实验五聚合物材料冲击强度的测定(定稿)
实验聚合物材料的冲击强度测定

实验5 聚合物材料的冲击强度测定1. 实验目的(1)测定塑料的冲击强度,并了解其对制品使用的重要性。
(2)了解冲击实验机原理,学会使用冲击实验机。
2. 实验原理冲击强度(Impact Strength)是高聚物材料的一个非常重要的力学指标,它是指某一标准样品在每秒数米乃至数万米的高速形变下,在极短的负载时间下表现出的破坏强度,或者说是材料对高速冲击断裂的抵抗能力,也称为材料的韧性。
近年来在高聚物材料力学改性方面的研究非常活跃,其中一个主要目的是如何增加材料的冲击强度,即材料的增韧。
因此冲击强度的测量无论在研究工作还是在工业应用中都是不可缺少的。
一般冲击强度可用下列几种方法进行测定:摆锤式冲击弯曲实验―包括简支梁型和悬臂梁型,落球式冲击实验,高速拉伸冲击实验。
简支梁型冲击试验是摆锤打击简支梁试样的中央;悬臂梁法则是用摆锤打击有缺口的悬臂梁试样的自由端。
摆锤式冲击试验试样破坏所需的能量实际上无法测定,试验所测得的除了产生裂缝所需的能量及使裂缝扩展到整个试样所滞的能量以外,还要加上使材料发生永久变形的能量和把断裂的试样碎片抛出去的能量。
把断裂试样碎片抛出的能量与材料的韧性完全无关,但它却占据了所测总能量中的一部分。
试验证明,对同一跨度的试验,试样越厚消耗在碎片抛出的能量越大。
所以不同尺寸试样的试验结果不好相互比较。
但由于摆锤式试验方法简单方便,所以在材料质量控制、筛选等方面使用较多。
落球式冲击试验是把球、标准的重锤或投掷枪由已知高度落在试棒或试片上,测定使试棒或试片刚刚够破裂所需能量的一种方法。
这种方法与摆锤式试验相比表现出与实地试验有很好的相关性。
但缺点是如果想把某种材料与其他材料进行比较,或者需改变重球质量,或者改变落下高度,十分不方便。
评价材料的冲击强度最好的试验方法是高速应力-应变试验。
应力-应变曲线下方的面积与使材料破坏所需的能量成正比。
如果试验是以相当高的速度进行,这个面积就变成与冲击强度相等。
冲击强度的测试项目报告

冲击强度的测试项目报告一、引言冲击强度是指物体在受到外力冲击时所能承受的力量。
冲击强度测试是为了确定材料在受到冲击时的耐受能力,以评估其在实际使用中的可靠性和安全性。
本报告旨在介绍冲击强度测试的目的、方法和结果,并对测试结果进行分析和讨论。
二、目的本次测试的目的是评估材料在受到冲击时的耐受能力,以确定其在实际使用中的安全性和可靠性。
通过测试,可以为材料的设计、生产和使用提供参考依据。
三、方法1.材料选择:选择具有代表性的材料进行测试,确保测试结果的准确性和可靠性。
2.设备准备:准备冲击测试机和相应的测试仪器,确保测试过程的准确性和一致性。
3.测量参数:设置合适的冲击速度和冲击能量,以模拟实际使用中可能遇到的冲击情况。
4.测试过程:将待测样品放入冲击测试机中,进行相应的冲击测试,记录测试数据。
5.数据分析:根据测试数据进行统计和分析,得出测试结果。
四、结果根据上述方法进行测试后,我们得到了以下结果:1.被测试材料的冲击强度为X单位,表示材料能够承受的最大冲击力。
2.在不同冲击速度下,材料的冲击强度有所不同,速度越大,冲击强度越高。
3.不同材料的冲击强度存在差异,其中一材料的冲击强度可能要高于其他材料。
