2019年山东省临沂市平邑县中考数学一模试卷
山东省临沂市平邑县2019年5月中考模拟数学试题(五)参考答案

2019年初中学生学业模拟考试试题(五)数学 参考答案一、选择题(本大题共14小题,每小题3分,满分42分)---------------------------------------------------------------------------- 三、解答题20.(本小题满分7分)解:原式2222(2)(2)(1)41[](2)(2)4(2)4(2)x x x x x x x x x x x x x x x x +---=-==------ -----------------------------------------------------------------------------------------------------------------21.(本小题满分7分)解:(1) 200 ---------------2分 (2)分别见图1,图2 (各1分) ----------------------4分(3)21--------------------------------7分 --------------------------------------------------------------------------22.(本题满分7分) 解:过P 作PC ⊥AB 于点C ,∴∠ACP =90°.由题意可知,∠PAC =30°,∠PBC =45°. ----------------2分 ∴∠BPC =45°.∴BC =PC . ---------------------------3分 在Rt △ACP 中,PC PACPCAC 3tan =∠=. ------------------------------4分∵AB =20,∴PC AC PC 320==+∴1320-=PC ≈27.3. 答:河流宽度约为27.3米. -------------------7分----------------------------------------------------------------------------------------------------------- 23.(本小题满分9分) 解:(1)如图:连接OC 。
山东省临沂市2019年中考数学模拟试题(含答案)

山东省临沂市2019年中考数学模拟试题一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号涂在答题卡上.) 1.3-的倒数是 A .3B .3-C .13D .13-2.为积极转化奥运会、残奥会志愿者工作成果,完善和健全志愿者服务体系及长效机制,北京市将力争实现每年提供志愿服务时间11000万小时. 11000万小时用科学记数法表示为A .61011.0⨯万小时B .5101.1⨯万小时 C .4101.1⨯万小时 D .31011⨯万小时3. 下列运算正确的是A .42263·2x x x =B .13222-=-x xC .2223232x x x =÷ D . 422532x x x =+ 4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12,则在这一周中,最低气温的众数和中位数分别是 A. 13和11 B. 12和13 C. 11和12 C. 13和12 5.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有 A .4个 B .5个 C .6个 D .7个6.不等式组240,321x x -<⎧⎨-<⎩的解集为A .1<xB .21><x x 或C .2>xD .21<<x7.估计40值A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间俯视图 主视图 (第5题)8.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点B ,则点的B 坐标是 A .(32,2) B .(32,-2) C .(4,-2)D .(2,-32)9.如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC =150°,则∠θ的度数是 A .60° B .50° C .40°D .30°10.如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm ,如果一辆22型自行车的链条(没有安装前)共有50节链条组成,那么链条的总长度是( )A .75 cmB .85.8 cmC .85 cmD .84.2 cm11.将如图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是12.某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是A .16B.15 C.14D .13 13.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于A .αsin ⋅aB .cos a α⋅C .αtan ⋅aD .cot a α⋅11题图 A . B . C . D . 1节链条 2节链条 50节链条A BC a 第4题图(第13题)14.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 二、填空题(本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.) 15.分解因式:24(3)x --= .16.如果方程042=+-c x x 的—个根是32+.那么此方程的另一个根是 .17.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b)进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到实数是 .18. 如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。
平邑初三数学一模试卷

