生物质碳化技术ppt

合集下载

生物质成型燃料技术PPT幻灯片

生物质成型燃料技术PPT幻灯片

Loose biomass
Coolant Flail
活塞冲压成型
模压成型
18
螺旋挤压成型设备
Loose biomass
Coolant Flail
成型螺旋
成型套筒
19
螺旋挤压成型设备 20
3.压辊式成型技术
成型模具直径较小,而且每一个 压模盘片上有很多成型孔,主要 用于生产颗粒成型燃料。
(一)基本构件与主要类型: 由压辊和压模组成。
5
生物质压缩成型燃料特点:
密度高、强度大:体积缩小6~8倍,密度约为1.1~1.4t/m3; 热值高:热值可达到16.7MJ/kg,能源密度相当于中质烟煤; 燃烧性能好:使用时火力持久,炉膛温度高,燃烧特性明显得到改善 。 形状和性质均一:便于运输和装卸、适应性强、燃料操作控制方便等 。
6
生物质成型影响因素
具体操作见加工视频 原料含水率:13%-15%
35
三.郑州同创机械
木材粉碎机主要用于加工、松木、杂木、杨木、杉木、原
竹、树枝、茅草、秸秆等纤维质物料。广泛应用于造 纸、高
密度板、纤维板、刨花板、锯末板、食用菌栽培、木质颗粒、
机制木炭、锅炉气炉燃烧等。物料经合金钢刀 片高速转动切
割,进入粉碎室用特制锤头锤打和物料之间摩擦进行粉碎。
常用粉碎机械:锤片式粉碎机。
12
干燥
干燥处理的原因: 水分含量超过经验值上限时,加工过程中当温度升高时,体积突然膨胀,易 发生爆炸造成事故; 水分含量过低时,会使范德华力降低,物料难以成型。 物料湿度一般要求在10~15%之间,间歇式或低速压缩工艺中可适当放宽 。
常用干燥机有回转圆筒干燥机、立式气流干燥机。
在工作过程中,由于压辊和压模之间存在相对滑 动,对原料可起到磨碎的作用,所以允许使用粒 径稍大的原料。

生物质成型以及炭化技术讲义

生物质成型以及炭化技术讲义

1.5 生物质成型燃料的性能指标
• 生物质成型燃料生产原料的种类不同,成型方式各异,使 得燃料的品质特性差异较大。 生物质成型燃料的品质特性包括成型块的物理特性和燃烧 特性。
• 1.5.1生物质成型燃料的物理特性 直接决定成型燃料的使用要求、运输要求和收藏条件。 衡量指标:松驰密度、耐久性
生物质成型燃料的物理特性
• ⑵物料粉碎
• 木块、树皮、植物秸杆等尺寸较大的原料要时行粉碎,粉 碎作业尽量在粉碎机上完成; 锯末、稻壳等只需清除尺寸较大的异物,无需粉碎。
• 对颗粒成型燃料,一般需要将90%左右的原料粉碎到2mm 以下,必要时原料需进行二次甚至三次粉碎。
• 常用粉碎机械:锤片式粉碎机。
• ⑶干燥
• 干燥处理的原因: 水分含量超过经验值上限时,加工过程中当温度升高时, 体积突然膨胀,易发生爆炸造成事故; 水分含量过低时,会使范德华力降低,物料难以成型。
• ②先炭化后成型:先将生物质原料炭化或部分炭化,然后 加入一定量的黏结剂压缩成型。
• 特点: 炭化过程高分子组分受热裂解转化成炭,并释放出挥发分, 因而其挤压加工性能得到改善,功率消耗也明显下降。 炭化后的原料在挤压成型后维持既定形状的能力较差,故 成型时一般都要加入一定量的黏结剂。
1.4 生物质成型影响因素
• 物料湿度一般要求在10~15%之间,间歇式或低速压缩 工艺中可适当放宽。
• 常用干燥机有回转圆筒干燥机、立式气流干燥机。
①回转圆筒干燥机: • 构造:
排湿口 干燥筒
进料口
热风炉
出料口 驱动装置
优点: 生产能力大,运行可靠,操作容易,适应性强,流体阻力小, 动力消耗低。 缺点: 设备复杂,体积庞大,一次性投资高,占地面积大。