五、讨论1.测试结果表明,被测试材料具有较高的冲击强度,能够承受较大的冲击力,符合设计要求。
2.在实际使用中,可能会遇到更高速度的冲击力,因此,在选择材料时需要考虑到冲击强度的因素。
3.冲击强度与材料的物理性质和结构密切相关,不同材料的冲击强度差异可能源于材料本身的特性。
六、结论通过对冲击强度的测试,我们得出结论:被测试材料具有较高的冲击强度,能够承受较大的冲击力,在实际使用中具有较好的安全性和可靠性。
然而,在选择材料时,还需要考虑冲击强度与材料的物理性质及结构之间的关系,以确保所选材料能够满足冲击强度的要求。
七、建议在今后的测试中,可以进一步研究不同材料的冲击强度与其物理性质之间的关系,以提高对材料冲击强度的预测和评估能力。
材料冲击实验报告

材料冲击实验报告材料冲击实验报告引言:材料冲击实验是一种常见的实验方法,用于评估材料的抗冲击性能。
通过对材料在受到外部冲击力时的变形、断裂等现象进行观察和分析,可以了解材料的强度和耐久性。
本实验旨在通过对不同材料进行冲击实验,探究不同材料的抗冲击性能差异,并为材料的选用和设计提供参考。
实验材料和方法:本次实验选取了三种常见的材料:金属、塑料和玻璃。
实验中使用了冲击试验机和相应的冲击试验样品。
首先,将样品固定在冲击试验机上,然后施加不同的冲击力,记录样品在不同冲击力下的变形情况。
实验过程中,要注意保证实验环境的稳定性和安全性,避免人身伤害和设备损坏。
实验结果和分析:通过对三种材料进行冲击实验,观察到以下现象和结果:1. 金属材料:金属材料在受到冲击力时表现出较高的强度和韧性。
在实验中,当施加较小的冲击力时,金属样品出现了一定的变形,但没有发生断裂。
随着冲击力的增加,金属样品的变形程度逐渐加剧,但仍然能够保持一定的完整性。
这说明金属材料具有较好的抗冲击性能,适合用于承受较大冲击力的场合。
2. 塑料材料:塑料材料在受到冲击力时表现出较低的强度和韧性。
在实验中,当施加较小的冲击力时,塑料样品出现了明显的变形,甚至出现了断裂。
随着冲击力的增加,塑料样品的断裂面积逐渐扩大,变形程度也逐渐增加。
这说明塑料材料在承受冲击力时易发生破损,抗冲击性能较差。
3. 玻璃材料:玻璃材料在受到冲击力时表现出较高的硬度和脆性。
在实验中,当施加较小的冲击力时,玻璃样品出现了明显的破碎,形成了许多碎片。
随着冲击力的增加,玻璃样品的破碎面积逐渐扩大,碎片数量也逐渐增多。
这说明玻璃材料在承受冲击力时容易破碎,抗冲击性能较差。
结论:通过本次实验可以得出以下结论:1. 不同材料的抗冲击性能存在差异,金属材料具有较好的抗冲击性能,塑料材料抗冲击性能较差,玻璃材料抗冲击性能也较差。
2. 在实际应用中,需要根据具体的使用场景和要求选择合适的材料。
实验五聚合物材料冲击强度的测定(定稿)

实验五 聚合物材料冲击强度的测定一、实验目的1. 了解高分子材料的冲击性能;2. 理解摆锤式抗冲击强度试验机的原理;3. 掌握冲击强度的测试方法;二、实验原理冲击强度是衡量材料韧性的一种强度指标,表征材料抵抗冲击载荷破坏的能力。
通常定义为试样受冲击载荷而折断时单位面所吸收的能量。
()=/K A bh α式中,K α为冲击强度;单位为J/cm 2;A 为冲断试样所消耗的功;b 为试样宽度;h 为试样厚度。
冲击强度的测试方法很多,应用较广的有以下三种:(1)摆锤式冲击试验;(2)落球法冲击试验;(3)高速拉伸试验。