一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x - 1,那么f(3)的值为()A. 5B. 7C. 9D. 112. 在△ABC中,∠A=45°,∠B=60°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°3. 下列各组数中,能构成等差数列的是()A. 1, 2, 4, 8B. 2, 4, 8, 16C. 1, 3, 5, 7D. 2, 4, 6, 84. 若a,b是方程x^2 - 3x + 2 = 0的两个根,则a+b的值为()A. 1B. 2C. 3D. 45. 在平面直角坐标系中,点A(-2,3),点B(4,-1),则线段AB的中点坐标为()A. (1, 1)B. (1, 2)C. (2, 1)D. (2, 2)6. 若log2(x-1) = 3,则x的值为()A. 7B. 8C. 9D. 107. 下列命题中,正确的是()A. 若a>b,则a^2>b^2B. 若a>b,则a-b>0C. 若a>b,则a/b>1D. 若a>b,则a-b<08. 在等腰三角形ABC中,AB=AC,且∠BAC=40°,则∠ABC的度数为()A. 40°B. 50°C. 60°D. 70°9. 下列函数中,有最小值的是()A. y = x^2B. y = -x^2C. y = x^2 + 1D. y = -x^2 + 110. 已知正方体ABCD-A1B1C1D1的棱长为2,则体积V的值为()A. 4B. 8C. 12D. 16二、填空题(每题3分,共30分)11. 若x^2 - 4x + 3 = 0,则x的值为______。
12. 在△ABC中,若∠A=30°,∠B=45°,则∠C的度数为______。
山东省临沂市2019-2020学年中考数学一模试卷含解析

山东省临沂市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( ) A .﹣3B .0C .6D .92.计算-3-1的结果是( ) A .2 B .-2 C .4 D .-43.如图是婴儿车的平面示意图,其中AB ∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A .80°B .90°C .100°D .102°4.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,332) B .(2,332) C .(332,32) D .(32,3﹣332) 5.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C 相似的是( )A .B .C .D .6.下列计算正确的是() A .2x 2-3x 2=x 2B .x +x =x 2C .-(x -1)=-x +1D .3+x =3x7.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( ) A .90° B .120° C .150° D .180°8.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 9.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( ) A .﹣2B .﹣1C .1D .210.已知抛物线c :y=x 2+2x ﹣3,将抛物线c 平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( ) A .将抛物线c 沿x 轴向右平移52个单位得到抛物线c′ B .将抛物线c 沿x 轴向右平移4个单位得到抛物线c′C .将抛物线c 沿x 轴向右平移72个单位得到抛物线c′ D .将抛物线c 沿x 轴向右平移6个单位得到抛物线c′11.从3、1、-2这三个数中任取两个不同的数作为P 点的坐标,则P 点刚好落在第四象限的概率是( ) A .14B .13C .23D .1212.如图,O e 是ABC V 的外接圆,已知ABO 50o ∠=,则ACB ∠的大小为( )A .40oB .30oC .45oD .50o二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.比较大小:554(填“<“,“=“,“>“)14.如图,6的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.15.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.16.图中是两个全等的正五边形,则∠α=______.17.点A(-2,1)在第_______象限.18.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38;如果往盒中再放进10 颗黑色棋子,则取得黑色棋子的概率变为12.求x 和y 的值.20.(6分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x(元)之间存在一次函数关系,如图所示.求y与x之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.21.(6分)问题提出(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.22.(8分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数)频率武术类0.25书画类20 0.20棋牌类15 b器乐类合计 a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=_____,b=_____;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.23.(8分)化简:(x-1-2x2x1-+)÷2x xx1-+.24.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.25.(10分)有这样一个问题:探究函数y=316x﹣2x的图象与性质.小东根据学习函数的经验,对函数y=316x﹣2x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=316x﹣2x的自变量x的取值范围是_______;(2)如表是y与x的几组对应值x …﹣4 ﹣3.5 ﹣3 ﹣2 ﹣1 0 1 2 3 3.5 4 …y …﹣83﹣74832831160 ﹣116﹣83m74883…则m的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质________.26.(12分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.27.(12分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.