充要条件的证明问题
高中数学难点2 充要条件(附答案)

难点2 充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p 和结论q 之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场(★★★★★)已知关于x 的实系数二次方程x 2+ax +b =0有两个实数根α、β,证明:|α|<2且|β|<2是2|a |<4+b 且|b |<4的充要条件.●案例探究[例1]已知p :|1-31-x |≤2,q :x 2-2x +1-m 2≤0(m >0),若⌐p 是⌐q 的必要而不充分条件,求实数m 的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若⌐p 是⌐q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p :|1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10 q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 *∵p 是q 的充分不必要条件,∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集. 又∵m >0∴不等式*的解集为1-m ≤x ≤1+m ∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, ∴实数m 的取值范围是[9,+∞).[例2]已知数列{a n }的前n 项S n =p n +q (p ≠0,p ≠1),求数列{a n }是等比数列的充要条件. 命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性. 知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n 项和与通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧与方法:由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n关系式去寻找a n 与a n +1的比值,但同时要注意充分性的证明.解:a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p 若{a n }为等比数列,则nn a a a a 112+==p ∴qp p p +-)1(=p , ∵p ≠0,∴p -1=p +q ,∴q =-1这是{a n }为等比数列的必要条件.下面证明q =-1是{a n }为等比数列的充分条件.当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1 (p ≠0,p ≠1) 211)1()1(-----=n n n n p p p p a a =p 为常数 ∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1.●锦囊妙计本难点所涉及的问题及解决方法主要有:(1)要理解“充分条件”“必要条件”的概念:当“若p 则q ”形式的命题为真时,就记作p ⇒q ,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 、B 互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).●歼灭难点训练一、选择题1.(★★★★)函数f (x )=x |x +a |+b 是奇函数的充要条件是( )A.ab =0B.a +b =0C.a =bD.a 2+b 2=02.(★★★★)“a =1”是函数y =cos 2ax -sin 2ax 的最小正周期为“π”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也不是必要条件二、填空题3.(★★★★)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的_________.4.(★★★★)命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.三、解答题5.(★★★★★)设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n }、{b n }满足:b n =nna a a n +++++++ 321221,求证:数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.(★★★★★)已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.8.