2017海淀初三数学一模试题及答案(word版)

合集下载

2017-2018届海淀区初三第一学期期末数学试卷和答案

2017-2018届海淀区初三第一学期期末数学试卷和答案

考生 海淀初三第一学期期末学业水平调研数学2018. 1学校 姓名准考证号1.本试卷共 8 页,共三道大题, 28 道小题,满分 100 分。

考试时间 120 分钟。

2.在试卷和答题卡上正确填写学校名称、班级和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

须4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

知5.考试结束,将本试卷、答题卡和稿本纸一并交回。

一、选择题 (本题共 16 分,每题2 分)第 1-8 题均有四个选项,吻合题意的选项只有一个 ...1.抛物线 y22 的对称轴是x 1A . x1B . x 1C . x 2D . x 22.在△ ABC 中,∠ C90°.若 AB 3, BC 1,则 sin A 的值为A .1B .2 2C .2 2D . 333B3.如图,线段 BD , CE 订交于点 A , DE ∥ BC .若 AB4, AD 2, DE 1.5,E则 BC 的长为AA .1B .2CDC .3D .44.如图,将△ ABC 绕点 A 逆时针旋转100 °,获取△ ADE .若点 D 在线段ABC 的延长线上,则 B 的大小为EA .30°B .40°C .50°D .60°BCD5.如图,△ OAB ∽△ OCD ,OA:OC 3:2,∠ A α,∠ C β,△ OAB 与△ OCD 的面积分别是 S 1和 S 2,△OAB 与△ OCD 的周长分别是 C 1 和 C 2 ,则以低等式必然建立的是OB 3 3A .2 B .CD2C DOAB S 1 3C 1 3C .D .S 22 C 2 2y6.如图,在平面直角坐标系 xOy 中,点 A 从( 3,4)出发,绕点 O 顺时针5 A M4 旋转一周,则点 A 不经过3.2A .点 M1QB .点 NO1 2 3 4 5 6 x–6–5–4–3–2–1C .点 P–1–2PD .点 Q–3N–4–5 7.如图,反比率函数yk的图象经过点A ( , ),当 y 1 时, x 的取值x4 1范围是A . x 0 或 x 4B . 0 x4C . x4D . x 4yA1O4x8.两个少年在绿茵场上游戏.小红从点 A 出发沿线段 AB 运动到点 B ,小兰从点 C 出发,以相同的速度沿⊙ O 逆时针运动一周回到点 C ,两人的运动路线如图 1 所示,其中 AC DB .两人同时开始运动,直到都停止运动时游戏结束,此间他们与点 C 的距离 y 与时间 x (单位:秒)的对应关系如图 2 所示.则以下说法正确的选项是yA CODO 1.097.49 9.68B图 1图 2A .小红的运动行程比小兰的长B .两人分别在 1.09 秒和 7.49 秒的时辰相遇C .当小红运动到点D 的时候,小兰已经经过了点 D D .在 4.84 秒时,两人的距离正好等于⊙ O 的半径A CO DB17.12 x二、填空题 (本题共 16 分,每题 2 分)9.方程 x 22x 0 的根为.10.已知∠ A 为锐角,且 tan A3 ,那么∠ A 的大小是°.yx=111.若一个反比率函数图象的每一支上,y 随 x 的增大而减小,则此反比率函数表达式可以是.(写出一个即可)12.如图,抛物线 y ax 2bx c 的对称轴为 x1 ,点 P ,点 Q 是抛物线与 xPxO轴的两个交点,若点 P 的坐标为( 4, 0),则点 Q 的坐标为.13.若一个扇形的圆心角为 60°,面积为 6π,则这个扇形的半径为.14.如图, AB 是⊙ O 的直径, PA ,PC 分别与⊙ O 相切于点A ,点 C ,若∠ P60°,PA3,则 AB 的长为.BCOA P15.在同车道行驶的灵巧车,后车应当与前车保持足以采用紧急制动措施的安全距离.如图,在一个路口,一辆长为 10m 的大巴车遇红灯后停在距交通信号灯 20m 的停止线处,小张驾驶一辆小轿车随从大巴车行驶.设小张距大巴车尾 x m ,若大巴车车顶高于小张的水平视线 0.8m ,红灯下沿高于小张的水平视线3.2m ,若小张能看到整个红灯,则x 的最小值为.红黄 3.2m 绿0.8m20m10mx m交通 停止线信号灯16. 下面是“作一个 30 °角”的尺规作图过程.已知:平面内一点A .求作: ∠ A ,使得 ∠ A 30°.D作法:如图,(1)作射线 AB ;AO C B(2)在射线 AB 上取一点 O ,以 O 为圆心, OA 为半径作圆, 与射线AB 订交于点 C ;( 3)以 C 为圆心, OC 为半径作弧,与 ⊙ O 交于点 D ,作射线 AD .∠ DAB 即为所求的角 .请回答: 该尺规作图的依照是.三、解答题 (本题共 68 分,第 17~22 题,每题5 分;第 23~26 小题,每题6 分;第 27~28 小题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算: 2sin 30 ° 2cos 45 ° 8 .18.已知 x1 是关于 x 的方程 x2 mx 2m 20 的一个根,求 m(2 m 1) 的值.19.如图,在△ ABC 中,∠ B 为锐角,AB 32 ,AC3,求 BC 的长.5, sin C5ABC20.码头工人每天往一艘轮船上装载30 吨货物,装载达成恰好用了8 节气间.轮船到达目的地后开始卸货,记平均卸货速度为v (单位:吨/天),卸货天数为t .( 1)直接写出v 关于 t 的函数表达式:v=;(不需写自变量的取值范围)( 2)若是船上的货物5 天卸载达成,那么平均每天要卸载多少吨?21.如图,在△ ABC 中, ∠B 90°, AB4, BC 2,以AC为边作△ ACE ,∠ACE90°, AC=CE ,延长BC至点D ,使 CD5,连接 DE .求证:△ ABC ∽△ CED .AEBCD22.古代阿拉伯数学家泰比特为直角,图 3 中BAC ·伊本 ·奎拉对勾股定理进行了实行研究:为钝角).如图(图 1 中BAC 为锐角,图2 中BACAAABC' B' CBB'(C') CB B' C'C图 1图 2图 3在△ ABC 的边 BC 上取 B , C 两点,使AB BAC CBAC ,则 △ABC ∽ △B BA ∽ △C AC ,AB AC ,进而可得 22;(用 BB , CC , BC 表示)BBAB,ABACC CAC若 AB=4, AC=3, BC=6,则 B C.23.如图,函数 yk( x0 )与 y axb 的图象交于点 A ( -1, n )和点 B ( -2, 1).x( 1)求 k, a, b 的值;( 2)直线x m 与y k(x 0)的图象交于点P,与y x 1的图象交于点Q,当PAQ 90 时,x直接写出 m 的取值范围.yABO x24.如图, A, B, C 三点在⊙ O 上,直径BD 均分∠ ABC,过点 D 作 DE ∥ AB 交弦 BC 于点 E,在 BC 的延长线上取一点 F ,使得 EF DE.(1)求证: DF 是⊙ O 的切线;(2)连接 AF 交 DE 于点 M ,若 AD 4, DE 5,求 DM 的长.ADOB EC F25.如图,在△ ABC 中,ABC 90 , C 40 °,点 D 是线段 BC 上的动点,将线段 AD 绕点 A 顺时针旋转50°至AD,连接BD.已知 AB 2cm,设 BD 为 x cm, B D为 y cm.AD'B D C小明依照学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了研究,下面是小明的研究过程,请补充完满.(说明:解答中所填数值均保留一位小数)( 1)经过取点、画图、测量,获取了x 与y的几组值,以下表:x / cm00.50.7 1.0 1.5 2.0 2.3y / cm 1.7 1.3 1.10.70.9 1.1( 2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.y21O12 3 x( 3)结合画出的函数图象,解决问题:线段 BD 的长度的最小值约为__________ cm ;若 BD BD ,则 BD 的长度x的取值范围是_____________.26.已知二次函数y ax24ax3a .( 1)该二次函数图象的对称轴是x;( 2)若该二次函数的图象张口向下,当1x 4 时,y的最大值是2,求当 1x 4 时,y的最小值;( 3)若关于该抛物线上的两点P( x1,y1 ), Q( x2, y2 ) ,当 t x1t +1, x25时,均满足 y1 y2,请结合图象,直接写出t 的最大值.27.关于⊙ C 与⊙ C 上的一点A,若平面内的点P 满足:射线AP 与⊙ C 交于点 Q(点 Q 可以与点P 重合),且..PA 12 ,则点 P 称为点 A 关于⊙ C 的“生长点” .QA已知点 O 为坐标原点,⊙ O 的半径为 1,点 A ( -1, 0).