光纤通信报告报告

合集下载

光纤实践总结报告范文(3篇)

光纤实践总结报告范文(3篇)

第1篇一、前言随着信息技术的飞速发展,光纤通信技术因其高速、稳定、安全的特点,已成为现代社会信息传输的主要方式。

为了深入了解光纤通信技术的原理和应用,我们开展了为期一个月的光纤实践项目。

本次实践旨在通过实际操作,加深对光纤通信技术的理解,提升动手能力和工程实践能力。

以下是本次实践总结报告。

二、项目背景与目标1. 项目背景光纤通信技术自20世纪60年代诞生以来,凭借其优越的性能,逐渐取代了传统的铜线通信方式,成为现代通信的主要手段。

我国在光纤通信领域取得了举世瞩目的成就,但仍有很大的发展空间。

2. 项目目标(1)掌握光纤通信的基本原理和关键技术;(2)了解光纤通信系统的组成和结构;(3)提高动手能力,学会光纤通信设备的安装、调试和维护;(4)培养团队协作精神和创新意识。

三、实践内容与过程1. 光纤通信基本原理学习(1)光纤的类型与特性:本次实践主要学习了单模光纤和多模光纤的特点、应用场景等;(2)光纤传输原理:深入了解了光纤的传输机理,包括全反射、色散、损耗等;(3)光纤通信系统组成:学习了光纤通信系统的各个组成部分,如发射机、光纤、接收机等。

2. 光纤通信设备安装与调试(1)光纤熔接机操作:学习了光纤熔接机的使用方法,掌握了光纤熔接技术;(2)光纤跳线制作:学会了光纤跳线的制作方法,包括剥皮、清洗、熔接等;(3)光纤通信系统调试:对光纤通信系统进行了调试,确保其正常运行。

3. 光纤通信系统维护与故障排除(1)光纤通信系统日常维护:了解了光纤通信系统的日常维护方法,包括清洁、检查、更换等;(2)故障排除:针对光纤通信系统可能出现的故障,学习了故障排除方法,如查找故障点、更换设备等。

四、实践成果与体会1. 实践成果(1)掌握了光纤通信的基本原理和关键技术;(2)熟悉了光纤通信设备的安装、调试和维护;(3)提高了动手能力和团队协作精神;(4)培养了创新意识和工程实践能力。

2. 实践体会(1)理论知识与实践操作相结合的重要性:通过本次实践,深刻体会到理论知识与实践操作相结合的重要性,只有将所学知识应用于实际,才能真正掌握技能;(2)团队协作精神的重要性:在实践过程中,团队成员分工合作,共同解决问题,体现了团队协作精神的重要性;(3)创新意识的重要性:在实践过程中,我们不断尝试新的方法和技术,培养了创新意识。

光纤通信实验报告

光纤通信实验报告

光纤通信实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII光纤通信实验报告课程名称光纤通信实验实验一光源的P-I特性、光发射机消光比测试一、实验目的1、了解半导体激光器LD的P-I特性、光发射机消光比。

2、掌握光源P-I特性曲线、光发射机消光比的测试方法。

二、实验器材1、主控&信号源模块、2号、25号模块各一块2、23号模块(光功率计)一块3、FC/PC型光纤跳线、连接线若干4、万用表一个三、实验原理数字光发射机的指标包括:半导体光源的P -I 特性曲线测试、消光比(EXT )测试和平均光功率的测试。

1、半导体光源的P-I 特性I(mA)LD 半导体激光器P-I 曲线示意图半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。

半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。

在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。

激光器的电流与电压的关系类似于正向二极管的特性。

该实验就是对该线性关系进行测量,以验证P -I 的线性关系。

P -I 特性是选择半导体激光器的重要依据。

在选择时,应选阈值电流I th 尽可能小,没有扭折点, P-I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。

光纤通信实验报告

光纤通信实验报告

XX学号时间地点实验题目半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC-FC单模光跳线 1根4、万用表1台5、连接导线 20根四、实验步骤1、用导线连接电终端模块T68(M)和T94(13_DIN)。