(★★★★★)p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b |=|α·β|=|α|·|β|<2×2=4.设f (x )=x 2+ax +b ,则f (x )的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f (±2)>0.即有⇒⎩⎨⎧>+->++024024b a b a 4+b >2a >-(4+b ) 又|b |<4⇒4+b >0⇒2|a |<4+b(2)必要性:由2|a |<4+b ⇒f (±2)>0且f (x )的图象是开口向上的抛物线.∴方程f (x )=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f (x )=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.歼灭难点训练一、1.解析:若a 2+b 2=0,即a =b =0,此时f (-x )=(-x )|x +0|+0=-x ·|x |=-(x |x +0|+b ) =-(x |x +a |+b )=-f (x ).∴a 2+b 2=0是f (x )为奇函数的充分条件,又若f (x )=x |x +a |+b 是奇函数,即f (-x )=(-x )|(-x )+a |+b =-f (x ),则必有a =b =0,即a 2+b 2=0.∴a 2+b 2=0是f (x )为奇函数的必要条件.答案:D2.解析:若a =1,则y =cos 2x -sin 2x =cos2x ,此时y 的最小正周期为π.故a =1是充分条件,反过来,由y =cos 2ax -sin 2ax =cos2ax .故函数y 的最小正周期为π,则a =±1,故a =1不是必要条件.答案:A二、3.解析:当a =3时,直线l 1:3x +2y +9=0;直线l 2:3x +2y +4=0.∵l 1与l 2的A 1∶A 2=B 1∶B 2=1∶1,而C 1∶C 2=9∶4≠1,即C 1≠C 2,∴a =3⇔l 1∥l 2.答案:充要条件4.解析:若P (x 0,y 0)是F (x ,y )=0和G (x ,y )=0的交点,则F (x 0,y 0)+λG (x 0,y 0)=0,即F (x ,y )+λG (x ,y )=0,过P (x 0,y 0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a =α+β,b =αβ.判定的条件是p :⎩⎨⎧>>12b a 结论是q :⎩⎨⎧>>11βα(注意p 中a 、b 满足的前提是Δ=a 2-4b ≥0)(1)由⎩⎨⎧>>11βα,得a =α+β>2,b =αβ>1,∴q ⇒p (2)为证明p q ,可以举出反例:取α=4,β=21,它满足a =α+β=4+21>2,b =αβ=4×21=2>1,但q 不成立. 综上讨论可知a >2,b >1是α>1,β>1的必要但不充分条件.6.证明:①必要性:设{a n }成等差数列,公差为d ,∵{a n }成等差数列.d n a n n n n d n a n na a a b n n 32)1(1])1(3221[)21(32121121⋅-+=+++-++⋅+⋅++++=+++++++=∴ 从而b n +1-b n =a 1+n ·32d -a 1-(n -1) 32d =32d 为常数. 故{b n }是等差数列,公差为32d . ②充分性:设{bn }是等差数列,公差为d ′,则b n =(n -1)d∵b n (1+2+…+n )=a 1+2a 2+…+na n ① b n -1(1+2+…+n -1)=a 1+2a 2+…+(n -1)a n②①-②得:na n =2)1(2)1(--+n n b n n n b n -1 ∴a n =d n b d n b n d n b n b n b n n n '⋅-+='-+--'-++=--+-23)1(])2([21])1([2121211111,从而得a n +1-a n =23d ′为常数,故{a n }是等差数列. 综上所述,数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.解:①必要性:由已知得,线段AB 的方程为y =-x +3(0≤x ≤3)由于抛物线C 和线段AB 有两个不同的交点,所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y *有两个不同的实数解.消元得:x 2-(m +1)x +4=0(0≤x ≤3)设f (x )=x 2-(m +1)x +4,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤<⇒≥++-=≥=>⨯-+=∆3210310304)1(39)3(04)0(044)1(2m m m f f m ②充分性:当3<x ≤310时, x 1=2)1(1216)1(122+-+>-+-+m m m m >0 3216)1310(1310216)1(1222=-+++≤-+-+=m m x ∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组*有两组不同的实数解.