( 1)若点 P 是点 A 关于⊙ O 的“生长点”,且点 P 在 x 轴上,请写出一个吻合条件的点 P 的坐标 ________;( 2)若点 B 是点 A 关于⊙ O 的“生长点” ,且满足 tan BAO1,求点 B 的纵坐标 t 的取值范围;2( 3)直线 y3x b 与 x 轴交于点 M ,与 y 轴交于点 N ,若线段 MN 上存在点 A 关于⊙ O 的“生长点” ,直接写出 b 的取值范围是 _____________________________ .yy5 5 4 4 3 3 2211AxAxOO–3–2–112345–3–2–1 12345–1 –1 –2 –2 –3 –3 –4 –4 –5 –5 –6–628.在△ ABC 中,∠ A90°, AB AC.( 1)如图 1,△ ABC 的角均分线 BD ,CE 交于点 Q,请判断“QB2QA ”可否正确:________(填“是”或“否”);( 2)点 P 是△ ABC 所在平面内的一点,连接PA, PB,且 PB2PA.①如图 2,点 P 在△ ABC 内,∠ ABP30°,求∠ PAB 的大小;②如图 3,点 P 在△ ABC 外,连接 PC,设∠ APCα,∠ BPC β,用等式表示α,β之间的数量关系,并证明你的结论.A A AE Q D PPB C B C B C图 1图 2图 3初三第一学期期末学业水平调研数学参照答案及评分标准2018. 1一、选择题(本题共16 分,每题 2 分)12345678B AC BD C A D二、填空题(本题共16 分,每题 2 分)9.0或210. 6011.y 1(答案不唯一)12.(2, 0)13.614. 215.10x16.三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,一条弧所对的圆周角是它所对圆心角的一半;或:直径所对的圆周角为直角,三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,直角三角形两个锐角互余;或:直径所对的圆周角为直角,sin A 1 , A 为锐角, A 30.2三、解答题(本题共68 分,第 17~22 题,每题 5 分;第 23~26 小题,每题 6 分;第 27~28 小题,每题 7分)17.解:原式 =2122 2 222=1222=1218.解:∵x 1 是关于x的方程x2mx 2m20 的一个根,∴ 1 m 2m2 0.∴2m2 m 1.∴m(2 m 1) 2m2m 1 .19.解:作 AD⊥BC 于点 D,∴ ∠ ADB =∠ ADC=90°.∵ AC=5,sin C 3 ,5∴ AD AC sin C 3 .⋯⋯⋯⋯⋯⋯ 2 分∴在 Rt△ACD 中,CD AC2AD 2 4 .∵ AB 3 2,∴在 Rt△ABD 中,BD AB 2AD 23.∴ BC BD CD7 .20.解:(1)240.t240( 2)由意,当t 5 ,v48 .t答:平均每天要卸48 吨.21.明:∵∠ B=90°,AB=4,BC=2,∴AC AB2BC2 2 5.∵CE=AC,∴CE 25.∵CD=5,∴AB AC.CE CD∵ ∠ B=90°,∠ ACE=90°,∴ ∠ BAC+ ∠BCA=90°,∠ BCA+∠ DCE=90°.⋯⋯⋯⋯⋯⋯ 3 分⋯⋯⋯⋯⋯⋯ 5 分⋯⋯⋯⋯⋯⋯ 3 分⋯⋯⋯⋯⋯⋯ 5 分AB C D⋯⋯⋯⋯⋯⋯ 3 分⋯⋯⋯⋯⋯⋯ 4 分⋯⋯⋯⋯⋯⋯ 5 分⋯⋯⋯⋯⋯⋯ 3 分⋯⋯⋯⋯⋯⋯ 5 分AEB C D ⋯⋯⋯⋯⋯⋯ 3 分∴ ∠ BAC=∠DCE.∴ △ ABC∽△ CED . 22.BC,BC,BC BB CC11623.解:( 1)∵ 函数y k( x0)的象点B(- 2,1),kx1,得k 2 .∴2k( x∵函数 y0)的象点A( - 1, n),x∴ n22,点A的坐(- 1,2).1∵函数 y ax b 的象点A和点B,a b2,a1,∴解得b 3.2a b 1.( 2)2 m0 且 m1.24.( 1)明:∵BD 均分∠ ABC,∴ ∠ABD=∠CBD .∵DE∥ AB,∴ ∠ABD=∠BDE .∴ ∠CBD=∠BDE .∵ED=EF,∴ ∠EDF=∠EFD .∵∠ EDF +∠ EFD+∠ EDB+∠ EBD=180 °,∴ ∠BDF=∠BDE +∠EDF =90°.⋯⋯⋯⋯⋯⋯ 5 分⋯⋯⋯⋯⋯⋯ 3 分⋯⋯⋯⋯⋯⋯ 5 分⋯⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯ 2 分⋯⋯⋯⋯⋯⋯ 4 分⋯⋯⋯⋯⋯⋯ 6 分⋯⋯⋯⋯⋯⋯ 1 分∴ OD⊥DF.⋯⋯⋯⋯⋯⋯2分∵ OD 是半径,∴ DF 是⊙ O 的切 .⋯⋯⋯⋯⋯⋯3分(2)解:接DC,∵BD 是⊙ O 的直径,∴ ∠BAD=∠BCD =90°.∵∠ABD=∠CBD ,BD=BD,∴ △ABD≌△ CBD.∴CD=AD=4, AB=BC.∵DE=5,ADMOBE C F∴CE DE2DC23,EF =DE=5.∵ ∠CBD =∠BDE ,∴BE=DE=5.∴BF BE EF 10, BC BE EC 8.∴ AB=8.⋯⋯⋯⋯⋯⋯5分∵DE ∥AB,∴ △ABF∽△ MEF .∴AB BF.ME EF∴ME=4.∴DM DE EM 1.⋯⋯⋯⋯⋯⋯6分25.( 1) 0.9.⋯⋯⋯⋯⋯⋯ 1 分( 2)如右所示 .⋯⋯⋯⋯⋯⋯ 3 分( 3) 0.7,⋯⋯⋯⋯⋯⋯ 4 分0 x 0.9 .⋯⋯⋯⋯⋯⋯ 6 分y21O12 3 x26.解:(1)2.⋯⋯⋯⋯⋯⋯1分( 2)∵ 二次函数的象张口向下,且称直x 2 ,∴当 x 2 ,y取到在 1 x 4 上的最大 2.∴4a 8a 3a 2 .∴ a 2 ,y2x28x 6 .⋯⋯⋯⋯⋯⋯3分∵当 1 x 2 ,y随x的增大而增大,∴当 x 1 ,y取到在 1 x 2上的最小 0 .∵当 2 x 4 ,y随x的增大而减小,∴ 当 x4 , y 取到在 2 x 4 上的最小6 .∴ 当 1 x 4 , y 的最小 6 .⋯⋯⋯⋯⋯⋯ 4 分(3)4.⋯⋯⋯⋯⋯⋯ 6 分27.解:( 1)( 2, 0) (答案不唯一 ). ⋯⋯⋯⋯⋯⋯ 1 分( 2)如 ,在 x 上方作射AM ,与⊙ O 交于 M ,且使得 tanOAM1,并在AM 上取点 N ,使2AM=MN ,并由 称性,将 MN 关于 x 称,得 M N , 由 意, 段 MN 和 M N 上的点是 足条件的点 B.y作 MH ⊥ x 于 H , 接 MC ,∴ ∠ MHA =90°,即∠ OAM+∠ AMH =90°.∵ AC 是⊙ O 的直径,∴ ∠ AMC =90°,即∠ AMH +∠ HMC =90°.∴ ∠OAM=∠HMC . ∴ tan HMC tan OAM1 .2NMAOH CxM'N'∴MH HC 1.HAMH 2 1y , MHy , AH 2 y , CH2∴ ACAHCH5y 2 ,解得 y4,即点 M 的 坐 4.258 , 5又由 AN 2AM , A ( -1,0),可得点 N 的 坐故在 段 MN 上,点 B 的 坐 t 足:48 .5t⋯⋯⋯⋯⋯⋯ 3 分5584.⋯⋯⋯⋯⋯⋯ 4 分由 称性,在 段 M N 上,点 B 的 坐 t 足:t84 或 4 58 . 5∴ 点 B 的 坐 t 的取 范 是t t5 5 55(3)43b1或 1 b 43 .⋯⋯⋯⋯⋯⋯ 7 分28.解:(1)否 .⋯⋯⋯⋯⋯⋯ 1 分(2)① 作 PD ⊥AB 于 D , ∠ PDB=∠PDA=90°,∵ ∠ ABP=30°,A∴ PD1BP .⋯⋯⋯⋯⋯⋯ 2 分D2P∵ PB 2PA ,BC∴ PD2PA .2∴ sinPD 2PAB.PA2由∠ PAB 是 角,得∠ PAB=45° .⋯⋯⋯⋯⋯⋯ 3 分另:作点P关于直AB 的称点P' ,接 BP ',P'A,PP ' ,P'BAPBA, P'ABPAB,BP' BP, AP 'AP .∵∠ ABP=30°,∴ P'BP 60 .∴△ P ' BP 是等 三角形 .∴ P'P BP .∵ PB 2PA ,∴ P'P2PA .⋯⋯⋯⋯⋯⋯ 2分∴ P'P 2 PA 2 P'A 2 .∴ PAP' 90 .∴PAB 45 .⋯⋯⋯⋯⋯⋯ 3 分②45 , 明以下:⋯⋯⋯⋯⋯⋯ 4 分作 AD ⊥AP ,并取 AD=AP , 接 DC ,DP.∴ ∠ DAP=90°.∵ ∠ BAC=90°,∴ ∠BAC+∠CAP=∠DAP +∠CAP, 即 ∠BAP=∠CAD.∵ AB=AC , AD=AP , ∴ △ BAP ≌△ CAD . D1 3AP'A2PEBCPB C∴∠1=∠ 2,PB=CD.⋯⋯⋯⋯⋯⋯ 5 分∵ ∠ DAP=90°, AD=AP,∴PD2PA,∠ADP=∠APD=45°.∵PB2PA ,∴PD=PB=CD.∴∠DCP=∠DPC .∵ ∠ APCα,∠ BPCβ,∴DPC45,12.∴ 3 1802DPC90 2 .∴ADP1 3 9045 .∴45.⋯⋯⋯⋯⋯⋯ 7 分。