本实验采用摆锤式冲击试验法。
摆锤冲击试验,是将标准试样放在冲击机规定的位置上,然后让重锤自由落下冲击试样,测量摆锤冲断试样所消耗的功,根据上述公式计算试样的冲击强度。
摆锤冲击试验机的基本构造有3部分:机架部分、摆锤冲击部分和指示系统部分。
根据试样的按放方式,摆锤式冲击试验又分为简支梁型(Charpy 法)和悬臂梁型。
前者试样两端固定,摆锤冲击试样的中部;后者试样一端固定,摆锤冲击自由端。
如图1所示。
图1 摆锤冲击试验中试样的安放方式试样可采用带缺口和无缺口两种。
采用带缺口试样的目的是使缺口处试样的截面积大为减小,受冲击时,试样断裂一定发生在这一薄弱处,所有的冲击能量都能在这局部的地方被吸收,从而提高试验的准确性。
测定时的温度对冲击强度有很大影响。
温度越高,分子链运动的松弛过程进行越快,冲击强度越高。
相反,当温度低于脆化温度时,几乎所有的塑料都会失去抗冲击的能力。
当然,结构不同的各种聚合物,其冲击强度对温度的依赖性也各不相同。
湿度对有些塑料的冲击强度也有很大影响。
如尼龙类塑料,特别是尼龙6、尼龙66等在湿度较大时,其冲击强度更主要表现为韧性的大大增加,在绝干状态下几乎完全丧失冲击韧性。
这是因为水分在尼龙中起着增塑剂和润滑剂的作用。
试样尺寸和缺口的大小和形状对测试结果也有影响。
用同—种配方,同一种成型条件而厚度不同的塑料作冲击试验时,会发现不同厚度的试样在同一跨度上作冲击试验,以及相同厚度在不同跨度上试验,其所得的冲击强度均不相同,且都不能进行比较和换算。
聚合物冲击性能测试

实验11 聚合物冲击性能测试一、实验目的1.测定聚合物的冲击强度,了解其对制品使用的重要性;2.熟悉聚合物的冲击性能测试的原理,掌握摆锤式冲击试验机操作方法;3.掌握实验结果处理方法,了解测试条件对测定结果的影响。
二、实验原理冲击性能实验是在冲击负荷的作用下测定材料的冲击强度。
在实验中,对聚合物试样施加一次冲击负荷使试样破坏,记录下试样破坏时或过程中试样单位截面积所吸收的能量,即得到冲击强度。
由于聚合物的制备方法和本身结构的不同,它们的冲击强度也各不相同。
在工程应用上,冲击强度是一项重要的性能指标,通过抗冲击试验,可以评价聚合物在高速冲击状态下抵抗冲击的能力或判断聚合物的脆性和韧性程度。
冲击试验的方法很多,根据实验温度可分为常温冲击、低温冲击和高温冲击三种,依据试样的受力状态,可分为摆锤式弯曲冲击(包括简支梁冲击GB1043和悬臂梁冲击GB1843)、拉伸冲击、扭转冲击和剪切冲击;依据采用的能量和冲击次数,可分为大能量的一次冲击(简称一次冲击试验或落锤冲击实验GB11548)和小能量的多次冲击实验(简称多次冲击实验)。
不同材料或不同用途可选择不同的冲击试验方法,由于各种试验方法中试样受力形式和冲击物的几何形状不一样,不同的试验方法所测得的冲击强度结果不能相互比较。
摆锤式弯曲冲击实验方法由于比较简单易行,在控制产品质量和比较制品韧性时是一种经常使用的测试方法。
这里介绍摆锤式弯曲冲击(简支梁冲击和悬臂梁冲击)试验机的工作原理,如图11-1所示。
实验时摆锤挂在机架的扬臂上,摆锤杆的中心线与通过摆锤杆轴中心的铅垂线成一角度为α的扬角,此时摆锤具有一定的位能;然后让摆锤自由落下,在它摆到最低点的瞬间其位能转变为动能;随着试样断裂成两部分,消耗了摆锤的冲击能并使其大大减速;摆锤的剩余能量使摆锤继续升高至一定高度,β为其升角。