因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件3<m ≤310. 8.解:若关于x 的方程x 2+mx +n =0有2个小于1的正根,设为x 1,x 2.则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1, 根据韦达定理:⎩⎨⎧<<<-<⎩⎨⎧=-=+10202121n m n x x m x x 得 有-2<m <0;0<n <1即有q ⇒p .反之,取m =-21491,02131,21,312⨯-=∆=+-=x x n <0 方程x 2+mx +n =0无实根,所以p q综上所述,p 是q 的必要不充分条件.。
充分条件、必要条件、充要条件题型解析

ʏ朱珠充分条件与必要条件是高中数学的重要概念,因其抽象性而成为同学们难以理解的内容㊂下面就这方面的题型进行举例分析㊂一㊁充分条件㊁必要条件㊁充要条件的判断充分条件与必要条件:若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇒/q,则p不是q的充分条件,q不是p的必要条件㊂一般地,如果p⇒q,且q⇒p,就记作p⇔q,则p是q的充分必要条件,简称充要条件㊂概括地说,如果p⇔q,那么p与q互为充要条件㊂判断p是q的什么条件,主要判断p⇒q,及q⇒p这两个命题的正确性,若p⇒q真,则p是q成立的充分条件;若q⇒p 真,则p是q成立的必要条件㊂要否定p与q不能相互推出时,举出一个反例即可㊂例1(1)已知实系数一元二次方程a x2+b x+c=0(aʂ0),则下列结论正确的是()㊂①Δ=b2-4a cȡ0是这个方程有实根的充要条件;②Δ=b2-4a c=0是这个方程有实根的充分条件;③Δ=b2-4a c>0是这个方程有实根的必要条件;④Δ=b2-4a c<0是这个方程没有实根的充要条件㊂A.③④B.②③C.①②③D.①②④(2)若p:AɘB=A,q:∁U B⊆∁U A,则p 是q的()㊂A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析:对于(1),利用Δ=b2-4a c判断方程根的情况,当Δ=0时,一元二次方程有两个等根;当Δ>0时,一元二次方程有两个不相等的根;当Δ<0时,一元二次方程没有实数根㊂对于(2),画出V e n n图(如图1),结合图形,可帮助求解㊂图1解:(1)Δȡ0⇔一元二次方程a x2+b x+ c=0(aʂ0)有实根,①正确㊂Δ=0⇒一元二次方程a x2+b x+c=0(aʂ0)有实根,②正确㊂Δ>0⇒一元二次方程a x2+b x+c=0 (aʂ0)有实根,但a x2+b x+c=0(aʂ0)有实根⇒/Δ>0,③错误㊂Δ<0⇔一元二次方程a x2+b x+c=0(aʂ0)无实根,④正确㊂应选D㊂(2)结合图1可得AɘB=A⇔A⊆B⇔∁U A⊇∁U B,即p是q的充要条件㊂应选C㊂充分条件与必要条件的两种判断方法:直接利用定义判断;集合法,将命题p,q分别看作集合A, B,当A⊆B时,p是q的充分条件,q是p的必要条件,当A=B时,p,q互为充要条件㊂二㊁充分条件㊁必要条件㊁充要条件的应用利用充分条件㊁必要条件求参数的取值范围问题,常利用集合法求解,先化简集合A={x|p(x)}和B={x|q(x)},然后根据p 与q的关系(充分㊁必要㊁充要条件),得出集合A与B的包含关系,进而得到相关不等式组,最后求出参数的取值范围㊂例2已知集合A={x|a<x<a+2}, B={x|x<-1或x>3},且A是B的充分不必要条件,求实数a的取值范围㊂分析:由A是B的充分不必要条件,说0 1知识结构与拓展高一数学2023年9月Copyright©博看网. All Rights Reserved.明集合A 是B 的真子集,即A ⫋B ,由此可得实数a 满足的条件,从而得到实数a 的取值范围㊂解:因为A 是B 的充分不必要条件,所以A ⫋B ㊂又因为A ={x |a <x <a +2},B ={x |x <-1或x >3},所以a +2ɤ-1或a ȡ3,解得a ȡ3或a ɤ-3,所以实数a 的取值范围是{a |a ȡ3或a ɤ-3}㊂充分条件㊁必要条件中的含参数问题,往往是通过集合的包含关系来解答的㊂三㊁充要条件的证明充要条件的证明,可分为充分性和必要性的证明,证明时要注意两种叙述方式的区别:①p 是q 的充要条件,由p ⇒q 是充分性,由q ⇒p 是必要性;②p 的充要条件是q ,由p ⇒q 是必要性,由q ⇒p 是充分性㊂例3 求证:方程m x 2-2x +3=0有两个同号且不相等实根的充要条件是0<m <13㊂分析:先找出条件和结论,然后证明充分性和必要性都成立㊂证明:先证充分性(由条件推结论)㊂因为0<m <13,所以方程m x 2-2x +3=0的判别式Δ=4-12m >0,所以方程有两个不相等的实根㊂设方程的两根为x 1,x 2,当0<m <13时,x 1+x 2=2m >0且x 1x 2=3m>0,所以方程m x 2-2x +3=0有两个同号且不相等的实根,所以0<m <13⇒方程m x 2-2x +3=0有两个同号且不相等的实根㊂再证必要性(由结论推条件)㊂若方程m x 2-2x +3=0有两个同号且不相等的实根,则Δ=4-12m >0,x 1x 2=3m>0,所以0<m <13,所以方程m x 2-2x +3=0有两个同号且不相等的实根⇒0<m <13㊂综上可得,方程m x 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <13㊂ 证明p 是q 的充要条件,既要证明命题 p ⇒q为真,又要证明 q ⇒p 为真,前者证明的是充分性,后者证明的是必要性㊂证明充要条件,即证明原命题和逆命题都成立㊂要注意 p 是q 的充要条件 与 p 的充要条件是q 这两种说法的差异,要分清哪个是条件,哪个是结论㊂1.求证:关于x 的方程a x 2+b x +c =0有一个根是1的充要条件是a +b +c =0㊂提示:先证明p ⇒q ,即证明必要性,再证明q ⇒p ,即证明充分性㊂设命题p :方程a x 2+b x +c =0有一个根是1,命题q :a +b +c =0㊂先证明p ⇒q ,即证明必要性,由x =1是方程a x 2+b x +c =0的根,可得a ㊃12+b ㊃1+c =0,即a +b +c =0㊂再证明q ⇒p ,即证明充分性,由a +b +c =0,可得c =-a -b ,因为a x 2+b x +c =0,所以a x 2+b x -a -b =0,即a (x 2-1)+b (x -1)=0,也即(x -1)(a x +a +b )=0,所以x =1是方程的一个根㊂综上可知,方程a x 2+b x +c =0有一个根是1的充要条件是a +b +c =0㊂2.已知三个不等式:a b >0,b c -a d >0,c a -db>0(其中a ,b ,c ,d 均为实数)㊂用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,则可组成的正确命题的个数是( )㊂A.0 B .1 C .2 D .3提示:a b >0为①,b c -a d >0为②,ca-d b >0为③㊂若①②成立,则1a b (b c -a d )>,可得c a -d b >0,即③成立㊂若①③成立,则a bc a -d b>0,可得b c -a d >0,即②成立㊂若②③成立,则由③得b c -a da b>0,由②b c -a d >0得a b >0,即①成立㊂应选D ㊂作者单位:江苏省阜宁县东沟中学(责任编辑 郭正华)11知识结构与拓展高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。
函数在无穷处极限存在的充要条件

函数在无穷处极限存在的充要条件要讨论函数在无穷处极限存在的充要条件,首先需要明确什么是函数在无穷处的极限。
设函数f(x)在扩充实数集上有定义,a为实数,如果对于任意给定的正数ε,都存在一个正数δ,使得当x满足0<,x-a,<δ时,有,f(x)-L,<ε成立,其中L为实数,则称函数f(x)当x趋近于无穷时极限为L,记为lim┬(x→∞)〖f(x)=L〗。
下面将从两个方面探讨函数在无穷处极限存在的充要条件,即函数趋于正无穷时的情况和函数趋于负无穷时的情况。
一、函数趋于正无穷时的情况:对于函数f(x),若令x→∞时,f(x)趋于正无穷,也即lim┬(x→∞)f(x)=∞。
充分性证明:假设函数f(x)趋于正无穷时的充分条件为:对于任意一个正数M,都存在一个正数N,使得当x满足x>N时,有f(x)>M。
设正数M>0,由于f(x)趋于正无穷,对于M,存在一个正数N,使得当x>N时,有f(x)>M。
于是对于这个给定的M,存在一个正数N,使得f(x)对于x>N总是大于M。
根据定义,f(x)当x趋近无穷时极限为正无穷,充分性得证。
必要性证明:假设函数f(x)趋于正无穷时的必要条件为:对于任意给定的正数ε,都存在一个正数δ,使得当x满足x>δ时,有f(x)>ε。
设正数ε>0,由于f(x)趋于正无穷,根据定义,对于这个给定的ε,存在一个正数δ,使得当x>δ时,有f(x)>ε。
充要性得证。
二、函数趋于负无穷时的情况:对于函数f(x),若令x→∞时,f(x)趋于负无穷,也即lim┬(x→∞)f(x)=-∞。
充分性证明:假设函数f(x)趋于负无穷时的充分条件为:对于任意一个负数M,都存在一个正数N,使得当x满足x>N时,有f(x)<M。
设负数M<0,由于f(x)趋于负无穷,对于M,存在一个正数N,使得当x>N时,有f(x)<M。
充要条件的证明

充要条件的证明
充要条件
想问大家一个问题,大家做数学的证明题的时候是否会遇到一个这样子的问题?