2016-2017学年北京市海淀区初三第一学期期末数学试题包含答案

2016-2017学年北京市海淀区初三第一学期期末数学试题包含答案

B CD EA海淀区九年级第一学期期末练习数 学 2017.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置. 1.抛物线2(1)3y x =-+的顶点坐标是A .(1,3)B .(1-,3)C .(1-,3-)D .(1,3-) 2.如图,在△ABC 中,D 为AB 中点,DE ∥BC 交AC 于E 点,则△ADE 与△ABC 的面积比为 A .1:1 B .1:2 C .1:3D .1:43.方程20x x -=的解是A .0x =B .1x =C .1201x x ==,D .1201x x ==-,4.如图,在△ABC 中,∠A =90°.若AB =8,AC =6,则cos C 的值为A .35 B .45 C .34D .435.下列各点中,抛物线244y x x =--经过的点是A .(0,4)B .(1,7-)C .(1-,1-)D .(2,8) 6.如图,O 是△ABC 的外接圆,40OCB ∠=︒,则A ∠的大小为A .40︒B .50︒C .80︒D .100︒7.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是A .1cmB .3cmC .6c mD .9cm8.反比例函数3y x=的图象经过点(1-,1y ),(2,2y ),则下列关系正确的是 A .12y y <B .12y y >C .12y y =D .不能确定9.抛物线()21y x t =-+与x 轴的两个交点之间的距离为4,则t 的值是A .1-B .2-C .3-D .4-10.当温度不变时,气球内气体的气压P (单位:kPa )是气体体积V (单位:m 3)的函数,下表记录了一CA BAB CO组实验数据:V (单位:m 3)11.522.53P (单位:kPa ) 96 64 48 38.4 32P 与V 的函数关系可能是 A .96P V =B .16112P V =-+C .21696176P V V =-+D .96P V=二、填空题(本题共18分,每小题3分)11.已知A ∠为锐角,若sin 22A =,则A ∠的大小为 度.12.请写出一个图象在二,四象限的反比例函数的表达式 .13.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若 3.2CD =cm ,则AB 的长为 cm .14.如图,在平面直角坐标系xOy 中,以原点为位似中心,线段AB 与线段A B ''是位似图形,若A (1-,2),B (1-,0),A '(2-,4),则B '的坐标为 .15.若关于x 的方程20x mx m -+=有两个相等实根,则代数式2281m m -+的值为 .16.下面是“用三角板画圆的切线”的画图过程.如图1,已知圆上一点A ,画过A 点的圆的切线.BACA B DA画法:(1)如图2,将三角板的直角顶点放在圆上任一点C (与点A 不重合)处, 使其一直角边经过点A ,另一条直角边与圆交于B 点,连接AB ;(2)如图3,将三角板的直角顶点与点A 重合,使一条直角边经过点B , 画出另一条直角边所在的直线AD .所以直线AD 就是过点A 的圆的切线.请回答:该画图的依据是______________________________________________________.图1 图2 图3xy–1–2–3–4123–112345BA'A OEC AD BI /AR /Ω49O三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:22sin 30(2)-°0(π3)3--+-.18.如图,在△ABC 中,∠C =90°,E 是BC 上一点,ED ⊥AB ,垂足为D . 求证:△ABC ∽△EBD .19.若二次函数2y x bx c =++的图象经过点(0 1),和(1 2)-,两点,求此二次函数的表达式. 20.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示. (1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的限制电流不能超过10A ,那么用电器的可变电阻R 应控制在什么范围?请根据图象,直接写出结果 .21.已知矩形的一边长为x ,且相邻两边长的和为10.(1)求矩形面积S 与边长x 的函数关系式,并写出自变量的取值范围; (2)求矩形面积S 的最大值.22.如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC . 23.在矩形ABCD 中,AB =3,BC =6,P 为BC 边上一点,△APD 为等腰三角形. (1)小明画出了一个满足条件的△APD ,其中P A =PD ,如图1所示,则tan BAP ∠的值为 ;(2)请你在图2中再画出一个满足条件的△APD (与小明的不同),并求此时tan BAP ∠的值.图1 图24.如图,直线4(0)y ax a =-≠与双曲线ky x=只有一个公共点A (1,2-). (1)求k 与a 的值;(2)若直线+(0)y ax b a =≠与双曲线ky x=有两个公共点,请直接写出b 的取值范围.1yxAFNM25.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,AM 是△ACD 的外角∠DAF 的平分线. (1)求证:AM 是⊙O 的切线;(2)若∠D = 60°,AD = 2,射线CO 与AM 交于N 点,请写出求ON 长的思路. 26.有这样一个问题:探究函数1(1)(2)(3)2y x x x x =---+的性质.(1)先从简单情况开始探究:① 当函数为1(1)2y x x =-+时,y 随x 增大而 (填“增大”或“减小”); ② 当函数为1(1)(2)2y x x x =--+时,它的图象与直线y x =的交点坐标为 ;(2)当函数为1(1)(2)(3)2y x x x x =---+时,下表为其y 与x 的几组对应值.x (1)2- 0 1 32 2 52 3 4 92 … y…11316-3-12716237163717716…①如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;②根据画出的函数图象,写出该函数的一条性质: .27.在平面直角坐标系xOy 中,抛物线2443y mx mx m =-++的顶点为A . (1)求点A 的坐标;(2)将线段OA 沿x 轴向右平移2个单位得到线段O A ''.xy –11234567–1–2–3–4–5–6–71234567891011O①直接写出点O '和A '的坐标;②若抛物线2443y mx mx m =-++与四边形AOO A ''有且只有两个公共点,结合函数的图象,求m 的取值范围.28.在△ABC 中,AB =AC ,∠BAC =α,点P 是△ABC 内一点,且2PAC PCA α∠+∠=.连接PB ,试探究P A ,PB ,PC 满足的等量关系.PAB C P'AB C P(1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到ACP '△,连接PP ',如图1所示.由ABP △≌ACP '△可以证得'APP △是等边三角形,再由30PAC PCA ∠+∠=︒可得∠APC 的大小为 度,进而得到CPP '△是直角三角形,这样可以得到P A ,PB ,PC 满足的等量关系为 ;(2)如图2,当α=120°时,请参考(1)中的方法,探究P A ,PB ,PC 满足的等量关系,并给出证明; (3)P A ,PB ,PC 满足的等量关系为 .29.定义:点P为△ABC内部或边上的点,若满足△P AB ,△PBC ,△P AC 至少有一个三角形与△ABC 相似(点P 不与△ABC 顶点重合),则称点P 为△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的自相似点.A图1 图2在平面直角坐标系xOy 中,(1)点A 坐标为(2,23), AB ⊥x 轴于B 点,在E (2,1),F (32,32),G (12,32),这三个点中,其中是△AOB 的自相似点的是 (填字母); (2)若点M 是曲线C :k y x=(0k >,0x >)上的一个动点,N 为x 轴正半轴上一个动点;① 如图2,33k =,M 点横坐标为3,且NM = NO ,若点P 是△MON 的自相似点,求点P 的坐标; ② 若1k =,点N 为(2,0),且△MON 的自相似点有2个,则曲线C 上满足这样条件的点M 共有 个,请在图3中画出这些点(保留必要的画图痕迹).海淀区九年级第一学期期末练习数 学 答 案 2017.1一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案ADCABBBADDxy123456123456O图2图3y xN1234512345O二、填空题(本题共18分,每小题3分) 11.45; 12.1y x =-(答案不唯一);13.9.6;14.(2-,0);15.1;16.90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线. 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=221132-⨯-+, -------------------------------------------------------------------------------4分=3. ---------------------------------------------------------------------------------------------5分 18.证明:∵ED ⊥AB ,∴∠EDB =90°. -------------------------------------------1分 ∵∠C =90°, -----------------------------------------------2分 ∴∠EDB =∠C . ------------------------------------------3分 ∵∠B =∠B , ---------------------------------------------4分 ∴ABC △∽EBD △. ----------------------------------5分19.解:∵二次函数2y x bx c =++的图象经过(0,1)和(1,2-)两点,∴121c b c =⎧⎨-=++⎩,. ---------------------------------------------------------------2分解得41b c =-⎧⎨=⎩,. -----------------------------------------------------------------4分∴二次函数的表达式为241y x x =-+. ---------------------------------5分20.(1)解:设反比例函数的表达式为()0I UU R=≠, 由图象可知函数()0I UU R=≠的图象经过点(9,4), ∴49U =. ------------------------------------------------------------1分∴36U =. ---------------------------------------------------------------2分∴反比例函数的表达式为36I R=(0R >). ----------------------------3分(2) 3.6R ≥.(答 3.6R >得1分,其它错误不得分) -------------------------------------5分21.解:(1)()10S x x =-, -------------------------------------------------------------2分其中010x <<; ----------------------------------------------------3分(2)()10S x x =-=()2525x --+. ---------------------------------------4分 ∴当5x =时,S 有最大值25. ---------------------------------------5分22.解:∵90ADB ADC ∠=∠=°,30BAD ∠=°,60CAD ∠=°,AD =100, ------------2分∴在Rt ABD △中,tan 10033BD AD BAD =⋅∠=, --------------3分 在Rt ACD △中,tan 1003CD AD CAD =⋅∠=. --------------4分 ∴40033BC BD CD =+=. ------------------------------------------5分 23.(1)1. -------------------------------------------------------------------------------2分(2)解法一:B P CA D------------------------------------------------3分∵矩形ABCD , ∴90B ∠=°.∵AP =AD =6,AB =3,∴在Rt ABP △中,2233BP AP AB =-=. -------------------------4分 ∴tan 3BAP BPAB∠==. --------------------------------------------5分 解法二:B P CA D---------------------------------------------3分∵矩形ABCD , ∴90B C ∠=∠=°.∵PD =AD =BC =6,AB =CD =3,∴在Rt CPD △中,2233CP PD CD =-=. ------------------------4分∴633BP BC CP =-=-.∴在Rt ABP △中,tan 23BAP BPAB∠==-. ---------------------5分 24.(1)∵直线4y ax =-与双曲线y kx=只有一个公共点A (1,2-), ∴2421a k-=--=⎧⎪⎨⎪⎩,. --------------------------------------------------------1分 ∴22a k ==-⎧⎨⎩,.(2)4b <-或4b >.(答对一个取值范围得1分) --------------------------------------------5分 25.(1)证明:∵AB ⊥CD ,AB 是⊙O 的直径,∴ BC BD =. ∴112CAD ∠=∠. ∵AM 是∠DAF 的角平分线,∴212DAF ∠=∠.∵180CAD DAF ∠+∠=°, ∴1290OAM ∠=∠+∠=°. ∴OA ⊥AM .∴AM 是⊙O 的切线.-----------------------------------------------2分(2)思路:①由AB ⊥CD ,AB 是⊙O 的直径,可得 BC BD =, AC AD =,1132CAD AC AD ∠=∠=∠=,;②由60D ∠=°,=2AD ,可得ACD △为边长为2的等边三角形,1330∠=∠=°;③由OA OC =,可得3430∠=∠=°; ④由3120CAN OAN ∠=∠+∠=°,可得5430∠=∠=°,2AN AC ==;21MNFA C D EBO--------------------------------------------------------------------------------------------------2分 ----------------------------------------------------------------------------------------------3分54321MN FAC D EBO⑤由OAN △为含有30°的直角三角形,可求ON 的长.(本题方法不唯一) -------------------------------------------------------------5分26.(1)①增大; ----------------------------------------------------------------------1分 ②(1,1),(2,2); ----------------------------------------------------------3分(2)①yx1234567–11234567891011–1–2–3–4–5–6–7O ----------------------------------------------4分(2)该函数的性质:①y 随x 的增大而增大;②函数的图象经过第一、三、四象限; ③函数的图象与x 轴y 轴各有一个交点. ……(写出一条即可) ----------------------------------------------5分27.(1)∵()()2244323y m x x m x =-++=-+,∴抛物线的顶点A 的坐标为(2,3). ----------------------------------------2分 (2)O '(2,0), -------------------------------------------------------------------3分A '(4,3). -------------------------------------------------------------------4分(3)依题意,0m <. --------------------------------------5分 将(0,0)代入2443y mx mx m =-++中,得34m =-. --------------------------------------------6分∴304m -<<. --------------------------------------7分28.(1)150, -----------------------------------------------------1分222PA PC PB +=. ----------------------------------3分xy–112345–1–2–3–4123O'A'A O(2)如图,作120PAP '∠=°,使AP AP '=,连接PP ',CP '.过点A 作AD ⊥PP '于D 点. ∵120BAC PAP '∠=∠=°, 即BAP PAC PAC CAP '∠+∠=∠+∠, ∴BAP CAP '∠=∠. ∵AB =AC ,AP AP '=,∴BAP CAP '△≌△. --------------------------------4分∴P C PB '=,180302APD AP D PAP '∠=∠='-∠= °. ∵AD ⊥PP ', ∴90ADP ∠=°.∴在Rt APD △中,cos 32PD AP APD AP =⋅∠=.∴23PP PD AP '==. ∵60PAC PCA ∠+∠=°,∴180120APC PAC PCA ∠=∠-∠=- °. ∴90P PC APC APD '∠=∠-∠=°. ∴在Rt P PC '△中,222P P PC P C ''+=.∴2223PA PC PB +=. ----------------------------------------------------------6分(3)22224sin 2PA PC PB α+=. --------------------------------------------------7分29.(1)F ,G .(每对1个得1分) -------------------------------------------------2分 (2)①如图1,过点M 作MH ⊥x 轴于H 点. ∵M 点的横坐标为3,∴3333y ==.∴33M (,). ∴23OM =,直线OM 的表达式为33y x =.∵MH ⊥x 轴,∴在Rt △MHN 中,90MHN ∠=°,222NH MH MN +=.设NM =NO =m ,则3NH OH ON m =-=-. ∴()()22233m m -+=.DP'PB CAxy123456123456HNM O图1y123456P 1M∴ON =MN =m =2. --------------------------------------------3分 如图2, 1PON △∽NOM △,过点1P 作1PQ ⊥x 轴于Q 点, ∴11PO PN =,112OQ ON ==. ∵1P 的横坐标为1,∴33133y =⨯=. ∴1313P ⎛⎫ ⎪ ⎪⎝⎭,. ------------------------------------------------4分 如图3,2P NM NOM △∽△, ∴2P N MN ON MO=. ∴2233P N =. ∵2P 的纵坐标为233, ∴23333x =. ∴2x =.∴22323P ⎛⎫⎪ ⎪⎝⎭,. -----------------------------------------------------5分综上所述,313P ⎛⎫ ⎪ ⎪⎝⎭,或2323⎛⎫⎪ ⎪⎝⎭,. ②4. ----------------------------------------------------------------------6分xy1234512345M 4M 3M 2M 1NOxy123456123456P 2HNM O图3(每标对两个点得1分)----------------------------------------------8分。