如以W表示摆锤的重量,l为摆锤杆的长度,则摆锤的初始功A0为:)cos 1(0α−=Wl A (11-1)若考虑冲断试样时克服的空气阻力和试样断裂而飞出时所消耗的功,根据能量守恒定律,可用式(11-2)表示:2021)cos 1(mv A Aa A Wl A +++++=ββ (11-2) 通常,式(11-2)后三项都忽略不计,则可简单地把试样断裂时所消耗的功表示为:)cos (cos 0αβ−=Wl A (11-3)式中除β角外均为已知数,因此,根据摆锤冲断试样后的升角β的数值即可从读数盘直接读取冲断试样时所消耗功的数值。
冲击试验实验报告

实验报告:冲击试验一、实验目的本实验旨在通过冲击试验,评估材料或产品在冲击环境下的性能,包括其抗冲击能力、断裂强度、能量吸收等。
通过本实验,我们期望能更好地了解材料或产品的力学性能,为其在现实工程中的应用提供依据。
二、实验原理冲击试验是通过在短时间内施加大量的能量,使材料或产品受到冲击力,从而评估其性能。
冲击试验机是一种能够产生冲击力的试验设备,它能够模拟实际工程中的冲击环境,从而对材料或产品进行测试。
三、实验步骤1. 准备试样:选择需要进行冲击试验的材料或产品,并按照标准尺寸进行制备。
2. 安装试样:将试样安装到冲击试验机上,确保稳固。
3. 设置参数:设置冲击试验的参数,包括冲击速度、冲击次数等。
4. 开始试验:启动冲击试验机,使试样受到冲击。
5. 观察记录:观察试样在冲击过程中的表现,记录数据。
6. 分析数据:对记录的数据进行分析,包括抗冲击能力、断裂强度、能量吸收等。
7. 撰写报告:根据实验结果撰写实验报告。
四、实验结果与数据分析实验结果显示,试样在受到冲击时,其抗冲击能力、断裂强度、能量吸收等方面表现出不同的性能。
通过对比不同试样的数据,我们可以得出以下结论:1. 抗冲击能力:试样的抗冲击能力与其材质、结构等因素有关。
例如,某种合金材料在冲击试验中表现出了较高的抗冲击能力,而另一种塑料材料则相对较弱。
2. 断裂强度:试样的断裂强度与材料的力学性能有关。
例如,一种高强度钢在冲击试验中表现出较高的断裂强度,而另一种低强度钢则相对较弱。
3. 能量吸收:试样的能量吸收能力与其结构和材质有关。
例如,一种泡沫材料在冲击试验中表现出较好的能量吸收能力,而另一种实心材料则相对较弱。
五、结论与建议通过本实验,我们得出了一些关于材料或产品在冲击环境下性能的结论。
这些结论为其在现实工程中的应用提供了依据。
针对实验结果,我们提出以下建议:1. 对于需要承受冲击环境的材料或产品,应选择具有较高抗冲击能力的材质和结构。
材料冲击试验

材料冲击试验材料冲击试验是用来评估材料在受到冲击载荷作用时的性能和耐久性。
在工程领域中,材料的耐冲击性能是非常重要的,因为在实际使用中,材料可能会受到各种外部冲击力的作用,如撞击、碰撞、挤压等。
因此,对材料的冲击性能进行评估和测试,可以帮助工程师们选择合适的材料,确保产品在使用过程中具有足够的安全性和可靠性。
材料冲击试验通常包括冲击试验机、试样制备、试验方法和试验结果分析等内容。
冲击试验机是用来施加冲击载荷的设备,它可以模拟出各种不同类型和强度的冲击载荷,如冲击力、冲击能量、冲击速度等。
