时,公司的获利最大,为750千元。
(4)当乙的进货价格下降为13千元/吨,A 的最大需求量为600吨时,约束条件中的10011≤+z y 将变为60011≤+z y 。
相应的程序变更为:由之前的“y1+z1<=100”变更为“y1+z1<=600”。
运行后得到结果。
该结果表明甲乙混合物比例分别为25%与75%,且不生产A 产品,不采购丙原料。
制作的甲乙混合物为200吨,且都用来生产B 产品时,公司的获利最大,为750千元。
题二: 问题阐述:某造船厂需要决定下四个季度的帆船生产量。
下四个季度的帆船需求量分别是40条、60条、75条和25条,这些需求必须按时满足。
每个季度正常的生产能力是40条帆船,每条船的生产费用为4万元。
如果加班生产,每条船的生产费用为4.5万元。
每个季度末,每条船的库存为2000元。
假定生产提前期为0,初始库存为10条船。
如何安排生产可使总费用最小? 建立模型:设四个季度的帆船生产量分别为1x ,2x ,3x ,4x ;前三个季度的库存量分别为1y ,2y ,3y ;四个季度加班生产的帆船量为1z ,2z ,3z ,4z 。
为使生产费用最小,得到目标函数为:)(5.4)(2.0)(443213214321z z z z y y y x x x x Min ++++++++++=约束条件:1)第一季度帆船需求量为40条:4010111=+-+z y x ; 2)第二季度帆船需求量为60条:602212=+-+z y y x ;3)第三季度帆船需求量为75条:753323=+-+z y y x ; 4)第四季度帆船需求量为25条:25434=++z y x ;5)每季度的库存量和该季度的加班生产量必有一个为0:000332211≥≥≥z y z y z y ;6)每季度的正常生产能力是40条帆船:40,,,4321≤x x x x 7)变量全为非负数:0,,,,,,,,,,43213214321≥z z z z y y y x x x x 写出程序:model:min =4*(x1+x2+x3+x4)+0.2*(y1+y2+y3)+4.5*(z1+z2+z3+z4); 10+x1-y1+z1=40; x2+y1-y2+z2=60; x3+y2-y3+z3=75; x4+y3+z4=25; x1<=40; x2<=40; x3<=40; x4<=40; x1>=0; x2>=0; x3>=0; x4>=0; y1>=0; y2>=0; y3>=0; z1>=0; z2>=0; z3>=0; z4>=0; y1*z1>=0; y2*z2>=0; y3*z3>=0; end结论分析:运行后得到结果。
该结果表明前三个季度的帆船生产量都为40条,第四季度的帆船生产量为25条。
第一和第四季度不加班生产,第二和第三季度加班的产量分别为10条和35条。
这样导致只有第一个季度的帆船库存了10条,而其余季度都没有库存量。
这时该公司的生产费用最少,为784.5万元。
6.实验心得(质疑、建议):本次实验让我对应用软件建立数学规划模型并做出解答有更深的认识。
通过运用LINGO 软件,我对上述的两个问题进行解答。
设出了相应的变量后,进行程序书写。
其中发现运行第一题的第二小题时,我得到的不是最优解,通过老师的讲解和自己的摸索,我发现是因为在软件运行前我并没有设置为全局最优解,而是局部最优解。
所以得到的才是400的错误答案。
在更改为全局最优解后,我再运行程序,发现这次得到的是正确答案。
看来今后在处理问题的时候要注意求的是局部最优解还是全局最优解。
这将让今后的实验少走很多弯路。
1.实验项目名称:数据拟合与曲线拟合模型应用 2.实验目的和要求:了解最小二乘法与曲线拟合问题及用法;理解并掌握线性模型曲线拟合及多项式函数曲线拟合的理论和方法,掌握用MATLAB 作出曲线拟合。
3.实验使用的主要仪器设备和软件:惠普微机;MATLAB 7. 0版本4.实验的基本理论和方法:(1)曲线拟合初等函数图形及其变换。
包括基本初等函数与它们经过经过四则运算和复合运算后所得到的函数。
拟合函数为多项式函数情形,从理论上已经解决,称为拉格朗日插值多项式。