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

2016-2017学年北京市海淀区初三第一学期期末数学试题及答案

2016-2017学年北京市海淀区初三第一学期期末数学试题及答案

B CD EA海淀区九年级第一学期期末练习数 学 2017.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置. 1.抛物线2(1)3y x =-+的顶点坐标是A .(1,3)B .(1-,3)C .(1-,3-)D .(1,3-) 2.如图,在△ABC 中,D 为AB 中点,DE ∥BC 交AC 于E 点,则△ADE 与△ABC 的面积比为 A .1:1 B .1:2 C .1:3D .1:43.方程20x x -=的解是A .0x =B .1x =C .1201x x ==,D .1201x x ==-,4.如图,在△ABC 中,∠A =90°.若AB =8,AC =6,则cos C 的值为A .35 B .45 C .34D .435.下列各点中,抛物线244y x x =--经过的点是A .(0,4)B .(1,7-)C .(1-,1-)D .(2,8) 6.如图,O 是△ABC 的外接圆,40OCB ∠=︒,则A ∠的大小为A .40︒B .50︒C .80︒D .100︒7.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是A .1cmB .3cmC .6c mD .9cm8.反比例函数3y x=的图象经过点(1-,1y ),(2,2y ),则下列关系正确的是 A .12y y <B .12y y >C .12y y =D .不能确定9.抛物线()21y x t =-+与x 轴的两个交点之间的距离为4,则t 的值是A .1-B .2-C .3-D .4-CA BAB CO10.当温度不变时,气球内气体的气压P (单位:kPa )是气体体积V (单位:m 3)的函数,下表记录了一组实验数据:V (单位:m 3)11.522.53P (单位:kPa ) 96 64 48 38.4 32P 与V 的函数关系可能是 A .96P V =B .16112P V =-+C .21696176P V V =-+D .96P V=二、填空题(本题共18分,每小题3分)11.已知A ∠为锐角,若sin 22A =,则A ∠的大小为 度.12.请写出一个图象在二,四象限的反比例函数的表达式 .13.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若 3.2CD =cm ,则AB 的长为 cm .14.如图,在平面直角坐标系xOy 中,以原点为位似中心,线段AB 与线段A B ''是位似图形,若A (1-,2),B (1-,0),A '(2-,4),则B '的坐标为 .15.若关于x 的方程20x mx m -+=有两个相等实根,则代数式2281m m -+的值为 .16.下面是“用三角板画圆的切线”的画图过程.如图1,已知圆上一点A ,画过A 点的圆的切线.BACA B DA画法:(1)如图2,将三角板的直角顶点放在圆上任一点C (与点A 不重合)处, 使其一直角边经过点A ,另一条直角边与圆交于B 点,连接AB ;(2)如图3,将三角板的直角顶点与点A 重合,使一条直角边经过点B , 画出另一条直角边所在的直线AD .所以直线AD 就是过点A 的圆的切线.请回答:该画图的依据是______________________________________________________.图1 图2 图3xy–1–2–3–4123–112345BA'A OECA D BI /AR /Ω49O三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:22sin 30(2)-°0(π3)3--+-.18.如图,在△ABC 中,∠C =90°,E 是BC 上一点,ED ⊥AB ,垂足为D . 求证:△ABC ∽△EBD .19.若二次函数2y x bx c =++的图象经过点(0 1),和(1 2)-,两点,求此二次函数的表达式. 20.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示. (1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的限制电流不能超过10A ,那么用电器的可变电阻R 应控制在什么范围?请根据图象,直接写出结果 .21.已知矩形的一边长为x ,且相邻两边长的和为10.(1)求矩形面积S 与边长x 的函数关系式,并写出自变量的取值范围; (2)求矩形面积S 的最大值.22.如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC .23.在矩形ABCD 中,AB =3,BC =6,P 为BC 边上一点,△APD 为等腰三角形. (1)小明画出了一个满足条件的△APD ,其中P A =PD ,如图1所示,则tan BAP ∠的值为 ;(2)请你在图2中再画出一个满足条件的△APD (与小明的不同),并求此时tan BAP ∠的值.图1 图24.如图,直线4(0)y ax a =-≠与双曲线ky x=只有一个公共点A (1,2-). (1)求k 与a 的值;(2)若直线+(0)y ax b a =≠与双曲线ky x=有两个公共点,请直接写出b 的取值范围.25.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,AM 是△ACD 的外角∠DAF 的平分线. (1)求证:AM 是⊙O 的切线;(2)若∠D = 60°,AD = 2,射线CO 与AM 交于N 点,请写出求ON 长的思路.26.有这样一个问题:探究函数1(1)(2)(3)2y x x x x =---+的性质.(1)先从简单情况开始探究:① 当函数为1(1)2y x x =-+时,y 随x 增大而 (填“增大”或“减小”); ② 当函数为1(1)(2)2y x x x =--+时,它的图象与直线y x =的交点坐标为 ;(2)当函数为1(1)(2)(3)2y x x x x =---+时,下表为其y 与x 的几组对应值.x…12-0 1322523 492 …y …11316-3- 12716237163 7 17716…①如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;A21yxOOB EC D AFNM②根据画出的函数图象,写出该函数的一条性质: .27.在平面直角坐标系xOy 中,抛物线2443y mx mx m =-++的顶点为A .(1)求点A 的坐标;(2)将线段OA 沿x 轴向右平移2个单位得到线段O A ''.①直接写出点O '和A '的坐标;②若抛物线2443y mx mx m =-++与四边形AOO A ''有且只有两个公共点,结合函数的图象,求m 的取值范围.xy–11234567–1–2–3–4–5–6–71234567891011O28.在△ABC 中,AB =AC ,∠BAC =α,点P 是△ABC 内一点,且2PAC PCA α∠+∠=.连接PB ,试探究P A ,PB ,PC 满足的等量关系.PAB C P'AB C P(1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到ACP '△,连接PP ',如图1所示.由ABP △≌ACP '△可以证得'APP △是等边三角形,再由30PAC PCA ∠+∠=︒可得∠APC 的大小为 度,进而得到CPP '△是直角三角形,这样可以得到P A ,PB ,PC 满足的等量关系为 ;(2)如图2,当α=120°时,请参考(1)中的方法,探究P A ,PB ,PC 满足的等量关系,并给出证明; (3)P A ,PB ,PC 满足的等量关系为 .图1 图229.定义:点P为△ABC内部或边上的点,若满足△P AB ,△PBC ,△P AC 至少有一个三角形与△ABC 相似(点P 不与△ABC 顶点重合),则称点P 为△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的自相似点. 在平面直角坐标系xOy 中,(1)点A 坐标为(2,23), AB ⊥x 轴于B 点,在E (2,1),F (32,32),G (12,32),这三个点中,其中是△AOB 的自相似点的是 (填字母); (2)若点M 是曲线C :k y x=(0k >,0x >)上的一个动点,N 为x 轴正半轴上一个动点;① 如图2,33k =,M 点横坐标为3,且NM = NO ,若点P 是△MON 的自相似点,求点P 的坐标; ② 若1k =,点N 为(2,0),且△MON 的自相似点有2个,则曲线C 上满足这样条件的点M 共有 个,请在图3中画出这些点(保留必要的画图痕迹).xy123456123456OPB CA图1图2图3y xN1234512345O海淀区九年级第一学期期末练习数学答案2017.1一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10答案 A D C A B B B A D D二、填空题(本题共18分,每小题3分)11.45;12.1yx=-(答案不唯一);13.9.6;14.(2-,0);15.1;16.90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线. 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=221132-⨯-+,-------------------------------------------------------------------------------4分=3.---------------------------------------------------------------------------------------------5分18.证明:∵ED⊥AB,∴∠EDB=90°.-------------------------------------------1分∵∠C=90°,-----------------------------------------------2分∴∠EDB=∠C.------------------------------------------3分∵∠B=∠B,---------------------------------------------4分∴ABC△∽EBD△.----------------------------------5分19.解:∵二次函数2y x bx c=++的图象经过(0,1)和(1,2-)两点,∴121cb c=⎧⎨-=++⎩,.---------------------------------------------------------------2分解得41bc=-⎧⎨=⎩,.-----------------------------------------------------------------4分∴二次函数的表达式为241y x x=-+.---------------------------------5分20.(1)解:设反比例函数的表达式为()0I UU R=≠, 由图象可知函数()0I UU R=≠的图象经过点(9,4), ∴49U =. ------------------------------------------------------------1分∴36U =. ---------------------------------------------------------------2分∴反比例函数的表达式为36I R=(0R >). ----------------------------3分(2) 3.6R ≥.(答 3.6R >得1分,其它错误不得分) -------------------------------------5分 21.解:(1)()10S x x =-, -------------------------------------------------------------2分其中010x <<; ----------------------------------------------------3分(2)()10S x x =-=()2525x --+. ---------------------------------------4分∴当5x =时,S 有最大值25. ---------------------------------------5分22.解:∵90ADB ADC ∠=∠=°,30BAD ∠=°,60CAD ∠=°,AD =100, ------------2分∴在Rt ABD △中,tan 10033BD AD BAD =⋅∠=, --------------3分 在Rt ACD △中,tan 1003CD AD CAD =⋅∠=. --------------4分 ∴40033BC BD CD =+=. ------------------------------------------5分 23.(1)1. -------------------------------------------------------------------------------2分(2)解法一:B P CA D------------------------------------------------3分∵矩形ABCD , ∴90B ∠=°.∵AP =AD =6,AB =3,∴在Rt ABP △中,2233BP AP AB =-=. -------------------------4分 ∴tan 3BAP BPAB∠==. --------------------------------------------5分 解法二:B P CA D---------------------------------------------3分∵矩形ABCD , ∴90B C ∠=∠=°.∵PD =AD =BC =6,AB =CD =3,∴在Rt CPD △中,2233CP PD CD =-=. ------------------------4分 ∴633BP BC CP =-=-.∴在Rt ABP △中,tan 23BAP BPAB∠==-. ---------------------5分 24.(1)∵直线4y ax =-与双曲线y kx=只有一个公共点A (1,2-), ∴2421a k-=--=⎧⎪⎨⎪⎩,. --------------------------------------------------------1分 ∴22a k ==-⎧⎨⎩,.(2)4b <-或4b >.(答对一个取值范围得1分) --------------------------------------------5分 25.(1)证明:∵AB ⊥CD ,AB 是⊙O 的直径,∴BC BD =.∴112CAD ∠=∠.∵AM 是∠DAF 的角平分线,∴212DAF ∠=∠.∵180CAD DAF ∠+∠=°, ∴1290OAM ∠=∠+∠=°. ∴OA ⊥AM .∴AM 是⊙O 的切线.-----------------------------------------------2分(2)思路:①由AB ⊥CD ,AB 是⊙O 的直径,可得BC BD =,AC AD =,21MNFAC D EBO--------------------------------------------------------------------------------------------------2分 ----------------------------------------------------------------------------------------------3分1132CAD AC AD ∠=∠=∠=,;②由60D ∠=°,=2AD ,可得ACD △为边长为2的等边三角形,1330∠=∠=°;③由OA OC =,可得3430∠=∠=°; ④由3120CAN OAN ∠=∠+∠=°,可得5430∠=∠=°,2AN AC ==;⑤由OAN △为含有30°的直角三角形,可求ON 的长.(本题方法不唯一) -------------------------------------------------------------5分26.(1)①增大; ----------------------------------------------------------------------1分 ②(1,1),(2,2); ----------------------------------------------------------3分(2)①yx1234567–11234567891011–1–2–3–4–5–6–7O ----------------------------------------------4分(2)该函数的性质:①y 随x 的增大而增大;②函数的图象经过第一、三、四象限; ③函数的图象与x 轴y 轴各有一个交点. ……(写出一条即可) ----------------------------------------------5分27.(1)∵()()2244323y m x x m x =-++=-+,∴抛物线的顶点A 的坐标为(2,3). ----------------------------------------2分 (2)O '(2,0), -------------------------------------------------------------------3分54321MNFAC D EBOA '(4,3). -------------------------------------------------------------------4分 (3)依题意,0m <. --------------------------------------5分 将(0,0)代入2443y mx mx m =-++中,得34m =-. --------------------------------------------6分∴304m -<<. --------------------------------------7分28.(1)150, -----------------------------------------------------1分222PA PC PB +=. ----------------------------------3分(2)如图,作120PAP '∠=°,使AP AP '=,连接PP ',CP '.过点A 作AD ⊥PP '于D 点. ∵120BAC PAP '∠=∠=°, 即BAP PAC PAC CAP '∠+∠=∠+∠, ∴BAP CAP '∠=∠. ∵AB =AC ,AP AP '=,∴BAP CAP '△≌△. --------------------------------4分 ∴P C PB '=,180302APD AP D PAP '∠=∠='-∠=°.∵AD ⊥PP ', ∴90ADP ∠=°.∴在Rt APD △中,cos 32PD AP APD AP =⋅∠=. ∴23PP PD AP '==. ∵60PAC PCA ∠+∠=°,∴180120APC PAC PCA ∠=∠-∠=-°. ∴90P PC APC APD '∠=∠-∠=°. ∴在Rt P PC '△中,222P P PC P C ''+=.∴2223PA PC PB +=. ----------------------------------------------------------6分(3)22224sin 2PA PC PB α+=. --------------------------------------------------7分29.(1)F ,G .(每对1个得1分) -------------------------------------------------2分 (2)①如图1,过点M 作MH ⊥x 轴于H 点. ∵M 点的横坐标为3,∴3333y ==. xy–112345–1–2–3–4123O'A'A O DP'PB CAy123456M∴33M (,).∴23OM =,直线OM 的表达式为33y x =. ∵MH ⊥x 轴,∴在Rt △MHN 中,90MHN ∠=°,222NH MH MN +=.设NM =NO =m ,则3NH OH ON m =-=-. ∴()()22233m m -+=.∴ON =MN =m =2. --------------------------------------------3分如图2, 1PON △∽NOM △,过点1P 作1PQ ⊥x 轴于Q 点, ∴11PO P N =,112OQ ON ==. ∵1P 的横坐标为1,∴33133y =⨯=. ∴1313P ⎛⎫⎪ ⎪⎝⎭,. ------------------------------------------------4分如图3,2P NM NOM △∽△, ∴2P N MNON MO=. ∴2233P N =. ∵2P 的纵坐标为233, ∴23333x =. ∴2x =.∴22323P ⎛⎫⎪ ⎪⎝⎭,. -----------------------------------------------------5分xy123456123456P 1Q H N MO 图2 xy123456123456P 2HNM O图3综上所述,313P ⎛⎫ ⎪ ⎪⎝⎭,或2323⎛⎫⎪ ⎪⎝⎭,. ②4. ----------------------------------------------------------------------6分xy1234512345M 4M 3M 2M 1NO(每标对两个点得1分) ----------------------------------------------8分。