试样制备是为了保证试样的几何尺寸和质量符合要求,以便进行准确的试验。
试验方法是根据不同的标准和要求,设计出合适的试验方案和程序,以确保试验的可靠性和可重复性。
试验结果分析是对试验数据进行处理和分析,得出材料的冲击性能参数和曲线,从而评估材料的耐冲击性能。
冲击试验的结果可以反映出材料在受到冲击载荷时的表现,如抗冲击强度、断裂形态、残余变形等。
这些参数和表现可以帮助工程师们了解材料的耐冲击性能,从而决定材料的使用范围和条件。
通过对不同材料的冲击试验结果进行比较和分析,可以帮助工程师们选择合适的材料,设计出更加安全和可靠的产品。
在实际工程中,材料的冲击性能往往受到多种因素的影响,如材料的类型、组织结构、加工工艺、温度和湿度等。
因此,进行冲击试验时需要考虑这些因素,并进行相应的控制和调整,以确保试验结果的准确性和可靠性。
此外,冲击试验还需要根据不同的应用场景和要求,设计出相应的试验方案和标准,以满足工程实际需求。
总之,材料冲击试验是评估材料耐冲击性能的重要手段,它可以帮助工程师们选择合适的材料,设计出更加安全和可靠的产品。
通过对材料的冲击性能进行评估和测试,可以提高产品的质量和可靠性,确保产品在使用过程中具有足够的安全性和耐久性。
因此,冲击试验在工程领域中具有重要的意义和价值。
冲击试验实验分析报告

冲击试验实验分析报告《冲击试验实验分析报告》一、实验背景本次实验是对材料进行冲击试验,旨在研究材料在受冲击加载下的性能。
通过实验,可以了解材料的破裂强度、韧性等特性,为材料的设计及改进提供理论依据。
二、实验方法实验采用冲击试验机进行,首先将试样固定在冲击试验机上,然后以一定的冲击速度对试样进行加载。
实验过程记录了试样在加载过程中的位移、时间等重要数据。
三、实验结果对实验数据进行分析,绘制了试样在冲击加载下的力-位移曲线。
从图中可以看出,在初始加载阶段,试样的位移迅速增加,力也随之增大。
当力达到一定数值时,试样开始发生破裂,位移急剧下降。
四、实验分析1. 能量吸收能力:由于冲击试验是在高速加载情况下进行的,试样需要在很短的时间内吸收冲击能量。
能量吸收能力越强,试样的破裂强度越高,材料的韧性也更好。
2. 破裂特性:从实验结果中可以看出,在破裂阶段,试样的位移急剧下降。
这说明试样在加载过程中发生了破裂,并不能继续承受加载。
破裂位移也是评估材料安全性能的重要指标之一。
3. 力孕时间:实验数据中还可以观察到试样承受冲击力的时间。
力的持续时间越长,说明试样对冲击力的吸收能力越强。
而在破裂阶段,力将迅速下降至零。
五、实验结论根据实验结果和分析,可以得出以下结论:1. 材料在受冲击加载下具有一定的破裂强度和韧性。
2. 利用冲击试验机可以对材料的性能进行评估和分析。
3. 材料在冲击加载下可以吸收一定的能量。
4. 实验结果可以为材料的设计和改进提供理论依据。
六、问题及改进方向在实验过程中,还存在一些问题和改进方向:1. 实验过程中的试样形状和大小可能会对实验结果产生影响,可以进一步探讨不同形状和大小试样的冲击性能。
2. 实验过程中的温度可能会对材料的性能产生影响,可以进一步研究不同温度下材料的冲击性能。
3. 实验数据的采集和分析可能会存在一定的误差,可以采用更精确的设备和方法进行改进。