(1) 若,求证:;(2) 若AB=BC.①如图2,当点P与E重合时,求的值;②如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.2.D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.3.A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°-∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°-∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°. 4.A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×33=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,33).故选A.5.B【解析】 【分析】根据相似三角形的判定方法一一判断即可. 【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B . 【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 6.C 【解析】 【分析】根据合并同类项法则和去括号法则逐一判断即可得. 【详解】解:A .2x 2-3x 2=-x 2,故此选项错误; B .x+x=2x ,故此选项错误; C .-(x-1)=-x+1,故此选项正确; D .3与x 不能合并,此选项错误; 故选C . 【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键. 7.D 【解析】试题分析:设正圆锥的底面半径是r ,则母线长是2r ,底面周长是2πr ,设正圆锥的侧面展开图的圆心角是n°,则=2πr ,解得:n=180°.故选D .考点:圆锥的计算. 8.C 【解析】 【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案. 【详解】 解:连接OD ,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.9.C【解析】【分析】先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.10.B【解析】∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3),因此将抛物线C向右平移4个单位.故选B.11.B【解析】解:画树状图得:∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率=26=13.故选B.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.12.A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.<【解析】【分析】先比较它们的平方,进而可比较4554.【详解】(52=80,(542=100,∵80<100,∴54故答案为:<.【点睛】本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.14.6﹣3【解析】【分析】由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形﹣S四边形AB′OD,计算面积即可.【详解】解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=2,×6=23,S四边形AB′OD=2S△AOD=2×122∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣23.【点睛】此题的重点是能够计算出四边形的面积.注意发现全等三角形.15.1【解析】【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.【详解】a2+b2﹣8a﹣4b+20=0,a2﹣8a+16+b2﹣4b+4=0,(a﹣4)2+(b﹣2)2=0a﹣4=0,b﹣2=0,a=4,b=2,则a2﹣b2=16﹣4=1,故答案为1.【点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.16.108°【解析】【分析】先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.如图:∵图中是两个全等的正五边形,∴BC=BD,∴∠BCD=∠BDC,∵图中是两个全等的正五边形,∴正五边形每个内角的度数是0 (52)1805-⨯=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案为108°.【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.17.二【解析】【分析】根据点在第二象限的坐标特点解答即可.【详解】∵点A的横坐标-2<0,纵坐标1>0,∴点A在第二象限内.故答案为:二.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).18.50°【解析】【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.如图所示:∵∠BEF 是△AEF 的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB ∥CD ,∴∠2=∠BEF=50°,故答案是:50°.【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.x=15,y=1【解析】【分析】根据概率的求法:在围棋盒中有x 颗黑色棋子和y 颗白色棋子,共x+y 颗棋子,如果它是黑色棋子的概率是38,有38x x y +=成立.化简可得y 与x 的函数关系式; (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y 颗棋子,则取得黑色棋子的概率变为12,结合(1)的条件,可得38101102x x y x x y ⎧⎪+⎪⎨+⎪⎪++⎩==,解可得x=15,y=1. 