生物质高温碳化颗粒

生物质高温碳化颗粒

生物质高温碳化颗粒
生物质高温碳化颗粒是一种通过高温处理生物质原料得到的固体燃料。

生物质高温碳化颗粒的制备通常涉及以下几个步骤:
1. 原料选择:选择合适的生物质原料,如木质、农作物秸秆、棕榈等。

2. 干燥处理:将生物质原料进行干燥,以降低其水分含量。

3. 成型:将干燥后的生物质原料进行成型处理,以便后续的碳化过程。

4. 高温碳化:在缺氧或保护气氛下,将成型的生物质原料加热至高温,使其发生热解反应,转化为碳化物。

5. 冷却和收集:碳化完成后,将产品冷却并收集。

生物质高温碳化颗粒作为一种新兴的燃料,具有以下特点:
1. 可再生性:生物质是一种可再生能源,使用生物质颗粒作为燃料有助于减少对化石燃料的依赖。

2. 环保性:与煤炭相比,生物质颗粒燃烧时排放的污染物较少,被认为是一种环保燃料。

3. 能量密度:生物质颗粒的能量密度相对较低,固定碳含量约
为45%左右。

4. 水分含量:生物质颗粒的水分含量较高,大约为50%左右。

5. 挥发物质含量:生物质颗粒含有较高的挥发物质,约占70%。

生物质高温碳化颗粒是一种高效、可再生、环保的燃料,适用于各种燃烧机、生物质锅炉、熔解炉、生物质发电等场合。

然而,由于其较低的能量密度和较高的水分含量,可能在运输和使用过程中带来一些不便。

因此,在使用前需要对生物质颗粒进行适当的处理,以提高其燃烧效率和便利性。

生物质炭技术及应用

生物质炭技术及应用

生物质炭技术及应用生物质炭技术及应用是一种将生物质材料通过热解、氧化或还原等过程转化成炭质产物的技术。

生物质炭作为一种新型的高效炭材料,具有多孔性、大比表面积和优异的化学稳定性等特点,广泛应用于环境治理、能源开发和产业制造等领域。

生物质炭技术主要分为两步:预处理和炭化。

预处理阶段包括生物质材料的粉碎、烘干和除杂等处理,以获得适合炭化的原料。

炭化阶段则是通过高温加热生物质材料,使其经历热解、热解和热化等反应而转化成炭质产物。

生物质炭的应用领域非常广泛。

首先,在环境治理方面,生物质炭可以作为土壤调节剂用于提高土壤肥力和改善土壤物理性质。

其多孔结构可以增加土壤的孔隙度,提高土壤的通气性和保水性,并吸附土壤中的重金属和有机物等污染物,起到修复土壤的作用。

此外,生物质炭还可以用于河道和湖泊的修复,通过吸附和分解水体中的有害物质,改善水质。

其次,在能源开发方面,生物质炭可以用作生物质燃料,取代传统的化石燃料。

生物质炭具有高热值、低灰分和低含氮含硫等特点,燃烧时产生的烟尘和有害气体排放较少,具有较好的环保性能。

此外,生物质炭还可以用于制备炭基材料,如炭纤维、炭黑和活性炭等,这些材料在航空航天、电子技术和环境保护等领域有着广泛的应用。

最后,在产业制造方面,生物质炭可以用于制备高性能的炭基材料和化工产品。

生物质炭具有多孔性和大比表面积等特点,可以用于制备电极材料、催化剂和吸附剂等。

例如,生物质炭可以用于制备锂离子电池的负极材料,提高电池的循环稳定性和倍率性能。

此外,生物质炭还可以用于制备高性能催化剂,用于有机合成和环境催化等领域。

综上所述,生物质炭技术及应用在环境治理、能源开发和产业制造等领域具有广泛的应用前景。

通过生物质炭技术的研究和开发,可以实现资源的高效利用和环境的可持续发展。

生物质炭化技术

生物质炭化技术

生物质碳化技术摘要针对生物质炭化技术相对滞后的现状,从生物质特性研究入手,在分析炭化机理的基上,重点评述了生物质炭化影响因素和工艺装置的研究进展。

指出原料、预处理方式和工艺参数是影响生物炭产量的3 个主要因素,并对比了窑炭化、固定床炭化的优缺点,为后续生物质炭化技术发展指明方向。

关键字生物质炭化机理影响因素炭化设备目录一,生物质特性 (1)二,生物质炭化技术特征 (1)三,生物质炭化机理 (1)四,影响炭化的因素 (2)五,我国生物质炭化设备发展现状 (3)六,生物质炭化存在的问题及建议 (4)七,参考文献 (4)一,生物质特性一切有生命的、可以生长的有机物质统称为生物质,包括植物、动物和微生物。