2017年北京市海淀区初三一模数学试卷及答案解析

2017年北京市海淀区初三一模数学试卷及答案解析

2017年北京市海淀区初三一模数学试卷及答案解析班级:_________ 姓名:_________ 考号:_________一、单选题(共10小题)1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108D.0.965×109【答案】B【解析】科学记数法是一个数表示成 a×10的n次幂的形式,其中1≤|a|<10,n为整数,所以根据题意得96 500 000=9.65×107.故选B.2.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱【答案】D【解析】由图可得此为三棱锥,故选D。

3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.【答案】C【解析】共有15个球,3个红球,则摸出红球的概率为,故选C。

4.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】C【解析】A既不是轴对称图形,也不是中心对称图形;B既是轴对称图形,也是中心对称图形;C是轴对称图形但不是中心对称图形;D部是轴对称图形但是中心对称图形。

故选C。

5.如图,在四边形ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5B.4C.3D.2【答案】D【解析】由题意可得,AB=AE=3,则ED=2,故选D。

6.如图,等腰直角三角板的顶点A,C分别在直线,上.若∥,,则的度数为()A.B.C.D.【答案】C【解析】根据平行线的性质可得:∠1+∠BAC+∠ACB+∠2=180,则∠2=10°。

北京市海淀区2017年九年级数学一模试题(含答案)

北京市海淀区2017年九年级数学一模试题(含答案)

海 淀 区 九 年 级 第 二 学 期 期 中 练 习数 学2018.5考生须知1.本试卷共7页,共五道大题,29道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2018年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为2A0BA . 1B .1C . 2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12B .45C .49D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140°ba 216.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CE 7.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是A .98,95B .98,98C .95,98D .95,95 8. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .6 9.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6B .23C .3D .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是二、填空题(本题共18分,每小题3分)A B CD63S /千米t /分钟OEDCBOABA CEOD11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,17BD =,则BC 的长为__________. 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点, 理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos6012(3.14π)--+-+-o .18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥摸球的次数 100 200 300 400 500600 摸到白球的次数m58118189237302359摸到白球的频率nm0.58 0.59 0.63 0.593 0.604 0.598 C BDA19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:FDCB AE为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.FBCAED24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2018年到2018年,中国网民人数每年增长的人数近似相等,估算2018年中国网民的人数约为亿;(3)据某市统计数据显示,2018年末全市常住人口为476.6万人,其中网民数约为210万人.若2018年该市的网民学历结构与2018年的中国网民学历结构基本相同,请你估算2018年末该市网民学历是大专的约有万人.25.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.AEB D CFO26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).ADE B CADEB FC G EC ABDF图1 图2 图3请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.xy O –5–4–3–2–112345–7–6–5–4–3–2–11234567(1)①点()3,1的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围; (3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.海淀区九年级第二学期期中练习数学试卷答案及评分参考2018.5一、 选择题(本题共30分,每小题3分)xy–6–5–4–3–2–1123456–6–5–4–3–2–1123456O题号 12 3 4 5 6 7 8 9 10 答案 BACDBACBDB二、填空题(本题共18分,每小题3分) 题号111213141516答案 a (a +b )(a -b )()0y kx k =>如,y x =0.6178小明(1分);一组对边平行且相等的四边形是平行四边形(2分) 30°或150°(只答对一个2分,全对3分)三、解答题(本题共30分,每小题5分) 17. (本小题满分5分) 解:原式=11223142-⨯++ ………………………………………………………4分 1234=+. ………………………………………………………………5分18. (本小题满分5分) 解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分20. (本小题满分5分) 证明:∠EBC =∠FCB ,A B E F C D ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD 中, ,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明:0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得192x k±=. ∴1221,x x k k==-. …………………………………………………………4分方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明:四边形ABCD 是平行四边形,FDCB A E∴AD //BC . ∴∠DAF=∠F .∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠=.90DAB ∴∠=.又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图. 四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得2210BE BC CE =+=. ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin 4572BH AB =⋅= . …………………………………………4分 在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=7210BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分(2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分) (1)证明:⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB.AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,HFBCAEDFBCAED∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在 ⊙O 上, ∴ ∠EFC =90°.CE ⊥AB , ∴∠BEC =90°. ∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠.∴BF EF EFFC=.又DF =1, BD=DC =3, ∴ BF =2, FC =4.∴22EF =. ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得2223BE BF EF =+=. ……………………4分 EF ∥AD , ∴21BE BF EA FD ==. ∴3AE =. ……………………………………………………5分26. (本小题满分5分)解:BC +DE 的值为34. ……………………………………………………2分解决问题:连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形,∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°.AEBD CFO GE C A BD F∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-,∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D .当图象G 向下平移至点'A 与点E 重合时, 点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.xy O –5–4–3–2–112345–7–6–5–4–3–2–11234567FE DABCGFEDCBA……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GFEDCBA图1 图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ……………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………………………………3分 100GEB DEC BEC ∴∠=∠+∠=︒. GEB CBE ∴∠=∠. 50FBC ∠=︒,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分 EBG BEC ∴∠=∠. 在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分xy–4–3–2–1123456789–7–6–5–4–3–2–11234O HG F ED CBA方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒. ……………………………………………3分50FBC ∠=︒, 图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠.……4分 BH EH ∴=.在△GEH 与△CBH 中, ,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3)3AE BG EG +=. …………………………………………………………………7分 29.(本小题满分8分)解:(1)① (3,1); ……………………………………………………1分② 点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当1x =时,b '取最大值2.当2b '=-时,23x -=-+.5x ∴=. ………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =. ………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分 (3)2222()y x tx t t x t t =-++=-+,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,y 的最小值为t ,即m t =;当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+.22(1)1s m n t t t t ∴=-=+-+=+.∴s 关于t 的函数解析式为 211)s t t =+≥ (. ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分。

2017.1海淀初三第一学期期末试题(最终稿)

2017.1海淀初三第一学期期末试题(最终稿)

6.如图, O 是△ABC 的外接圆, OCB 40 ,则 A 的大小为 A. 40 C. 80 B. 50 D. 100
B O
A
7.一个扇形的圆心角是 120° ,面积为 3πcm2,那么这个扇形的半径是 A . 1cm 8.反比例函数 y A. y1 y2
2
C
B. 3cm
y 6 5 4 3 2 1 O 1 2 3 4 5 6 x
图2 ② 若 k 1 ,点 N 为(2,0),且△MON 的自相似点有 2 个,则曲线 C 上满足这样 条件的点 M 共有 个, 请在图 3 中画出这些点 (保留必要的画图痕迹) .
九年级数学试题第 8 页 / 共 8 页
图3
图1
图2
九年级数学试题第 4 页 / 共 8 页
24.如图,直线 y ax 4(a 0) 与双曲线 y (1)求 k 与 a 的 值; (2)若直线 y ax +b(a 0) 与双曲线 y
k 只有一个公共点 A(1, 2 ). x
y
k 有 x
1
两个公共点,请直接写出 b 的取值范围.
26.有这样一个问题:探究函数 y (1)先从简单情况开始探究: ① 当函数为 y ② 当函数为 y
1 2
( x 1)( x 2)( x 3) x 的性质.
1 2 1
( x 1) x 时,y 随 x 增大而
(填 “增大” 或 “减小” ) ;
2
( x 1)( x 2) x 时,它的图象与直线 y x 的交点坐标为
C E
A
2
D
B
1) 和 (1, 2) 两点,求此二次函数的表达 19.若二次函数 y x bx c 的图象经过点 (0,