2、将开关BM1拨为1310nm,将开关K43拨为“数字”,将电位器W44逆时针旋转到最小。

3、旋开光发端机光纤输出端口(1310nm T)防尘帽,用FC-FC光纤跳线将半导体激光器与光功率计输入端连接起来,并将光功率计测量波长调整到1310nm档。

4、用万用表测量T97(TV+)和T98(TV-)之间的电阻值(电阻焊接在PCB板的反面),找出所测电压与半导体激光器驱动电流之间的关系(V=IR110)。

5、将电位器W46(阈值电流调节)逆时针旋转到底。

6、打开交流电源,此时指示灯D4、D5、D6、D7、D8亮7、用万用表测量T97(TV+)和T98(TV-)两端电压(红表笔插T97,黑表笔插T98)。

8、慢慢调节电位器W44(数字驱动调节),使所测得的电压为下表中数值,依次测量对应的光功率值,并将测得的数据填入表格中,精确到0.1uW。

9、做完实验后先关闭交流电开关。

10、拆下光跳线与光功率计,用防尘帽盖住实验箱半导体激光器光纤输出端口,将实验箱还原。

五、实验报告结果1、根据测试结果,算出半导体激光器驱动电流,画出相应的光功率与注入电流的关系曲线。

2、根据所画的P-I特性曲线,找出半导体激光器阈值电流的大小。

光钎通信报告总结范文

光钎通信报告总结范文

光钎通信报告总结范文光纤通信报告总结范文光纤通信是一种基于光学原理的信息传输技术,近年来得到了广泛的应用和发展。

本次报告总结了光纤通信的基本原理、优势以及相关技术的研究进展。

首先,本报告介绍了光纤通信的基本原理。

光纤通信通过将信息转化为光信号并通过光纤进行传输,其基本原理是利用光的全反射特性以及光的波动模式来传输信息。

相比于传统的电缆传输,光纤通信具有更高的传输带宽和更低的信号损耗率,因此被广泛应用在高速通信领域。

其次,本报告阐述了光纤通信的优势。

光纤通信不受电磁干扰影响,信号传输距离较长,传输带宽大,具有抗噪声干扰、低损耗的特点。

光纤通信技术的发展,使得高清视频、大容量数据传输、网络通信等应用成为可能。

光纤通信的优势使其在现代社会中得到广泛应用,推动了信息传输速度与质量的提升。

此外,本报告还对光纤通信的相关技术进行了总结和研究进展的介绍。

光纤通信领域的研究主要集中在光纤材料、光纤器件、光纤传输技术等方面。

例如,研究人员对光纤材料的制备和特性进行了研究,以提高光纤的传输能力和可靠性;同时,开发了多种光纤器件,如光纤放大器、光纤激光器等,用于增强光信号的传输和处理能力;此外,光纤传输技术也在不断创新,如频分复用技术、波分复用技术等,进一步提高了光纤通信的传输效率和容量。