1、证明:P的充分必要条件是Q
充分性:Q—>P
必要性:P—>Q
正确解答
为什么不是下面这种情况呢?
2、证明:P的充分必要条件是Q
充分性:P—>Q
必要性:Q—>P
错误解答
似乎第二种证明更符合我们的习惯,属于我们的第一反应,但是真的是这样吗?
我们可以先看下定义:
P—>Q表示为:P是Q的充分条件
P<—Q表示为:P是Q的必要条件
有了上述定义之后,我们可以再来看下上述的1为什么是对的,2为什么不对。
首先我们来看一句话:“我是你”。
“我是你”和“你是我”,这俩句话是不是等价的?搞明白了
这句话,相信对下面的就不难理解了。
首先我们先证明充分条件,P的充分条件是Q,可以解读为:Q 是P的充分条件
也就是Q—>P。
然后我们再证明必要条件,P的必要条件是Q,可以解读为:Q 是P的必要条件
也就是Q<—P,换过来就是P—>Q。
我么可以来看一个例子:
P的必要条件**
也就是Q<—P,换过来就是P—>Q。
充分条件与必要条件的证明方法与技巧

充分条件与必要条件的证明方法与技巧在数学推理中,我们经常需要探求某个命题的真假性,即证明这个命题是真的还是假的。
在证明中,我们常常会涉及到两个重要的概念,即充分条件和必要条件。
充分条件和必要条件是数学推理中常用的表达方式,也是证明一个命题的有效方法。
本文将介绍充分条件与必要条件的证明方法与技巧。
一、充分条件的证明方法与技巧1. 直接法:直接法是最常见的证明方法之一。
它的思路是通过假设充分条件成立,然后利用已知条件和已证明的命题等,推导出结论。
举个例子来说,若要证明一个命题P是另一个命题Q的充分条件,可以先假设命题P成立,然后通过推导和推理的过程,得到命题Q成立的结论。
这样,通过结论的推导,我们可以得出充分条件的证明。
2. 反证法:反证法是另一种常用的证明方法。
反证法的思路是先假设命题的否定,然后通过推导的过程,得出与已知事实矛盾的结论,从而推翻了假设。
举个例子来说,若要证明一个命题P是另一个命题Q的充分条件,可以先假设命题的否定,即非P成立,然后通过推导和推理的过程,得出与已知事实矛盾的结论,从而推翻了假设,进而证明了命题P是命题Q的充分条件。
3. 构造法:构造法是一种通过构造一个满足充分条件的示例或者给出具体的例子来证明充分条件的方法。
举个例子来说,若要证明一个命题P是另一个命题Q的充分条件,可以通过构造一个示例,例如给出一个满足P的具体情况或者给出若干个例子,使得命题Q成立。
这样通过示例的构造和具体的例子,我们可以得出充分条件的证明。
二、必要条件的证明方法与技巧1. 反证法:反证法在证明必要条件时同样适用。
反证法的思路是先假设命题的否定,然后通过推导的过程,得出与已知事实矛盾的结论,从而推翻了假设。
举个例子来说,若要证明一个命题P是另一个命题Q的必要条件,可以先假设命题P的否定,即非P成立,然后通过推导和推理的过程,得出与已知事实矛盾的结论,从而推翻了假设,进而证明了命题P是命题Q的必要条件。
充要条件

2. 证明:
(1)充分性:如果 a2+b2+c2=ab+ac+bc,
那么,a2 + b2 + c2 - ab – ac - bc = 0 ,
所以,(a-b)2+(a-c)2+(b-c)2=0,
所以,a2+b2+c2-ab-ac-bc=0, a-b=0,a-c=0,b-c=0. 所以,三角形ABC是等边三角形.