七、参考文献[1] XXX. 材料力学实验技术. 北京: 高等教育出版社, 2010.八、致谢感谢实验指导老师对本次实验的指导和帮助,也感谢实验室的老师和同学们对本次实验的支持和配合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五 聚合物材料冲击强度的测定
一、实验目的
1. 了解高分子材料的冲击性能;
2. 理解摆锤式抗冲击强度试验机的原理;
3. 掌握冲击强度的测试方法;
二、实验原理
冲击强度是衡量材料韧性的一种强度指标,表征材料抵抗冲击载荷破坏的能力。
通常定义为试样受冲击载荷而折断时单位面所吸收的能量。
()=/K A bh α
式中,K α为冲击强度;单位为J/cm 2;A 为冲断试样所消耗的功;b 为试样宽度;h 为试样厚度。
冲击强度的测试方法很多,应用较广的有以下三种:
(1)摆锤式冲击试验;
(2)落球法冲击试验;
(3)高速拉伸试验。
本实验采用摆锤式冲击试验法。
摆锤冲击试验,是将标准试样放在冲击机规定的位置上,然后让重锤自由落下冲击试样,测量摆锤冲断试样所消耗的功,根据上述公式计算试样的冲击强度。
摆锤冲击试验机的基本构造有3部分:机架部分、摆锤冲击部分和指示系统部分。
根据试样的按放方式,摆锤式冲击试验又分为简支梁型(Charpy 法)和悬臂梁型。
前者试样两端固定,摆锤冲击试样的中部;后者试样一端固定,摆锤冲击自由端。
如图1所示。
图1 摆锤冲击试验中试样的安放方式
试样可采用带缺口和无缺口两种。
采用带缺口试样的目的是使缺口处试样的截面积大为减小,受冲击时,试样断裂一定发生在这一薄弱处,所有的冲击能量都能在这局部的地方被吸收,从而提高试验的准确性。
测定时的温度对冲击强度有很大影响。
温度越高,分子链运动的松弛过程进
行越快,冲击强度越高。
相反,当温度低于脆化温度时,几乎所有的塑料都会失去抗冲击的能力。
当然,结构不同的各种聚合物,其冲击强度对温度的依赖性也各不相同。
湿度对有些塑料的冲击强度也有很大影响。
如尼龙类塑料,特别是尼龙6、尼龙66等在湿度较大时,其冲击强度更主要表现为韧性的大大增加,在绝干状态下几乎完全丧失冲击韧性。
这是因为水分在尼龙中起着增塑剂和润滑剂的作用。
试样尺寸和缺口的大小和形状对测试结果也有影响。
用同—种配方,同一种成型条件而厚度不同的塑料作冲击试验时,会发现不同厚度的试样在同一跨度上作冲击试验,以及相同厚度在不同跨度上试验,其所得的冲击强度均不相同,且都不能进行比较和换算。
而只有用相同厚度的试样在同一跨度上试验,其结果才能相互比较,因此在标准试验方法中规定了材料的厚度和跨度。
缺口半径越小,即缺口越尖锐,则应力越易集中,冲击强度就越低。
因此,同一种试样,加工的缺口尺寸和形状不同,所测得冲击强度数据也不——样。
这在比较强度数据时应该注意。
三、实验仪器和材料
1、试验机
试验机为摆锤式(悬臂梁),并由摆锤、试样支座、能量指示机构和机体等主要构件组成。
能指示试样破坏过程中所吸收的冲击能量。
2、摆体
摆体是试验机的核心部分,它包括旋转轴、摆杆、摆锤和冲击刀刃等部件。
旋转轴心到摆锤打击中心的距离与旋转轴心至试样中心距离应一致。
两者之差不应超过后者的±1%。
冲击刀刃规定夹角为30士1º。
端部圆弧半径为2.0士0.5 mm。
摆锤下摆时,刀刃通过两支座问的中央偏差不得超过士0.2 mm,刀刃应与试样的冲击面接触。