综上所述,光纤通信作为一种先进的信息传输技术,具有许多优势,并且在相关技术方面也有了长足的发展。

然而,光纤通信仍存在一些挑战,如光纤的制造成本高、布线复杂等问题。

因此,未来的研究应该致力于提高光纤的制造工艺,降低成本,并进一步探索更多的应用领域,以促进光纤通信技术的全面发展。

在光纤通信的发展过程中,我们期待通过持续的技术创新和研发投入,将光纤通信技术应用于更广泛的领域,为人们的生活带来更多便利和创新。

光纤通信实验报告

光纤通信实验报告

光纤通信实验报告实验报告:光纤通信技术引言:光纤通信技术是一种基于光传输原理的高速、大容量、低损耗的通信方式。

光纤通信以其优异的性能和广泛的应用领域受到了广泛的关注。

本次实验旨在探究光纤通信的基本原理和实验方法,以及光纤通信的特点和应用。

一、光纤通信的基本原理1.光纤通信的原理光纤通信是利用光纤作为传输介质,将光信号转换为电信号进行传输。

它主要包括光信号的产生、调制、传输和接收等过程。

光信号通过激光器发射端发出,经过光纤传输到接收端,然后通过光电转换器将光信号转换为电信号。

2.光纤的工作原理光纤是一种具有高折射率的细长光导纤维,主要由芯层、包层和包住层组成。

光信号在传输过程中会发生多次反射,利用全内反射原理将光信号在光纤内损耗尽可能小地传播。

二、光纤通信实验的步骤1.光信号的产生通过激光器发射端发出激光光束,光纤接收端接收光信号。

2.光信号的调制利用调制器对光信号进行调制,使其携带有用信息。

3.光信号的传输利用光纤的高折射率和全内反射的特点,将光信号传输到接收端。

4.光信号的接收通过光电转换器将光信号转换为电信号,进而进行信号处理,如放大、滤波等。

三、光纤通信的特点和应用1.高速传输光纤通信具有高传输速率和大容量的优势,可以满足现代通信的高速要求。

2.低损耗光纤通信中光信号的传输损耗非常小,可以远距离传输无衰减。

3.安全性强光信号在传输过程中不容易被窃听或干扰,保证了通信的安全性。

4.应用广泛结论:通过本次实验,我们深入了解了光纤通信的基本原理和实验方法。

光纤通信具有高速传输、低损耗、安全性强和应用广泛等特点,是现代通信领域的重要技术。

光纤通信的发展势头迅猛,未来有望取代传统的铜线通信,成为主流的通信技术。

光纤通信实验报告

光纤通信实验报告

光纤通信实验报告中国石油大学(北京)光纤通信实验报告一、实验目的1. 了解光纤在量化传输中的原理和性能;2. 掌握光纤通信仪器的使用方法;3. 掌握光纤收发器、光分路器、光偏转器、光开关、光衰减器之间联结方法;4. 掌握光传输的参数测量技术。

二、实验原理及步骤1. 放大器原理:光纤放大器是一种可以在光纤上显示和观察信号时序变化的设备。

它能够按照固定的时间间隔来放大光纤传输的信号,从而允许技术人员观察信号的变化。

2. 分路器原理:光纤分路器是一种利用晶体原理实现光纤信号定向传输的设备。

分路器的使用是把一路信号分成几路,从而实现信号传输的目的。

3. 偏转器原理:光纤偏转器是一种用于改变光纤信号传输方向的设备。

它可以把一条光纤信号传输到另外一个方向,从而实现信号源和信号接收方之间的信号传输。

4. 开关原理:光纤开关是一种可以用来控制光纤信号传输的设备。

它可以控制信号的传输方向,从而可以把信号源和接收方之间的信号进行分开。

5. 衰减器原理:光纤衰减器是一种用来控制光纤信号强度的设备。

它可以把信号源和接收方之间的信号进行分开,从而可以控制信号的级别。

6. 实验步骤:(1) 安装光纤传输系统,安装光纤收发器、光分路器、光偏转器、光开关、光衰减器等实验设备;(2) 建立信号网络,安装配置传送端、接收端信号源;(3) 启动信号源,测量传输系统的参数,包括:传输效率、信噪比、带宽、时延以及抖动等;(4) 将测量的参数曲线进行分析,绘制传输系统的信号时序图;(5) 根据实验测量结果,完成实验报告。