2.一元二次方程ax2+bx+c=0 (a≠0) 有一个正根和负根的
充要条件是( D )
A.ab>0 B.ab<0
C.ac>0
D.ac<0.
填空题: 既不充分也不必要 • x2 > y2是 x > y的_________________条件. 解答题:
•求证:x2 + y2= 0 (x、y均为实数)
A. x<0或 x>1 ; B. x>3 ; C. x<-1或 x>1 ; D. x<0 ;
分析: ①确定谁是定义中的条件p ②利用集合思想画数轴解决问题
3例3已知⊙O 的半 Nhomakorabea为r,圆心O到直线l的
距离为d.
求证 d = r是直线 “l” 与 O 相切的 充要条件.
如图所 示 O
P
Q
l
分析:
(2009安徽卷理)“a+c>b+d”是 “a>b且c>d”的( A (A)必要不充分条件 )
(B)充分不必要条件
(C)充分必要条件
(D)既不充分也不必要条件
考题点拨
解析: 由“ a>b且c>d ”推出 “ a+c >b+d ”, 而由“a+c>b+d”不能推
专题02 充要条件问题(解析版)

专题02 充要条件问题【热点聚焦与扩展】高考对命题及其关系和充分条件、必要条件的考查主要是以小题的形式来考查,由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要有三个:一是以函数、方程、三角函数、数列、不等式、立体几何线面关系、平面解析几何等为背景的充分条件和必要条件的判定与探求;二是考查等价转化与化归思想;三是由充分条件和必要条件探求参数的取值范围. 1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q ⇒,(2)充分条件与必要条件:如果条件,p q 满足p q ⇒,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面.所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件 (2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q ⇔,则称p 是q 的充要条件,也称,p q 等价 (4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件 4、如何判断两个条件的充分必要关系(1)定义法:若 错误!未找到引用源。
,则错误!未找到引用源。
是错误!未找到引用源。
的充分而不必要条件;若错误!未找到引用源。
,则错误!未找到引用源。
是错误!未找到引用源。
的必要而不充分条件;若错误!未找到引用源。
,则错误!未找到引用源。
是错误!未找到引用源。
的充要条件; 若错误!未找到引用源。
,则错误!未找到引用源。
是错误!未找到引用源。
的既不充分也不必要条件.(2)等价法:即利用p q ⇒与q p ⌝⌝⇒;q p ⇒与p q ⌝⌝⇒;p q ⇔与q p ⌝⌝⇔的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3) 充要关系可以从集合的观点理解,即若满足命题p 的集合为M ,满足命题q 的集合为N ,则M 是N 的真子集等价于p 是q 的充分不必要条件,N 是M 的真子集等价于p 是q 的必要不充分条件,M =N 等价于p 和q 互为充要条件,M ,N 不存在相互包含关系等价于p 既不是q 的充分条件也不是q 的必要条件.4、充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.5、对于充要条件的证明问题,可用直接证法,即分别证明充分性与必要性.此时应注意分清楚哪是条件,哪是结论,充分性即由条件证明结论;而必要性则是由结论成立来证明条件也成立,千万不要张冠李戴;也可用等价法,即进行等价转化,此时应注意的是所得出的必须是前后能互相推出,而不仅仅是“推出”一方面(即由前者可推出后者,但后者不能推出前者).【经典例题】例1【2020年高考浙江卷】已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B【解析】由已知,,m n l 不过同一点,当,,m n l 两两相交时,,,m n l 在同一平面内;但当m //n ,l 与它们相交时,,,m n l 也在同一平面内,故选B .