2016-2017学年北京市海淀区初三第一学期期末数学试题及答案(word文档良心出品)

2016-2017学年北京市海淀区初三第一学期期末数学试题及答案(word文档良心出品)

B CD EA海淀区九年级第一学期期末练习数 学 2017.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置. 1.抛物线2(1)3y x =-+的顶点坐标是A .(1,3)B .(1-,3)C .(1-,3-)D .(1,3-) 2.如图,在△ABC 中,D 为AB 中点,DE ∥BC 交AC 于E 点,则△ADE 与△ABC 的面积比为 A .1:1 B .1:2 C .1:3D .1:43.方程20x x -=的解是A .0x =B .1x =C .1201x x ==,D .1201x x ==-,4.如图,在△ABC 中,∠A =90°.若AB =8,AC =6,则cos C 的值为A .35 B .45 C .34D .435.下列各点中,抛物线244y x x =--经过的点是A .(0,4)B .(1,7-)C .(1-,1-)D .(2,8) 6.如图,O 是△ABC 的外接圆,40OCB ∠=︒,则A ∠的大小为A .40︒B .50︒C .80︒D .100︒7.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是A .1cmB .3cmC .6c mD .9cm8.反比例函数3y x=的图象经过点(1-,1y ),(2,2y ),则下列关系正确的是 A .12y y <B .12y y >C .12y y =D .不能确定9.抛物线()21y x t =-+与x 轴的两个交点之间的距离为4,则t 的值是A .1-B .2-C .3-D .4-CA BAB CO10.当温度不变时,气球内气体的气压P (单位:kPa )是气体体积V (单位:m 3)的函数,下表记录了一组实验数据:V (单位:m 3)11.522.53P (单位:kPa ) 96 64 48 38.4 32P 与V 的函数关系可能是 A .96P V =B .16112P V =-+C .21696176P V V =-+D .96P V=二、填空题(本题共18分,每小题3分)11.已知A ∠为锐角,若sin 22A =,则A ∠的大小为 度.12.请写出一个图象在二,四象限的反比例函数的表达式 .13.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若 3.2CD =cm ,则AB 的长为 cm .14.如图,在平面直角坐标系xOy 中,以原点为位似中心,线段AB 与线段A B ''是位似图形,若A (1-,2),B (1-,0),A '(2-,4),则B '的坐标为 .15.若关于x 的方程20x mx m -+=有两个相等实根,则代数式2281m m -+的值为 .16.下面是“用三角板画圆的切线”的画图过程.如图1,已知圆上一点A ,画过A 点的圆的切线.BACA B DA画法:(1)如图2,将三角板的直角顶点放在圆上任一点C (与点A 不重合)处, 使其一直角边经过点A ,另一条直角边与圆交于B 点,连接AB ;(2)如图3,将三角板的直角顶点与点A 重合,使一条直角边经过点B , 画出另一条直角边所在的直线AD .所以直线AD 就是过点A 的圆的切线.请回答:该画图的依据是______________________________________________________.图1 图2 图3xy–1–2–3–4123–112345BA'A OECA D BI /AR /Ω49O三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:22sin 30(2)-°0(π3)3--+-.18.如图,在△ABC 中,∠C =90°,E 是BC 上一点,ED ⊥AB ,垂足为D . 求证:△ABC ∽△EBD .19.若二次函数2y x bx c =++的图象经过点(0 1),和(1 2)-,两点,求此二次函数的表达式. 20.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示. (1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的限制电流不能超过10A ,那么用电器的可变电阻R 应控制在什么范围?请根据图象,直接写出结果 .21.已知矩形的一边长为x ,且相邻两边长的和为10.(1)求矩形面积S 与边长x 的函数关系式,并写出自变量的取值范围; (2)求矩形面积S 的最大值.22.如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC .23.在矩形ABCD 中,AB =3,BC =6,P 为BC 边上一点,△APD 为等腰三角形. (1)小明画出了一个满足条件的△APD ,其中P A =PD ,如图1所示,则tan BAP ∠的值为 ;(2)请你在图2中再画出一个满足条件的△APD (与小明的不同),并求此时tan BAP ∠的值.图1 图24.如图,直线4(0)y ax a =-≠与双曲线ky x=只有一个公共点A (1,2-). (1)求k 与a 的值;(2)若直线+(0)y ax b a =≠与双曲线ky x=有两个公共点,请直接写出b 的取值范围.25.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,AM 是△ACD 的外角∠DAF 的平分线. (1)求证:AM 是⊙O 的切线;(2)若∠D = 60°,AD = 2,射线CO 与AM 交于N 点,请写出求ON 长的思路.26.有这样一个问题:探究函数1(1)(2)(3)2y x x x x =---+的性质.(1)先从简单情况开始探究:① 当函数为1(1)2y x x =-+时,y 随x 增大而 (填“增大”或“减小”); ② 当函数为1(1)(2)2y x x x =--+时,它的图象与直线y x =的交点坐标为 ;(2)当函数为1(1)(2)(3)2y x x x x =---+时,下表为其y 与x 的几组对应值.x…12-0 1322523 492 …y …11316-3- 12716237163 7 17716…①如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;A21yxOOB EC D AFNM②根据画出的函数图象,写出该函数的一条性质: .27.在平面直角坐标系xOy 中,抛物线2443y mx mx m =-++的顶点为A .(1)求点A 的坐标;(2)将线段OA 沿x 轴向右平移2个单位得到线段O A ''.①直接写出点O '和A '的坐标;②若抛物线2443y mx mx m =-++与四边形AOO A ''有且只有两个公共点,结合函数的图象,求m 的取值范围.xy–11234567–1–2–3–4–5–6–71234567891011O28.在△ABC 中,AB =AC ,∠BAC =α,点P 是△ABC 内一点,且2PAC PCA α∠+∠=.连接PB ,试探究P A ,PB ,PC 满足的等量关系.PAB C P'AB C P(1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到ACP '△,连接PP ',如图1所示.由ABP △≌ACP '△可以证得'APP △是等边三角形,再由30PAC PCA ∠+∠=︒可得∠APC 的大小为 度,进而得到CPP '△是直角三角形,这样可以得到P A ,PB ,PC 满足的等量关系为 ;(2)如图2,当α=120°时,请参考(1)中的方法,探究P A ,PB ,PC 满足的等量关系,并给出证明; (3)P A ,PB ,PC 满足的等量关系为 .图1 图229.定义:点P为△ABC内部或边上的点,若满足△P AB ,△PBC ,△P AC 至少有一个三角形与△ABC 相似(点P 不与△ABC 顶点重合),则称点P 为△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的自相似点. 在平面直角坐标系xOy 中,(1)点A 坐标为(2,23), AB ⊥x 轴于B 点,在E (2,1),F (32,32),G (12,32),这三个点中,其中是△AOB 的自相似点的是 (填字母); (2)若点M 是曲线C :k y x=(0k >,0x >)上的一个动点,N 为x 轴正半轴上一个动点;① 如图2,33k =,M 点横坐标为3,且NM = NO ,若点P 是△MON 的自相似点,求点P 的坐标; ② 若1k =,点N 为(2,0),且△MON 的自相似点有2个,则曲线C 上满足这样条件的点M 共有 个,请在图3中画出这些点(保留必要的画图痕迹).xy123456123456OPB CA图1图2图3y xN1234512345O海淀区九年级第一学期期末练习数学答案2017.1一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10答案 A D C A B B B A D D二、填空题(本题共18分,每小题3分)11.45;12.1yx=-(答案不唯一);13.9.6;14.(2-,0);15.1;16.90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线. 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=221132-⨯-+,-------------------------------------------------------------------------------4分=3.---------------------------------------------------------------------------------------------5分18.证明:∵ED⊥AB,∴∠EDB=90°.-------------------------------------------1分∵∠C=90°,-----------------------------------------------2分∴∠EDB=∠C.------------------------------------------3分∵∠B=∠B,---------------------------------------------4分∴ABC△∽EBD△.----------------------------------5分19.解:∵二次函数2y x bx c=++的图象经过(0,1)和(1,2-)两点,∴121cb c=⎧⎨-=++⎩,.---------------------------------------------------------------2分解得41bc=-⎧⎨=⎩,.-----------------------------------------------------------------4分∴二次函数的表达式为241y x x=-+.---------------------------------5分20.(1)解:设反比例函数的表达式为()0I UU R=≠, 由图象可知函数()0I UU R=≠的图象经过点(9,4), ∴49U =. ------------------------------------------------------------1分∴36U =. ---------------------------------------------------------------2分∴反比例函数的表达式为36I R=(0R >). ----------------------------3分(2) 3.6R ≥.(答 3.6R >得1分,其它错误不得分) -------------------------------------5分 21.解:(1)()10S x x =-, -------------------------------------------------------------2分其中010x <<; ----------------------------------------------------3分(2)()10S x x =-=()2525x --+. ---------------------------------------4分∴当5x =时,S 有最大值25. ---------------------------------------5分22.解:∵90ADB ADC ∠=∠=°,30BAD ∠=°,60CAD ∠=°,AD =100, ------------2分∴在Rt ABD △中,tan 10033BD AD BAD =⋅∠=, --------------3分 在Rt ACD △中,tan 1003CD AD CAD =⋅∠=. --------------4分 ∴40033BC BD CD =+=. ------------------------------------------5分 23.(1)1. -------------------------------------------------------------------------------2分(2)解法一:B P CA D------------------------------------------------3分∵矩形ABCD , ∴90B ∠=°.∵AP =AD =6,AB =3,∴在Rt ABP △中,2233BP AP AB =-=. -------------------------4分 ∴tan 3BAP BPAB∠==. --------------------------------------------5分 解法二:B P CA D---------------------------------------------3分∵矩形ABCD , ∴90B C ∠=∠=°.∵PD =AD =BC =6,AB =CD =3,∴在Rt CPD △中,2233CP PD CD =-=. ------------------------4分 ∴633BP BC CP =-=-.∴在Rt ABP △中,tan 23BAP BPAB∠==-. ---------------------5分 24.(1)∵直线4y ax =-与双曲线y kx=只有一个公共点A (1,2-), ∴2421a k-=--=⎧⎪⎨⎪⎩,. --------------------------------------------------------1分 ∴22a k ==-⎧⎨⎩,.(2)4b <-或4b >.(答对一个取值范围得1分) --------------------------------------------5分 25.(1)证明:∵AB ⊥CD ,AB 是⊙O 的直径,∴BC BD =.∴112CAD ∠=∠.∵AM 是∠DAF 的角平分线,∴212DAF ∠=∠.∵180CAD DAF ∠+∠=°, ∴1290OAM ∠=∠+∠=°. ∴OA ⊥AM .∴AM 是⊙O 的切线.-----------------------------------------------2分(2)思路:①由AB ⊥CD ,AB 是⊙O 的直径,可得BC BD =,AC AD =,21MNFAC D EBO--------------------------------------------------------------------------------------------------2分 ----------------------------------------------------------------------------------------------3分1132CAD AC AD ∠=∠=∠=,;②由60D ∠=°,=2AD ,可得ACD △为边长为2的等边三角形,1330∠=∠=°;③由OA OC =,可得3430∠=∠=°; ④由3120CAN OAN ∠=∠+∠=°,可得5430∠=∠=°,2AN AC ==;⑤由OAN △为含有30°的直角三角形,可求ON 的长.(本题方法不唯一) -------------------------------------------------------------5分26.