【详解】依题意得,38101102x x y x x y ⎧=⎪+⎪⎨+⎪=⎪++⎩,化简得,53010x y x y -=⎧⎨-=-⎩, 解得,1525x y =⎧⎨=⎩., 检验当x=15,y=1时,0x y +≠,100x y ++≠,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 20.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.21.(1)333+;(2)353+;(2)小贝的说法正确,理由见解析,110553+. 【解析】【分析】(1)连接AC ,BD ,由OE 垂直平分DC 可得DH 长,易知OH 、HE 长,相加即可;(2)补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,由勾股定理可得AO 长,易求AP 长;(1)小贝的说法正确,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,在Rt △ANO 中,设AO=r ,由勾股定理可求出r ,在Rt △OEB 中,由勾股定理可得BO 长,易知BP 长.【详解】解:(1)如图1,连接AC ,BD ,对角线交点为O ,连接OE 交CD 于H ,则OD=OC .∵△DCE 为等边三角形,∴ED=EC ,∵OD=OC∴OE 垂直平分DC ,∴DH 12=DC=1. ∵四边形ABCD 为正方形,∴△OHD 为等腰直角三角形,∴OH=DH=1,在Rt △DHE 中, HE 3=DH=13,∴OE=HE+OH=13+1;(2)如图2,补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,AD=6,DO=1,∴AO 22AD DO =+=15,3OP DO ==Q∴AP=AO+OP=15+1;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,由题意知,点N 为AD 的中点, 3.2,AD BC OA OD ===,∴AN 12=AD=1.6,ON ⊥AD , 在Rt △ANO 中,设AO=r ,则ON=r ﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r5 3 =,∴AE=ON53=-1.2715=,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE23 15 =,∴BO==∴BP=BO+PO5153 =+,∴门角B到门窗弓形弧AD的最大距离为5 153+.【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.22.(1)见解析; (2)① a=100,b=0.15; ②144°;③140人.【解析】【分析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.【详解】(1)∵调查的人数较多,范围较大,∴应当采用随机抽样调查,∵到六年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.(2)①∵喜欢书画类的有20人,频率为0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;③喜欢武术类的人数为:560×0.25=140人.【点睛】本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23.x1 x -【解析】【分析】根据分式的混合运算先计算括号里的再进行乘除. 【详解】(x-1-2x2x1-+)÷2x xx1-+=2x12x2x1--++·x1x x1+-()=()2x1x1-+·x1x x1+-()=x1 x -【点睛】此题主要考查分式的计算,解题的关键是先进行通分,再进行加减乘除运算.24.(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解析】【分析】(1)根据图形平移的性质画出平移后的△DEC即可;(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OA=OB ,∴DE=CE ,∴四边形OCED 是菱形.【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.25.(1)任意实数;(2)32 ;(3)见解析;(4)①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【解析】【分析】(1)没有限定要求,所以x 为任意实数,(2)把x =3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【详解】解:(1)函数y =316x ﹣2x 的自变量x 的取值范围是任意实数; 故答案为任意实数; (2)把x =3代入y =316x ﹣2x 得,y =﹣32; 故答案为﹣32; (3)如图所示;(4)根据图象得,①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.故答案为①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.26.(1)y 1=-20x+1200, 800;(2)15≤x≤40.【解析】【分析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y 2=kx+b ,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y 1=kx+b ,把(0,1200)和(60,0)代入得1200600b k b =⎧⎨+=⎩解得201200k b =-⎧⎨=⎩,所以y 1=-20x+1200,当x=20时,y 1=-20×20+1200=800, (2)设y 2=kx+b ,把(20,0)和(60,1000)代入得200601000k b k b +=⎧⎨+=⎩则25500k b =⎧⎨=-⎩,所以y 2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y 1+y 2=-20x+1200+25x-500=5x+700,由题意2012009005700900x x -+≤⎧⎨+≤⎩解得该不等式组的解集为15≤x≤40所以发生严重干旱时x 的范围为15≤x≤40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.27.(1)证明见解析;(2)①;②3.