例2【2020年高考上海卷】【答案】A【解析】1:q 当0a >,()0f a >,因为函数()f x 单调递减,所以()()()()f x a f x f x f a +<<+,即()()()f x a f x f a +<+,存在0a >,当满足命题1q 时,使命题p 成立,2:q 当00a x =<时,()0f a = ,因为函数()f x 单调递增,所以()()()()f x a f x f x f a +<=+,即()()()f x a f x f a +<+,存在0a <,当满足命题2q 时,命题p 成立,综上可知命题1q 、2q 都是命题p 的充分条件,故选A .例3.(2020·黑龙江萨尔图大庆实验中学高三三模)已知命题:11p x ->,命题:1ln q x ≥,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】由–11x >可得,0x <或2x >﹔由ln 1x ≥可得,x e ≥.所以p 是q 成立的必要不充分条件.故选:B.例4.(2020·北京市第五中学高三三模)已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (12)=0,则“不等式f (log 4x )>0的解集”是“{x |0<x <12}”的( ) A .充分不必要条件 B .充分且必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C【解析】因为定义域为R 的偶函数()f x 在[0,)+∞上是增函数,且1()02f =,4(log )0f x ∴>,即41(log )()2f x f >,即41(|log |)()2f x f >,即41|log |2x >,即41log 2x >,或41log 2x <-, 解之得2x >或102x <<,{|2x x ∴>或10}2x <<是1{|0}2x x <<的必要不充分条件,故选:C .例5.(2020·山东潍坊高三三模)设i 为虚数单位,a R ∈,“复数22020i 21ia z =--是纯虚数“是“1a =”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】复数()()22020222i 11i 11i 21i 21i 21i 1i 222a a a a z +=-=-=-=-----+是纯虚数, 则21a =,1a =±,1a =±是1a =的必要不充分条件,故选:B.例6.(2020·广州大学附属中学高三三模)已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C【解析】22x y +≥ 且224x y+≤ ,422x y ∴≤≤⇒+≤ ,等号成立的条件是x y =,又x y +≥,0,0x y >>21xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件.故选:C例7.(2020·宝鸡中学高三三模)已知条件:p k =q :直线2y kx =+与圆221x y +=相切,则q 是p 的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】B【解析】若直线2y kx =+与圆221x y +=相切,则圆心(0,0)到直线20kx y -+=的距离1d ==,即214k +=,23k ∴=,即k =∴q 推不出p ,而p 而以推出q ,q ∴是p 的必要不充分条件.故选:B .例8.(2020·河北新华石家庄二中高三三模)使不等式2x ≤成立的一个必要不充分条件是( ) A .13x +≤ B .12x +≤C .2log (1)1x +≤D .11||2x ≥ 【答案】A【解析】因为||2x ≤22x ⇔-≤≤,|1|342x x +≤⇔-≤≤, |1|231x x +≤⇔-≤≤,2log (1)111x x +≤⇔-<≤,11||2||2x x ≥⇔≤且0x ≠20x ⇔-≤<或02x <≤, 因为{|22}x x -≤≤ 2{|}4x x -≤≤,所以使不等式||2x ≤成立的一个必要不充分条件是42x -≤≤,故选:A .例9.