(1)①增大; ----------------------------------------------------------------------1分 ②(1,1),(2,2); ----------------------------------------------------------3分(2)①yx1234567–11234567891011–1–2–3–4–5–6–7O ----------------------------------------------4分(2)该函数的性质:①y 随x 的增大而增大;②函数的图象经过第一、三、四象限; ③函数的图象与x 轴y 轴各有一个交点. ……(写出一条即可) ----------------------------------------------5分27.(1)∵()()2244323y m x x m x =-++=-+,∴抛物线的顶点A 的坐标为(2,3). ----------------------------------------2分 (2)O '(2,0), -------------------------------------------------------------------3分54321MNFAC D EBOA '(4,3). -------------------------------------------------------------------4分 (3)依题意,0m <. --------------------------------------5分 将(0,0)代入2443y mx mx m =-++中,得34m =-. --------------------------------------------6分∴304m -<<. --------------------------------------7分28.(1)150, -----------------------------------------------------1分222PA PC PB +=. ----------------------------------3分(2)如图,作120PAP '∠=°,使AP AP '=,连接PP ',CP '.过点A 作AD ⊥PP '于D 点. ∵120BAC PAP '∠=∠=°, 即BAP PAC PAC CAP '∠+∠=∠+∠, ∴BAP CAP '∠=∠. ∵AB =AC ,AP AP '=,∴BAP CAP '△≌△. --------------------------------4分 ∴P C PB '=,180302APD AP D PAP '∠=∠='-∠=°.∵AD ⊥PP ', ∴90ADP ∠=°.∴在Rt APD △中,cos 32PD AP APD AP =⋅∠=. ∴23PP PD AP '==. ∵60PAC PCA ∠+∠=°,∴180120APC PAC PCA ∠=∠-∠=-°. ∴90P PC APC APD '∠=∠-∠=°. ∴在Rt P PC '△中,222P P PC P C ''+=.∴2223PA PC PB +=. ----------------------------------------------------------6分(3)22224sin 2PA PC PB α+=. --------------------------------------------------7分29.(1)F ,G .(每对1个得1分) -------------------------------------------------2分 (2)①如图1,过点M 作MH ⊥x 轴于H 点. ∵M 点的横坐标为3,∴3333y ==. xy–112345–1–2–3–4123O'A'A O DP'PB CAy123456M∴33M (,).∴23OM =,直线OM 的表达式为33y x =. ∵MH ⊥x 轴,∴在Rt △MHN 中,90MHN ∠=°,222NH MH MN +=.设NM =NO =m ,则3NH OH ON m =-=-. ∴()()22233m m -+=.∴ON =MN =m =2. --------------------------------------------3分如图2, 1PON △∽NOM △,过点1P 作1PQ ⊥x 轴于Q 点, ∴11PO P N =,112OQ ON ==. ∵1P 的横坐标为1,∴33133y =⨯=. ∴1313P ⎛⎫⎪ ⎪⎝⎭,. ------------------------------------------------4分如图3,2P NM NOM △∽△, ∴2P N MNON MO=. ∴2233P N =. ∵2P 的纵坐标为233, ∴23333x =. ∴2x =.∴22323P ⎛⎫⎪ ⎪⎝⎭,. -----------------------------------------------------5分xy123456123456P 1Q H N MO 图2 xy123456123456P 2HNM O图3综上所述,313P ⎛⎫ ⎪ ⎪⎝⎭,或2323⎛⎫⎪ ⎪⎝⎭,. ②4. ----------------------------------------------------------------------6分xy1234512345M 4M 3M 2M 1NO(每标对两个点得1分) ----------------------------------------------8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海 淀 区 九 年 级 第 二 学 期 期 中 练 习数 学2017.5学校 班级___________ 姓名 成绩 考生须知 1.本试卷共 8 页,共三道大题,29道小题,满分120分,考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、班级和姓名。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、画图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置.1.2016年10月1日,约110 000名群众观看了天安门广场的升旗仪式.将110 000用科学记数法表示应为 A .41110⨯ B .51.110⨯ C .41.110⨯ D .60.1110⨯ 2.下列四个图形依次是北京、云南、西藏、安徽四个省市的图案字体,其中是轴对称图形的是A B C D3.五边形的内角和是A .360°B .540°C .720°D .900° 4.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 5.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是A BC D6.如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点A ,点C 分别在直线a ,b 上,且a ∥b .若∠1=60°,则∠2的度数为 A .75° B .105° C .135° D .155° 7.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠ACO =50°,则∠B 的度数为A .60°B .50°C .40°D .30°8.如图,数轴上A ,B 两点所表示的数互为倒数....,则关于原点的说法正确的是A .一定在点A 的左侧B .一定与线段AB 的中点重合C .可能在点B 的右侧D .一定与点A 或点B 重合9.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.下图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长超过13小时的节气是A .惊蛰B .小满C .秋分D .大寒10.下图为2009年到2015年中关村国家自主创新示范区企业经营技术收入的统计图.下面四个推断:①2009年到2015年技术收入持续增长; ②2009年到2015年技术收入的中位数是4032亿;③2009年到2015年技术收入增幅最大的是2015年;④2009年到2011年的技术收入增长的平均数比2013年到2015年技术收入增长的平均数大. 其中,正确的是 A .①③B .①④C .②③D .③④二、填空题(本题共18分,每小题3分)11.分解因式:244a b ab b ++= .12.如图,AB ,CD 相交于O 点,△AOC ∽△BOD ,OC :OD =1:2,AC =5,则BD 的长为 .OB DCAC BAOA BABCab2113.右图中的四边形均为矩形.根据图形,写出一个正确的等式: .m bam14.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是 (填写一个你认为正确的序号). ①掷一个质地均匀的正六面体骰子,向上一面的点数是2; ②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.15.如图,在平面直角坐标系xOy 中,A (1,1),B (2,2),双曲线y k x与线段AB 有公共点,则k 的取值范围是________.16.下面是“作三角形一边中线”的尺规作图过程.已知:△ABC .求作:BC 边上的中线AD .作法:如图,(1)分别以点B ,C 为圆心,AC ,AB 长为半径作弧,两弧相交于P 点;(2)作直线AP ,AP 与BC 交于D 点. 所以线段AD 就是所求作的中线.请回答:该作图的依据是_____________________________________________________.xy B A–1–2–3123–1–2–3123OPAB D CPAB B CA三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:()112cos4521314π2.-+︒+---⎛⎫ ⎪⎝⎭.18.解不等式()4312x x +-≤,并把它的解集在数轴上表示出来.–1–2–3–4123419.如图,在△ABC 中,D ,E 是BC 边上两点,AD=AE ,BAD CAE ∠=∠. 求证:AB=AC .20.关于x 的方程20x ax a -+=有两个相等的实数根,求代数式21242a a a ⋅+--的值.21.在平面直角坐标系xOy 中,直线11:l y k x b =+过A (0,3-),B (5,2),直线222:l y k x =+. (1)求直线1l 的表达式;(2)当4x ≥时,不等式122k x b k x +>+恒成立,请写出一个满足题意的2k 的值.22.某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同B D E CAl 1-3BAyxO 52学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.23.如图,在ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.24.阅读下列材料:厉害了,我的国!近年来,中国对外开放的步伐加快,与世界经济的融合度日益提高,中国经济稳定增长是世界经济复苏的主要动力.“十二五”时期,按照2010年美元不变价计算,中国对世界经济增长的年均贡献率达到30.5%,跃居全球第一,与“十五”和“十一五”时期14.2%的年均贡献率相比,提高16.3个百分点,同期美国和欧元区分别为17.8%和4.4%.分年度来看,2011、2012、2013、2014、2015年,中国对世界经济增长的贡献率分别为28.6%、31.7%、32.5%、29.7%、30.0%,而美国分别为11.8%、20.4%、15.2%、19.6%、21.9%.2016年,中国对世界经济增长的贡献率仍居首位,预计全年经济增速为6.7%左右,而世界银行预测全球经济增速为2.4%左右.按2010年美元不变价计算,2016年中国对世界经济增长的贡献率仍然达到33.2%.如果按照2015年价格计算,则中国对世界经济增长的贡献率会更高一点,根据有关国际组织预测,2016年中国、美国、日本经济增速分别为6.7%、1.6%、0.6%.根据以上材料解答下列问题:(1)选择合适的统计图或统计表将2013年至2015年中国和美国对世界经济增长的贡献率表示出来;(2)根据题中相关信息,2016年中国经济增速大约是全球经济增速的倍(保留1位小数);(3)根据题中相关信息,预估2017年中国对世界经济增长的贡献率约为,你的预估理由是.25.如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D 两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是DF的中点,BC=a,写出求AE长的思路.B EC FA D26.有这样一个问题:探究函数222x y x =-的图象与性质.下面是小文的探究过程,请补充完整:(1)函数222x y x =-的自变量x 的取值范围是 ;(2)下表是y 与x 的几组对应值.如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.①观察图中各点的位置发现:点1A 和1B ,2A 和2B ,3A 和3B ,4A 和4B 均关于某点中心对称,则该点的坐标为 ;②小文分析函数222x y x =-的表达式发现:当1x <时,该函数的最大值为0,则该函数图象在直线1x =左侧的最高点的坐标为 ;(3)小文补充了该函数图象上两个点(1124-,),(3924,), ①在上图中描出这两个点,并画出该函数的图象;②写出该函数的一条性质:________________ .x =127.平面直角坐标系xOy 中,抛物线2222y mx m x =-+交y 轴于A 点,交直线x =4于B 点.(1)抛物线的对称轴为x = (用含m 的代数式表示);(2)若AB ∥x 轴,求抛物线的表达式;(3)记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点P (P x ,P y ),2P y ≤,求m 的取值范围.28.在ABCD 中,点B 关于AD 的对称点为B ',连接AB ',CB ',CB '交AD 于F 点.(1)如图1,90ABC ∠=︒,求证:F 为CB '的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B 绕点A 旋转的过程中,点F 始终为CB '的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B '作B G '∥CD 交AD 于G 点,只需证三角形全等;想法2:连接BB '交AD 于H 点,只需证H 为BB '的中点; 想法3:连接BB ',BF ,只需证90B BC '∠=︒. ……请你参考上面的想法,证明F 为CB '的中点.(一种方法即可) (3)如图3,当135ABC ∠=︒时,AB ',CD 的延长线相交于点E ,求CE AF的值.图1图2图329.在平面直角坐标系xOy中,若P,Q为某个菱形相邻的...两个顶点,且该菱形的两条对角线分别与x轴,y轴平行,则称该菱形为点P,Q的“相关菱形”.图1为点P,Q的“相关菱形”的一个示意图.图1已知点A的坐标为(1,4),点B的坐标为(b,0),(1)若b=3,则R(1 ,0),S(5,4),T(6,4)中能够成为点A,B的“相关菱形”顶点的是;(2)若点A,B的“相关菱形”为正方形,求b的值;(3)BC的坐标为(2,4).若B上存在点M,在线段AC上存在点N,使点M,N的“相关菱形”为正方形,请直接写出b的取值范围.海淀九年级第二学期期中练习数 学 答 案 2017.5一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.()22b a +; 12.10; 13.()()2m a m b m am bm ab ++=+++(答案不唯一);14.③;15.14k ≤≤;16.两组对边分别相等的四边形是平行四边形,平行四边形的对角线互相平分.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.