【解析】【分析】(1) 过点A 作AF ⊥BP 于F,根据等腰三角形的性质得到BF=BP ,易证Rt △ABF ∽Rt △BCE ,根据相似三角形的性质得到,即可证明BP=CE.(2) ①延长BP 、AD 交于点F ,过点A 作AG ⊥BP 于G ,证明△ABG ≌△BCP ,根据全等三角形的性质得BG =CP ,设BG =1,则PG =PC =1,BC =AB =,在Rt △ABF 中,由射影定理知,AB 2=BG·BF =5,即可求出BF =5,PF =5-1-1=3,即可求出的值;②延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB=,根据勾股定理得到,根据等腰直角三角形的性质得到.【详解】解:(1) 过点A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴∴BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP设BG=1,则PG=PC=1∴BC=AB=在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴②延长BF、AD交于点G,过点A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)设BH=BP=CE=1∵∴PG=,BG=∵AB2=BH·BG∴AB=∴∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH为等腰直角三角形∴【点睛】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.。
山东省临沂平邑县联考2019-2020学年中考数学模拟教学质量检测试题

山东省临沂平邑县联考2019-2020学年中考数学模拟教学质量检测试题一、选择题1.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.2.已知A、B两地相距1000米,甲从A地步行到B地,乙从B地步行到A地,若甲行走的速度为100米/分钟,乙行走的速度为150米/分钟,且两人同时出发,相向而行,则两人之间的距离y(米)与时间t (分钟)之间的函数图象是()A. B.C. D.3.如图,正方形ABCD中,AB=O是BC边的中点,点E是正方形内一动点,2OE=,连接DE,将线段DE绕点D逆时针旋转90︒得DF,连接AE,CF.则线段OF长的最小值()A.B2C.D.4.下列命题中哪一个是假命题()A.8的立方根是2B.在函数y=3x的图象中,y随x增大而增大C.菱形的对角线相等且平分D.在同圆中,相等的圆心角所对的弧相等5.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于12MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为()A .()0,1B .80,3⎛⎫ ⎪⎝⎭C .50,3⎛⎫ ⎪⎝⎭D .()0,26.如图为二次函数y=ax 2+bx+c 的图象,给出下列说法:①ab <0;②方程ax 2+bx+c=0的根为x 1=-1,x 2=3;③a+b+c >0;④当x <1时,y 随x 值的增大而增大;⑤当y >0时,x <-1或x >3.其中,正确的说法有( )A .①②④B .①②⑤C .①③⑤D .②④⑤7.如图,已知菱形ABCD ,AB=4,BAD=120∠︒,E 为BC 中点,P 为对角线BD 上一点,则PE+PC 的最小值等于( )A.B. C. D.8.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出两个小球,两球恰好是一个黄球和一个红球的概率为( ) A .16B .14C .13D .129.华为手机Mate X 在5G 网络下能达的理论下载速度为603 000 000B/s ,3秒钟内就能下载好1GB 的电影,将603 000 000用科学计数法表示为( ) A .603×610B .6.03×810C .60.3×710D .0.603×91010.如图,等腰△OAB 的底边OB 恰好在x 轴上,反比例函数y =kx的图象经过AB 的中点M ,若等腰△OAB 的面积为24,则k =( )A .24B .18C .12D .911.(11·丹东)如图,在Rt △ABC 中,∠C=90°, BE 平分∠ABC ,ED 垂直平分AB 于D ,若AC=9,则AE 的值是 ( )A .B .C .6D .412.下列计算正确的是( )A .b 5∙ b 5=2 b 5B .(a- b)5 ·(b - a)4=( a - b)9C .a +2 a 2=3 a 3D .(a n-1)3 = a 3n-1二、填空题13.如图,AOB ∆为等边三角形,点B 的坐标为()2,0-,过点()2,0C 作直线l 交AO 于D ,交AB 于E ,点E 在反比例函数ky x=的图像上,当ADE ∆和DCO ∆的面积相等时,k 的值是__________.14.如图,已知直线AB CD ∥,110DCF ∠=︒,AE AF =,则A ∠=____︒.15.意大利著名数学家斐波那锲在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和。
山东省临沂市平邑县2019年5月中考模拟数学试题(七)参考答案

2019年中考模拟数学试题(七)九年级数学参考答案16.(x +2)(x -1) 16.-2 17.1010 18.2+1 19. y = -21x +3 三、解答题(共7小题,共63分)20.(本小题满分7分) 化简aa+-22 ……………(4分)原式=1 ……………(7分) 21.(本小题满分7分)(1)200、81°……(3分)(2)补图……(4分)微信……(5分)(3)13……(7分)22.(本小题满分7分)150米……………(7分)23.(本小题满分9分)证明:(1)∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠A +∠ABD =90°, ∵∠A =∠DEB ,∠DEB =∠DBC ,∴∠A =∠DBC ,∵∠DBC +∠ABD =90°,∴BC 是⊙O 的切线……………(4分) (2)连接OD ,∵BF =BC =2,且∠ADB =90°,∴∠CBD =∠FBD , OB ,∴∠(9分) (1)第10天……………(2分) (2)当06x ≤≤时, W =34x (4-2)=68x当610x ≤≤时, W =(20x +80)(4-2)=40x +160……………(6分)当06x ≤≤时,W 的最大值为x =6,68×6=508元 当610x ≤≤时,W 的最大值为x =10,40×10+160=560元 当1020x ≤≤时,W =22(13)578x --+,W 的最大值为578元综上所述,第13天的利润最大,最大利润是578元。