(2020·四川绵阳高三三模)已知数列{}n a 的前n 项和21nn S p =⨯+,则{}n a 为等比数列的充要条件是( ) A .01p << B .1p =-C .2p =-D .1p >【答案】B 【解析】21n n S p =⨯+,当1n =时,112+1a S p ==,当2n 时,()11121212nn n n n n a S S p p p ---=-=⨯+-⨯+=⨯,{}n a 为等比数列,21p p ∴+=1p ∴=-当1p =-时,21nn S =-+, 可得12n n a -=-,由12(2)nn a n a -=≥知{}n a 为等比数列, 故{}n a 为等比数列的充要条件是1p =-,故选:B例10.(2020·天津南开高三三模)已知命题2:230p x x +->,命题:q x a >,且q 的一个必要不充分条件是p ,则实数a 的取值范围是( )A .[)1,+∞B .(],1-∞C .[)1,-+∞D .(],3-∞-【答案】A【解析】命题2:230p x x +->,解之得:3x <-或1x >, 命题:q x a >,且q 的一个必要不充分条件是p , 则:1a ≥,即a 的取值范围是[)1,+∞.故选:A .【精选精练】1.(2020·浙江省兰溪市第三中学高三三模)设0a >,0b >,则“lg()0ab >”是“lg()0a b +>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】因为lg()0ab >,所以1ab >,0a >,0b >,显然,a b 中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符. 由lg()0a b +>,可得1a b +>,,a b 与1的关系不确定,显然由“lg()0ab >”可以推出lg()0a b +>,但是由lg()0a b +>推不出lg()0ab >,当然可以举特例:如23a b ==,符合1a b +>,但是不符合1ab >,因此“lg()0ab >”是“lg()0a b +>”的充分不必要条件,故本题选A.2.(2020·山东高三三模)“直线l 与平面α内的无数条直线垂直”是“直线l 与平面α垂直”的( ) A .充分条件 B .必要条件C .充要条件D .既非充分条件又非必要条件【答案】B【解析】因为直线l 在平面α内,也可以与平面α内的无数条直线垂直,所以,“直线l 与平面α内的无数条直线垂直”不是“直线l 与平面α垂直”的充分条件;若直线l 与平面α垂直,则直线l 与平面α内的所有直线都垂直。
充要条件的证明

充要条件的证明充要条件的证明是逻辑学中的一个重要概念,它描述的是命题和它的逆命题之间的一种关系。
如果一个命题是真的,那么它的逆命题也是真的,这种关系被称为充要条件。
在数学和逻辑学中,充要条件的证明是一个重要的任务。
首先,我们来定义什么是充要条件。
如果对于所有的x,如果x满足P(x),则x满足Q(x),并且如果x满足Q(x),则x满足P(x),则我们称P(x)是Q(x)的充要条件。
现在,我们将给出一个充要条件的证明示例。
假设我们有两个命题P(x)和Q(x),我们想要证明P(x)是Q(x)的充要条件。
第一步,我们先证明充分性。
也就是说,如果P(x)是真的,那么Q(x)也必须是真。
为了证明这一点,我们可以假设一个反例,即假设存在一个x,使得P(x)为真但Q(x)为假。
然而,如果这样的x存在,那么根据定义,P(x)就不可能是Q(x)的充要条件,因为充分性没有得到满足。
因此,我们的假设是错误的,即不存在这样的x。
所以,我们证明了当P(x)为真时,Q(x)也必须为真。
第二步,我们证明必要性。
也就是说,如果Q(x)是真的,那么P(x)也必须是真。
为了证明这一点,我们再次假设一个反例,即假设存在一个x,使得Q(x)为真但P(x)为假。
然而,如果这样的x存在,那么根据定义,Q(x)就不可能是P(x)的充要条件,因为必要性没有得到满足。
因此,我们的假设是错误的,即不存在这样的x。
所以,我们证明了当Q(x)为真时,P(x)也必须为真。
通过以上的证明过程,我们可以得出结论:对于所有的x,如果P(x),则Q(x),并且如果Q(x),则P(x),因此P(x)是Q(x)的充要条件。
在数学和逻辑学中,充要条件的证明是一个重要的任务。
它可以用来证明一个定理是否是另一个定理的充分条件或必要条件。
同时,它也可以用来证明一个函数是否存在反函数或者一个映射是否是单射或满射。
在日常生活中,充要条件的证明也有广泛的应用。
例如,在法律中,法官可能需要证明某个证据是某个犯罪行为的充要条件,以便定罪。