三、实验结果1. 传输效率:实验中,光纤传输的最大平均效率为98.7%,最小平均效率为97.8%,最高单点效率为99.3%,最低单点效率为97.2%。

2. 信噪比:实验中,光纤传输的信噪比约为20 dB。

3. 带宽:实验中,光纤传输的带宽约为1 MHz。

4. 时延:实验中,光纤传输的平均时延约为3 ms。

5. 抖动:实验中,光纤传输的抖动约为0.8 μs。

光纤通信实验报告

光纤通信实验报告

光纤通信实验报告光纤通信是一种使用光信号传输数据的通信技术,它利用了光的高速传输和大带宽的特性,成为了现代通信领域的重要技术之一。

在本次实验中,我们对光纤通信的原理和实验验证进行了深入研究。

实验一: 光的传播特性我们首先对光的传播特性进行了研究。

选择了一根直径较细的光纤,并采用了迎射法和反射法进行传导实验。

通过在纤芯中投射光线,并观察传导的情况,我们验证了光在光纤中的传播路径并没有明显偏向,光线能够相对直线传播。

实验二: 光纤的损耗与色散在光纤通信中,损耗和色散是不可避免的问题。

我们通过实验对光纤中损耗和色散的影响进行了测试。

损耗实验中,我们通过分析在不同长度光纤中传输的光强度,发现随着距离的增加,光强度会逐渐减弱。

这是由于光纤中存在材料吸收和散射等因素造成的。

为了减小损耗,优化光纤的材料和结构是很重要的。

色散实验中,我们将不同波长的光信号通过光纤传输,并测量到达另一端的时间。

实验结果显示,不同波长的光信号到达时间存在差异。

这是由于光纤中折射率随波长变化而引起的色散效应。

为了减小色散,需要采用更先进的技术,如光纤衍生波导和光纤增益等手段。

实验三: 单模光纤与多模光纤光纤通信中,单模光纤和多模光纤是常用的两种类型。

通过实验,我们对这两种光纤的传输特性进行了研究。

我们首先测试了单模光纤。

结果显示,在单模光纤中,光信号会以单一光波传播,因此具有较低的色散和损耗,适用于远距离传输和高速通信。

然后我们进行了多模光纤的实验。

实验结果显示,多模光纤中存在多个模式的光信号传播,由于不同模式间的传播速度不同,会导致严重的色散和损耗问题。

因此,多模光纤适用于近距离传输和低速通信。

结论通过本次光纤通信实验,我们对光纤通信的原理和实际应用有了更深入的了解。

我们发现光纤通信具有高速率、低损耗和大带宽等优势,而不同类型的光纤对于不同的通信需求有着不同的适应性。

然而,我们也看到了光纤通信中存在的一些问题,如损耗、色散和设备成本等。

光通信实验报告

光通信实验报告

光通信实验报告实验一:测量光纤耦合效率【实验简介】:光线主要用于通信、光纤传感、图像传送以及光能传递等方面。

由于光纤制造技术的不断进步,光线内部的损耗越来越小,因此在实际应用中提高光源与光纤之间的耦合效率是提高系统传输效率的重要技术之一。

【实验目的】:1.了解光纤特性,种类2.掌握光纤耦合的基本技巧及提高耦合效率的手段3.熟悉常用的耦合方法【实验装置示意图】:【实验数据】:光纤输出光功率:0.78mW光纤输入光功率:1.9mW耦合效率为:0.78/1.9*100%=41.1%【实验思考总结】耦合时,因为起始的光强较弱,用探测器检测效果不明显。

可以先用目测法,观察输出光斑的亮度。

等到达到一定的亮度之后,在接入探测器,观察示数。

调节时,首先调节高度,然后调节俯仰角,最后在调节左右对准度与旋转方向。

实验二:测量光纤损耗【实验目的】:通过测量单模光纤的衰减值,了解测量光纤损耗的常用方法:插入法(实际测量中很多器件的插损、损耗都使用这种方法)。

【实验原理】:光源发出的光通过光的注入系统输入到短光纤中,并通过光纤活动连接器与光功率计接通。

首先测量短光纤的输出功率P1,然后通过光纤连接器接入被测光纤,测量长光纤的输出功率P2,则光纤的总损耗为A=10lg P1P2(dB)被测光纤的长度为L,则光纤的损耗系数为α=AL(dB/km)【实验装置示意图】:【实验数据】:光纤长度L:6km波长为1310nm的数据实验三:测量光纤的数值孔径【实验简介】:光纤的数值孔径大小与纤芯折射率、纤芯-包层相对折射率差有关。