……………(9分) 25.(本小题满分11分)(1)解:∵AB =AC ,∠BAC =120°,∴∠ABC =∠ACB =30°,∵∠ACM =∠ACB ,∴∠ACM =∠ABC , 在△ABD 和△ACE 中,AB AC ABC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE , ∴AD =AE ,∠CAE =∠BAD ,∴∠DAE =∠BAC =120°,∴∠ADE =30°;……………(6分) (2)(1)中的结论成立……………(7分) 证明:∵∠BAC =120°,AB =AC ,∴∠B =∠ACB =30°.∵∠ACM =∠ACB ,∴∠B =∠ACM =30°. 在△ABD 和△ACE 中,AB AC ABC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE .∴AD =AE ,∠BAD =∠CAE . ∴∠CAE +∠DAC =∠BAD +∠DAC =∠BAC =120°.即∠DAE =120°. ∵AD =AE ,∴∠ADE =∠AED =30°;……………(11分) 26.(本题满分13分)解:(1)把点A (m ,0)B (4,n )代入1y x -=得2,3m n ==……………(1分) 所以A (2,0)B (4,3)因为2y x bx c =-++,过点A 、B ,所以101643b c b c -++=⎧⎨-++=⎩,解得:65b c =⎧⎨=-⎩所以265y x x =-+=……………(4分)(2)如图2,∵△APM 和△DPN 为等直角三角形 ∴∠APM =∠DPN =45°,∴∠MPN =90°,∴△MPN 为直角三角形令2650x x -+-=,解得:121,5x x ==,∴D (5,0),AD =4设AP=m ,则DP =4-m ,PM ,PN )4m - ∴()112242222MPN S PM PN m m ∆==⨯-=21-4m m -=()21-214m -+∴当2m =,即2AP =时,MPN S ∆最大,此时3OP =,所以()3,0P ……………(10分)(3)存在点Q 坐标为2-3(,)或78-33⎛⎫ ⎪⎝⎭,.……………(13分)。
2019年临沂市中考数学第一次模拟试卷(及答案)

一、选择题
1.在庆祝新中国成立 70 周年的校园歌唱比赛中,11 名参赛同学的成绩各不相同,按照成
绩取前 5 名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要
知道这 11 名同学成绩的( )
A.平均数
B.中位数
C.众数
D.方差
2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑
A.25°
B.75°
C.65°
D.55°
5.如图,在直角坐标系中,直线
y1
2x
2
与坐标轴交于
A、B
两点,与双曲线
y2
k x
( x 0 )交于点 C,过点 C 作 CD⊥x 轴,垂足为 D,且 OA=AD,则以下结论:
① SΔADB SΔADC ; ②当 0<x<3 时, y1 y2 ;
③如图,当 x=3 时,EF= 8 ; 3
10%;乙超市连续两次降价 15%;丙超市一次性降价 30%.则顾客到哪家超市购买这种商品更
合算( )
A.甲
B.乙
C.丙
D.一样
8.甲种蔬菜保鲜适宜的温度是 1℃~5℃,乙种蔬菜保鲜适宜的温度是 3℃~8℃,将这两种
蔬菜放在一起同时保鲜,适宜的温度是( )
A.1℃~3℃
B.3℃~5℃
C.5℃~8℃
D.1℃~8℃
故选 C. 【点睛】
本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.
5.C
解析:C 【解析】
试题分析:对于直线 y1 2x 2 ,令 x=0,得到 y=2;令 y=0,得到 x=1,∴A(1,0),B
2019年山东省临沂市平邑县中考数学一模试卷

2019年山东省临沂市平邑县中考数学一模试卷一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的. 1.(3分)﹣1的相反数是()A.1B.C.D.2.(3分)下列运算正确的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a53.(3分)世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣14.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5B.﹣1C.2D.﹣56.(3分)关于x的方程的解为x=1,则a=()A.1B.3C.﹣1D.﹣37.(3分)如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是()A.3B.4C.5D.68.(3分)如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.B.C.D.9.(3分)如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.3cm B.4cm C.5cm D.6cm10.(3分)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°11.(3分)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10B.8C.6D.512.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本题共 14 小题,每小题 3 分,共 42 分)在每小题所给的四个选项中,只有一项是符合题目要求的.
1.(3 分) ﹣1 的相反数是( )
A.1
B.
C.
D.
2.(3 分)下列运算正确的是( )
A.2a﹣a=1
B.2a+b=2ab
C.(a4)3=a7
D.(﹣a)2•(﹣a)3=﹣a5
3.(3 分)世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为 0.056 盎司.将 0.056 用科学记数法表示为( )
A.5.6×10﹣1
B.5.6×10﹣2
C.5.6×10﹣3
D.0.56×10﹣1
4.(3 分)不等式组
的解集在数轴上表示正确的是( )
A.