原式 = 2211++- -------------------------------------------------------------------------- 4分 = -------------------------------------------------------------------------- 5分 18.解:()614x x -≤+, ----------------------------------------------------------------------------------- 1分664x x -≤+, ---------------------------------------------------------------------------------- 2分 510x ≤, ----------------------------------------------------------------------------------- 3分 2x ≤. ----------------------------------------------------------------------------------- 4分---------------------------------------------------------------- 5分19.解法一:解:∵ AD =AE ,∴ ∠1=∠2. ---------------------------------------------- 1分 ∵∠1=∠B +∠BAD ,∠2=∠C +∠CAE , -------------------------------------3分 ∴∠B +∠BAD =∠C +∠CAE . ∵∠BAD =∠CAE ,∴ ∠B =∠C . --------------------------------------4分 ∴ AB =AC . -------------------------------------- 5分 解法二: 解:∵ AD =AE ,∴ ∠1=∠2. ---------------------------------------------- 1分∴180°-∠1=180°-∠2.21B D E CA4321B D E CA即∠3=∠4. ---------------------------------------------------------------------------------------- 2分 在△ABD 与△ACE 中,34BAD CAE AD AE ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴ △ABD ≌ △ACE (ASA ).----------------------------------------------------------------- 4分 ∴ AB =AC . --------------------------------------------------------------------- 5分 20.解:∵关于x 的方程20x ax a -+=有两个相等的实数根,∴()22440a a a a ∆=--=-=. ------------------------------------------------------- 2分 ∵21242a a a ⋅+-- ()()12222a a a a ⋅+=+-- ------------------------------------------------------------------- 3分 ()212a =-, -------------------------------------------------------------------------------- 4分∴ 原式=211444a a =-+. --------------------------------------------------------5分 21.解:(1)∵ 直线11l y k xb =+:过A (0,3-),B (5,2),∴ 135 2.b k b =-⎧⎨+=⎩, --------------------------------------------------------------------------------- 1分∴ 113.k b =⎧⎨=-⎩,---------------------------------------------------------------------------------- 2分∴ 直线1l 的表达式为3y x =-. --------------------------------------------------------- 3分 (2)答案不唯一,满足214k <-即可.--------------------------------------------------------- 5分 22.答:小军的数据较好地反映了该校八年级同学选修历史的意向. ----------------------------- 1分 理由如下:小红仅调查了一个班的同学,样本不具有随机性;小亮只调查了8位历史课代表,样本容量过少,不具有代表性;小军的调查样本容量适中,且能够代表全年级的同学的选择意向. ------------------ 3分 根据小军的调查结果,有意向选择历史的比例约为201804=; ------------------ 4分 故据此估计全年级选修历史的人数为124160.25604⨯=≈(人). ------------------ 5分 (注:估计人数时,写61人也正确)23.(1)证明:∵ CF =BE , ∴ CF +EC =BE +EC .即 EF =BC . -------------------1分 ∵ 在ABCD 中,AD ∥BC 且AD =BC ,∴AD ∥EF 且AD = EF .∴ 四边形AEFD 是平行四边形. ------------------ 2分 ∵ AE ⊥BC , ∴ ∠AEF =90°. ∴AEFD 是矩形. ------------------------------3分(2)解:∵AEFD 是矩形,DE =8,∴ AF =DE =8. ∵ AB =6,BF =10,∴ 2222226810AB AF BF +=+==.∴ ∠BAF =90°. ----------------------------------------------- 4分 ∵ AE ⊥BF ,∴ 11S 22ABF AB AF BF AE =⋅=⋅△. ∴ 245AB AF AE BF ⋅==. ------------------------------------------------ 5分 24.(1) 2013年至2015年中国和美国对世界经济增长的贡献率统计表年份2013年 2014年 2015年 中国 32.5% 29.7% 30.0% 美国15.2%19.6%21.9%或2013年至2015年中国和美国对世界经济的贡献率统计图--------- ---- ------- 2分 (2)2.8; ------------------------------------------------------------------------------------------------- 3分 (3)答案不唯一,预估理由与预估结果相符即可. ----------------------------------------- 5分B EC FA D贡献率 国家25.(1)证明:∵ AB 与⊙O 相切于点D , ∴ OD ⊥AB 于D .∴ ∠ODB =90°. ------------------------------------------- 1分 ∵ CF ∥AB ,∴ ∠OMF =∠ODB =90°. ∴ OM ⊥CF .∴ 点M 是CF 的中点. ----------------------------------- 2分 (2)思路: 连接DC ,DF .① 由M 为CF 的中点,E 为DF 的中点,可以证明△DCF 是等边三角形,且∠1=30°; ----------------------------------- 3分② 由BA ,BC 是⊙O 的切线,可证BC =BD =a .由∠2=60°,从而△BCD 为等边三角形; ---------------------------------------- 4分③ 在Rt △ABC 中,∠B =60°,BC =BD =a,可以求得AD a OD OA =,; ④AE AO OE =-=. ---------------------------------------------- 5分 26.(1)1x ≠;-------------------------------------------------------------------------------------------------1分(2)①(1,1);------------------------------------------------------------------------------------------ 2分 ②(0,0);------------------------------------------------------------------------------------------ 3分 (3)①-------------------------------------------------------- 4分②该函数的性质:(ⅰ)当x <0时,y 随x 的增大而增大;当0≤x <1时,y 随x 的增大而减小; 当1<x <2时,y 随x 的增大而减小; 当x ≥2时,y 随x 的增大而增大.(ⅱ)函数的图象经过第一、三、四象限.(ⅲ)函数的图象与直线x =1无交点,图象由两部分组成. (ⅳ)当x >1时,该函数的最小值为1.……(写出一条即可)------------------------------------------------------------------------------- 5分27.(1)m ; --------------------------------------------------------------------------------------------------- 2分 (2)∵ 抛物线2222y mx m x =-+与y 轴交于A 点,∴ A (0,2).------------------------------------------------------------------------------------- 3分 ∵ AB ∥x 轴,B 点在直线x =4上,∴ B (4,2),抛物线的对称轴为直线x =2. --------------------------------------------- 4分 ∴ m =2.∴ 抛物线的表达式为2282y x x =-+. --------------------------------------------------- 5分 (3)当0m >时,如图1.∵()02A ,,∴要使04P x ≤≤时,始终满足2P y ≤,只需使抛物线2222y mx m x =-+的对称轴与直线x=2重合或在直线x=2的右侧.∴2m ≥. -------------------------------------------- 6分当0m <时,如图2,0m <时,2P y ≤恒成立. ------------------- 7分综上所述,0m <或2m ≥.28.(1)证明:∵四边形ABCD 为平行四边形,∠ABC =90°, ∴□ABCD 为矩形,AB=CD .∴. ∠D =∠BAD = 90°.∵ B ,B '关于AD 对称,∴ ∠B 'AD =∠BAD =90°,AB =A B '.----------------- 1分 ∴ ∠B 'AD =∠D . ∵ ∠AF B '=∠CFD , ∴ △AF B '≌ △CFD (AAS ). ∴ F B '=FC .∴ F 是C B '的中点. ---------------------------------------------------------------------------- 2分图1图2(2)证明:方法1:过点B '作B G '∥CD 交AD 于点G . ∵ B ,B '关于AD 对称, ∴ ∠1=∠2,AB =A B '. ∵ B 'G ∥CD , AB ∥CD , ∴ B 'G ∥AB . ∴ ∠2=∠3. ∴ ∠1=∠3. ∴ B 'A =B 'G . ∵ AB =CD ,AB =A B ',∴ B 'G =CD . ------------------------------------------------------------------------------------- 3分 ∵ B 'G ∥CD ,∴ ∠4=∠D .----------------------------------------------------------------------------------------- 4分 ∵ ∠B 'FG =∠CFD ,∴ △B 'FG ≌ △CFD (AAS ). ∴ F B '=FC .∴ F 是C B '的中点. ---------------------------------------------------------------------------- 5分方法2:连接BB '交直线AD 于H 点, ∵ B ,B '关于AD 对称,∴ AD 是线段B 'B 的垂直平分线.∴ B 'H =HB .----------------------------- 3分 ∵ AD ∥BC ,∴''1B F B HFC HB ==.-------------------- 4分 ∴ F B '=FC .∴ F 是C B '的中点. --------------------------------------------------------------------------- 5分 方法3:连接BB ',BF ,∵ B ,B '关于AD 对称, ∴ AD 是线段B 'B 的垂直平分线. ∴ B 'F =FB .----------------------------- 3分 ∴ ∠1=∠2. ∵ AD ∥BC , ∴ B 'B ⊥BC . ∴ ∠B 'BC =90°.∴ ∠1+∠3=90°,∠2+∠4=90°. ∴ ∠3=∠4.∴ FB =FC .------------------------------------------------------------------------------------------- 4分 ∴ B 'F =FB =FC .∴ F 是C B '的中点. --------------------------------------------------------------------------- 5分(3)解:取B 'E 的中点G ,连结GF . ∵ 由(2)得,F 为C B '的中点,∴ FG ∥CE ,12FG CE =.…① ∵ ∠ABC =135°,□ABCD 中,AD ∥BC ,∴ ∠BAD =180°-∠ABC =45°. ∴ 由对称性,∠EAD =∠BAD =45°. ∵ FG ∥CE ,AB ∥CD , ∴ FG ∥AB .∴ ∠GF A =∠F AB =45°. ----------------------------------------------------------------------------- 6分 ∴ ∠FGA =90°,GA =GF . ∴sin FG EAD AF =∠⋅=.…② ∴由①,②可得CEAF------------------------------------------------------------------ 7分29.(1)R ,S ; ------------------------------------------------------------------------------------------------ 2分 (2)过点A 作AH 垂直x 轴于H 点. ∵ 点A ,B 的“相关菱形”为正方形, ∴ △ABH 为等腰直角三角形. ∵ A (1,4), ∴ BH =AH =4.∴b =3-或5. -------------------------------------------- 5分 (3)5-≤b ≤0或3≤b ≤8. -------------------------------- 8分。

相关文档
最新文档