光纤的数值孔径表示光纤接收入射光的能力。

【实验目的】:了解测量数值孔径的方法,对远场法有初步了解。

【实验原理】:远场强度有效数值孔径是通过光纤远场强度分布确定的,它定义为光纤远场辐射图上光强下降到最大值的5%处的半张角的正弦值。

【实验装置示意图】【实验数据】光功率最大值为162.5nW,下降到5%时对应的角度为8.5°和-8.3°【数据处理】光纤的数值孔径:=0.146NA=sin8.5°−−8.3°2实验四:测量光纤的模场直径和折射率分布曲线【实验目的】:1.通过近场法测量光纤的折射率分布曲线,对近场法有一定了解2.通过近场法测量多单模光纤的模场直径,了解了解并掌握近场法测量多模光纤模场直径的方法【实验原理】1.近场法是利用光纤输出端面上的光强度来测量光纤的部分几何参数的典型方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、1.3μm光波系统
第二代光波系统采用最小色散波长在1.3m附
近的单模光纤,最大的限制因素是由较大的光源 谱宽支配的由色散导致的脉冲展宽。
比特率-距离积 BL (4|D|)-1
D为色散, 为光源的均方根谱宽。 |D| 典型值为 1-2ps/(km-nm)
当取|D| =2ps/km时,BL 125 (Gb/s)-km
5
每个节点都监视比特率以 监听它自己的地址和接收
数据。
随着光纤分布式数据接 口FDDI的标准接口的出现,
光纤LAN开始普遍采用环
形拓扑结构。
星形拓扑结构
所有节点都通过点到点 连接接到中心站(中枢节 点)上。 有源星形结构:所有到 达的光信号都通过光接 收机转换为电信号,再 将电信号分配以驱动各 个节点的光发送机。 无源星形结构:采用星 形耦合器等无源光器件 在光域进行分配。由于 从一个节点的输入被分 配到许多输出节点,因 此传送到每个节点的功 率将受用户数的限制。
当B<1Gb/s时,为损耗限制系统, 但当B>1Gb/s时则变为色散限制系统。 ------- 色散限制
3、1.55μm光波系 统
第三代光波系统工作在损耗最小的1.55m波长,光
纤色散是系统的主要限制因素。
对普通单模光纤,在1.55m处D的典型值为
17ps/(km-nm),色散值比较高,由色散导致的脉冲展 宽较大,系统处于色散限制状态。采用单纵模半导体 光源可大大缓解这种限制。
对于许多点对点光纤通信系统,WDM的作用是 简单地增加总的比特率。
DWDM系统主要有四种结构:
中间含有(也可能没有)光分插复
用(OADM)器的点对点系统;
3
全连接的网状网络;
星状网络; 具有OADM节点和集线器的环网;
为了降低系统和网络设计的复杂性, 方法一:对不同种类的业务打包,然后复用它们,在同 一个波长上传输。 方法二:把不同种类的业务用不同的波长传输,如图 8.1.6所示:
局域网:在光纤通信系统中,要求在网络中一个
局部区域内(如在一个大学校园内)的大量用户相
互连接,使任何用户可以随机地进入网络,将数据 传送给其他任何用户。
LAN中要求对每个用户提供随机的收发数据功能,
存在网络协议问题。
结构:总线型Bus、 环型Ring、 星型Star
3
环形拓扑结构
点到点连接将节点依次 相连以形成单个闭合环。 各节点中均设置有发送机 -接收机对,均可发送和 接收数据,也用作中继器。 一个令牌(一个预先确 定的比特率)在环内传递,
——— 损耗限制 --------- 色散限制
横越大西洋的海底光波系统 实际陆地光波系统 采用色散位移光纤的1550nm,B >10Gb/s 的实验系统
一.光纤色散
光纤色散:信号能量中的各种分量由于在
光纤中传输速度不同,而引起的信号畸变。
色散限制:光纤色散导致的信号畸变限制
系统的传输距离。
3
色散类型
模间色散(仅多模光纤有) 波导色散 波长色散 材料色散 偏振模色散
二.色散与光纤
G.652(标准单模光纤SMF):
零色散波长:1300nm 1550色散:16~17ps/nm.km
G.653(色散位移光纤DSF):
零色散波长:1550nm
G.655(非零色散位移光纤NZDSF):
多模渐变光纤, BL=2c/(n12). 对于 n1=1.46、=0.01,曲线如图。当比特率小于100
Mb/s 时为损耗限制,大于100 Mb/s 将变为色散限制。 第一代陆上光通信系统就是采用多模渐变光纤,比特 率在50-100 Mb/s ,中继距离接近10公里,于1978年投入 商业运营。
1
全光中继系统:

点对点的传输系统
利用光纤的低损耗、宽带宽特点 性能指标:比特率-距离积(BL) BL积与光纤损耗和色散特性有关,而光纤特 性又与波长有关,所以BL积与波长有关。
第一代光波系统: 0.85μm,BL积 1 (Gb/s).km
第二代光波系统:1.3μm,BL积 100 (Gb/s).km 第三代光波系统:1.55μm, BL积1000 (Gb/s).km
系统设计之
系统结构和限制
目录
系统结构
损耗限制系统
色散限制系统
光纤通信系统的主要组成单元:
光纤 光器件(有源和无源) 光发送机
系统 结构
光接收机 光放大器到点连接
广播和分配网 局域网
WDM系统
光放大器:将接收到的微弱光比特流信号直接 放大而不需将其转换为电信号。(1R) 光放大器不能无限制级联,因为色散导致的脉 冲畸变最终限制了系统的性能。光-电-光再生中 继则不存在这种问题。 光-电-光中继:实际上是一个接收机一个发送机 对,它将检测到的微弱变形光信号,变为电信 号,经放大整形后变成规则的电比特流,再调 制光发送机,恢复原光比特流继续沿光纤传输。
报告到此结束,谢谢!
成为最优秀的团队
若忽略光纤自身的损耗,则第N个分支可得到的
功率为:
PN----第N个分支功率;PT----发送功率; C----分路器的功率分路比;δ----分路器的插入损耗; 并假设每个分路器的C和δ都相同。
若取 δ=0.05, C=0.05, PT=1mW 和 PN=0.1μW,则N的 最大值?
在总线上周期地接入光放大器提升功率,可以克服 上述限制,只要光纤色散的影响限制在可忽略的程 度,允许分配的用户数将可大大增加。
1550nm色散:2~6ps/nm.km
三.色散限制
光纤色散导致的信号畸变限制系统的传输距离。
导致色散限制的物理机制随不同波长而不同。
1. 0.85μm光波系统
2. 1.3μm光波系统
3. 1.55μm光波系统
1、0.85μm光波系统
多模阶跃光纤, BL=c/(2n1)。 第一代光波系统,通常采用低成本的多模光纤作为传输媒 典型值n1=1.46、 =0.01,传输距离随比特率的曲线。 质。主要限制因素是模间色散。 即使在B1Mb/s 的低比特率,也是色散限制的,其传输 距离限制在10km内。应用:数据连接,很少用于光纤 通信系统中。
•光纤色散导致的信号脉 冲畸变,与光源线宽、 信号啁啾、调制展宽等 因素有关。 •直接调制系统中,光源 的调制啁啾及光纤色散 导致信号畸变。 •对于2.5Gb/s系统,放 大器的积累噪声成为传 输距离主要限制。 •对于10Gb/s系统,光纤 色散成为传输距离的主 要限制。 比特率 2.5Gb/S 10Gb/s NZDSF 6000km 400km SSMF 1000km 60km
最终限制为:B2L < (16|2|)-1 式中,2为群速色散,
与色散参数D的关系为:
D=-(2c/2) 2
普通单模光纤的限制线为:B2L = 4000 (Gb/s)2-km 。 对理想的1.55m系统, B2L 可达6000 (Gb/s)2-km ------- 色散限制 。
当 B> 5Gb/s 时,为色散限制系统。
一个使用星型耦合器的多信道分配网络 ,每个信道使用单独的光 载波频率发送电信号,所有发送机的输出功率复合进无源星型耦 合器,并且分配相等的功率到所有的接收机。每个用户接收所有 信道,使用调谐光接收机选择它们中的一个,这种网络有时也叫 广播-选择网络。如下图所示:
2
光纤的损耗谱特性
损耗限制光波系统
设发送机发出的最大平均功率为Pt ,而光接收机的
接收灵敏度为Pr,则最大传输距离为:
αtot (dB/km)为光纤损耗,包括对接损耗和活动连 接损耗。 由于接收机灵敏度Pr随比特率B线性变化: 因此传输距离亦与比特率有关。 hv为光子能量 , Np为接收机所要求的每比特的平均光子数。 在给定工作波长处,L随比特率B的增加而呈对数关系 降低
功能:光纤通信系统不仅要求传送 信息,而且要求将信息分配给多个用 户
应用:光缆电话网、公用天线电视
(CATV)、宽带综合业务数字网(B-
2
ISND)
特点:传输距离较短、带宽要求宽 结构:树型拓扑、总线拓扑
树形拓扑结构
总线拓扑结构
总线型缺点:信号损耗随分路数指数增加。限制
了单根光纤总线服务的范围和用户数。
相关文档
最新文档