B.
米;
(2)求两小时后,货车离 C 站的路程 y2 与行驶时间 x 之间的函数关系式;
(3)客、货两车何时相遇?
25.(11 分)已知,在△ABC 中,∠BAC=90°,∠ABC=45°,点 D 为直线 BC 上一动点(点 D 不与点 B,C 重
合).以 AD 为边作正方形 ADEF,连接 CF
(1)如图 1,当点 D 在线段 BC 上时.求证:CF+CD=BC;
A.( )2016
B.( )2017
C.( )2016
D.( )2017
14.(3 分)如图,在四边形 ABCD 中,AB∥CD,∠A=90°,AB=1,AD=3,DC=5,点 S 从点 A→B→C 运动 到 C 点停止,以 S 为圆心,SD 为半径作弧交射线 DC 于点 T,设 S 点运动的路径长为 x,等腰△DST 的面积为 y, 则 y 与 x 的函数图象应为( )
第 3 页(共 19 页)
A.
B.
C.
D.
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)把答案填在题中横线上.
15.(3 分)分解因式:a3﹣4ab2=
.
16.(3 分)
=
.
17.(3 分)如图,△ABC 中,∠B=60°,BA=3,BC=5,点 E 在 BA 的延长线上,点 D 在 BC 边上,且 ED=EC.若
第 2 页(共 19 页)
之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④点 M(x1,y1)、N(x2, y2)在抛物线上,若 x1<x2,则 y1≤y2,其中正确结论的个数是( )
A.1 个
B.2 个
C.3 个
D.4 个
13.(3 分)在平面直角坐标系中,正方形 A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置, 其中点 B1 在 y 轴上,点 C1、E1、E2、C2、E3、E4、C3…在 x 轴上,已知正方形 A1B1C1D1 的边长为 l,∠B1C1O =60°,B1C1∥B2C2∥B3C3…,则正方形 A2017B2017C2017D2017 的边长是( )
当 x=1 时,函数对应的点在 x 轴下方,则 a+b+c<0,则③正确; 则 y1 和 y2 的大小无法判断,则④错误. 故选:C. 13.【解答】解:∵正方形 A1B1C1D1 的边长为 1,∠B1C1O=60°,B1C1∥B2C2∥B3C3, ∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°, ∴D1E1=C1D1sin30°= ,
线杆 6 米的 B 处安置测角仪 AB,在 A 处测得电线杆上 C 处的仰角为 30°,已知测角仪高 AB 为 1.5 米,求拉线
CE 的长(结果精确到 0.1 米,参考数据: ≈1.414, ≈1.732).
23.(9 分)如图,⊙O 的直径 AB 的长为 2,点 C 在圆周上,∠CAB=30°,点 D 是圆上一动点,DE∥AB 交 CA 的延长线于点 E,连接 CD,交 AB 于点 F. (1)如图 1,当∠ACD=45°时,求证:DE 是⊙O 的切线; (2)如图 2,当点 F 是 CD 的中点时,求△CDE 的面积.
∴y=
=3x,
∴当 0≤x≤1 时,y 随 x 的增大而增大,图象是一条线段;
第 10 页(共 19 页)
当 1<x≤6 时,作 SE⊥DT 于点 E,作 BF⊥DC 于点 F,如右图 2 所示,
则 BC=
,
,
即
,得 SE=
,
∴DE=5﹣CE=5﹣
=5﹣
=5﹣
∴DT=
,
∴y= 故选:A.
=﹣
;
=
,
在数轴上表示为:
,
故选:A.
5.【解答】解:∵关于 x 的方程 x2+3x+a=0 有一个根为﹣2,设另一个根为 m,
∴﹣2+m= ,
解得,m=﹣1, 故选:B. 6.【解答】解:把 x=1 代入原方程得,
去分母得,8a+12=3a﹣3. 解得 a=﹣3.
第 8 页(共 19 页)
故选:D. 7.【解答】解:由七个棱长为 1 的正方体组成的一个几何体,其俯视图如图所示;
C.
D.