接触线应与试样长轴线相垂直,偏差不超过士2º。
3、试样支座
为两块安装牢固的支撑块,能使试样成水平,其偏差在1/20以内。
在冲击瞬间应能使试样打击面平行于摆锤冲击刀刃,其偏差在1/200以内。
支撑刃前角为5º,后角为10士1º,端部圆弧半径为1mm。
4、能量指示机构
能量指示机构包括指示度盘和指针。
应对能量度盘的摩擦、风阻损失和示值误差做准确的校正。
5、机体
机体为刚性良好的金属框架,并牢固地固定在质量至少为所用最重摆锤质量40倍的基础上。
本试验采用带缺口试样。
试样表面应平整、无气泡、裂纹、分
层和明显杂质。
试样缺口处应无毛刺。
6. 冲击能量及摆锤力矩
四、实验步骤
1 试样制备
(1)将样条裁成1.0 - 1.5cm 宽,并打磨光滑,使无毛刺、裂痕。
(2)测量试样中部的宽度和厚度,准确至0.05mm 。
(3)在缺口试样机上将试样中部切出缺口,缺口深度3mm 。
2 根据试样破坏时所需的能量选择摆锤,使消耗的能量在摆锤总能量的10—85%范围内。
(注::若符合这一能量范围的不只一个摆锤时,应该用最大能量的摆锤。
) 摆锤的安装:首先卸下摆锤上连接套上的螺钉及上连接套,再将摆锤用上连接套及其上的螺钉牢固地固定在主轴上。
装卸连接套时,要保持上下部分方向一致。
3 转动衬盘使表盘外圈处于铅垂位置的小孔内出现所选摆锤的能量值。
4 调节能量度盘指针零点,使它在摆锤处于起始位置时与主动针接触。
进行空击试验,保证总摩擦损失不超过相应的数值。
5抬起并锁住摆锤,把试样按规定放置在两支撑块上,试样支撑面紧贴在支撑块上,使冲击刀刃对准试样中心,缺口试样刀刃对准缺口背向的中心位置。
6 平稳释放摆锤,从度盘上读取试样吸收的冲击能量。
7 试样无破坏的冲击值应不作取值。
试样完全破坏或部分破坏的可以取值。
8 如果同种材料可以观察到一种以上的破坏类型,须在报告中标明每种破坏类型的平均冲击值和试样破坏的百分数。
不同破坏类型的结果不能进行比较。
五、实验结果及数据处理
1. 计算冲击强度:
无缺口冲击强度 ()=/K A bh α(KJ/cm 2)
缺口冲击强度 ()=/K A b h a α⎡⎤-⎣⎦ (KJ/cm 2) 式中:
A — 缺口试样吸收的冲击能量,J ;
b — 试样宽度,mm ;
h — 试样厚度,mm ;
a — 缺口深度,mm 。
2. 当用户选择小能量的摆锤(悬臂梁5.5J )以下试验时,由于摆锤能量较小,试验中由于空气阻力、摩擦阻力等不可消除阻力的影响不能忽略不计,因此应对试验结果进行修正。
修正方法如下:
冲击后将表盘上被动指针所指的值代入下式进行计算,计算结果即为试样所吸收能量的真实值。
()()cos cos cos cos A M αββαβααβ⎡⎤'⎛⎫+'=---⎢⎥ ⎪+⎝⎭⎣
⎦ A :试样吸收的能量
M :摆锤力矩
α: 摆锤预扬角
β:空击后的升角
β':试样断裂后摆锤的升角
六、注意事项
1 试验过程中注意安全。
在做空击和冲击试验过程中,其他人应远离冲击试验机。
2 试样冲断后应及时捡回并观察断裂情况是否符合要求。
3 试样无破坏的冲击值应不作取值。
试样完全破坏或部分破坏的可以取值。
七、思考题
1 影响高分子材料冲击强度测试值的因素有哪些?
2 高分子材料冲击强度测试方法有哪些,各有什么不同?。