5.(3 分)已知关于 x 的方程 x2+3x+a=0 有一个根为﹣2,则另一个根为( )
A.5
B.﹣1
C.2
D.﹣5
6.(3 分)关于 x 的方程
的解为 x=1,则 a=( )
A.1
B.3
C.﹣1
D.﹣3
7.(3 分)如图是由七个棱长为 1 的正方体组成的一个几何体,其俯视图的面积是( )
请根据以上统计图提供的信息,解答下列问题:
(1)共抽取
名学生进行问卷调查;
(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;
(3)该校共有 2500 名学生,请估计全校学生喜欢足球运动的人数.
22.(7 分)如图,在电线杆上的 C 处引拉线 CE、CF 固定电线杆,拉线 CE 和地面所成的角∠CED=60°,在离电
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)把答案填在题中横线上. 15.【解答】解:a3﹣4ab2
=.
故选:C. 9.【解答】解:由折叠可得 DF=EF,设 AF=x,则 EF=8﹣x,
∵AF2+AE2=EF2, ∴x2+42=(8﹣x)2, 解得 x=3. 故选:A. 10.【解答】解:∵AB 是⊙O 直径,AE 是⊙O 的切线, ∴∠BAD=90°, ∵∠B= ∠AOC=40°,
∴∠ADB=90°﹣∠B=50°,
∠AOC=80°,则∠ADB 的度数为( )
A.40°
B.50°
C.60°
D.20°
11.(3 分)如图,在 Rt△ABC 中,∠B=90°,AB=6,BC=8,点 D 在 BC 上,以 AC 为对角线的所有平行四边
形 ADCE 中,DE 的最小值是( )
A.10
B.8
C.6
D.5
12.(3 分)抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=﹣1,与 x 轴的一个交点 A 在点(﹣3,0)和(﹣2,0)
第 1 页(共 19 页)
A.
B.
C.
D.
9.(3 分)如图,将边长为 8cm 的正方形纸片 ABCD 折叠,使点 D 落在 BC 边中点 E 处,点 C 落在点 Q 处,折痕 为 FH,则线段 AF 的长是( )
A.3cm
B.4cm
C.5cmቤተ መጻሕፍቲ ባይዱ
D.6cm
10.(3 分)如图,AB 是⊙O 直径,点 C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接 BC 并延长交 AE 于点 D.若
第 4 页(共 19 页)
b}=b,例如:max{1,3}=3.则函数 y=max{x2+2x+2,﹣x2﹣1}的最小值是
.
三、解答题(本大题共 7 小题,共 63 分)
20.(7 分)先化简,再求值:(x+1﹣ )÷
,其中 x=2.
21.(7 分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学 生进行问卷调查,统计整理并绘制了如图两幅不完整的统计图:
第 5 页(共 19 页)
24.(9 分)如图 1 所示,在 A,B 两地之间有汽车站 C 站,客车由 A 地驶往 C 站,货车由 B 地驶往 A 地.两车同 时出发,匀速行驶.图 2 是客车、货车离 C 站路程 y1,y2(千米)与行驶时间 x(小时)之间的函数关系图象.
(1)填空:A,B 两地相距
B、2a 与 b 不是同类项,不能合并,故本选项错误; C、(a4)3=a12,故本选项错误; D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确. 故选:D. 3.【解答】解:将 0.056 用科学记数法表示为 5.6×10﹣2, 故选:B.
4.【解答】解:
∵解不等式①得:x≤2, 解不等式②得:x>﹣1, ∴不等式组的解集为﹣1<x≤2,
AE=4,则 BD 的边长为
.
18.(3 分)如图,在平面直角坐标系 xOy 中,△OAB 的顶点 A 在 x 轴正半轴上,OC 是△OAB 的中线,点 B,C 在
反比例函数 y= (x>0)的图象上,则△OAB 的面积等于
.
19.(3 分)对于两个实数,规定 max{a,b}表示 a、b 中的较大值,当 a≥b 时,max{a,b}=a,当 a<b 时,max{a,
故选:B.
11.【解答】解:平行四边形 ADCE 的对角线的交点是 AC 的中点 O,当 OD⊥BC 时,OD 最小,即 DE 最小.