目前,关于动物和微生物的研究主要集中在生物化学领域,而热化学领域则主要以植物为研究对象,故本文提到的生物质主要指植物。

对于植物型生物质来说,绿色植物通过光合作用把CO2和H2O转化为葡萄糖,进而通过脱水把葡萄糖缩合成淀粉,最终以纤维素、半纤维素、木质素等成分组成植物本身。

生物质是继煤、石油、天然气之后的第四大能源,具有清洁、可再生、分布广泛、二氧化碳“净零排放”等优势,同时也存在能量密度低、运输成本高、利用设备(技术)不完善等问题。

实际上,在生物质的利用过程中,首先要对其特性进行分析,才能更有针对性的设计后续处理工艺。

目前,工程上以元素分析和工业分析分别从定性和定量两个方面对生物质的性质进行衡量,基本上能够满足生物质在热化学转化过程中的分析需要。

总体来看,生物质原料含碳量较低、含氧量较高,灰分和固定碳较少、挥发分较多。

与煤相比,生物质的燃点、灰分、含硫量、热值更低,碳、氧、挥发分含量更高。

二,生物质炭化技术特征作为生物质热化学转化技术的一种,生物质炭化技术是指切碎或成型后的生物质原料,在绝氧或低氧环境下被加热升温引起分子内部分解形成生物炭、生物油和不可冷凝气体产物的过程。

生物质炭化技术也称为生物质干馏技术,与气化、液化等生物质热化学转化技术相比,具有以下典型工艺特征:1)加热速率慢,一般在30℃/min以下;2)保温炭化时间长,一般从15min到几天不等;3)热裂解温度较低,一般不超过550 ℃;4)炭化环境要求绝氧或低氧,尽量减少氧化反应。

生物质颗粒碳化过程工艺

生物质颗粒碳化过程工艺

生物质颗粒碳化过程工艺
生物质颗粒碳化是将生物质颗粒转化为高碳含量的固体燃料或活性炭的过程。

下面是生物质颗粒碳化的常见工艺流程:
1.原料处理:首先,将生物质原料进行预处理。

这可能包括颗粒化、粉碎、干燥等步骤,以获得适合碳化的颗粒大小和含水率。

2.碳化反应:将预处理后的生物质颗粒送入碳化炉或碳化器中进行碳化反应。

碳化反应是在高温(通常在500°C至900°C之间)和缺氧条件下进行的。

在缺氧环境中,生物质颗粒中的可燃性物质部分氧化,释放出燃料气体,同时颗粒的碳含量增加。

3.除去挥发物:在碳化过程中,生物质颗粒中的挥发物会释放出来。

这些挥发物通常是燃料气体,可以收集和利用。

通过适当的气体处理和净化系统,将挥发物进行处理,以收集和回收其中的能源。

4.产品冷却和收集:碳化后的颗粒经过碳化炉后,需要进行冷却和收集。

这可以通过气体冷却和颗粒分离设备来完成。

冷却后的颗粒可作为固体燃料或进一步处理制成活性炭等产品。

5.产品处理和利用:最终的产品可以是固体燃料、活性炭或其他碳质产品。

根据具体需求,产品可以进一步处理和加工,以满足不同的应用需求。

例如,固体燃料可以用于锅炉、热能设备或发电厂,活性炭可以用于废水处理、空气净化等。

需要注意的是,生物质颗粒碳化的具体工艺流程可能因碳化设备、原料特性和产品要求而有所不同。

不同的工艺参数和操作条件也会对碳化过程和产品性质产生影响。

因此,在实际应用中,需要根据具体情况选择合适的工艺方案,并进行相应的工艺优化和控制。

1/ 1。

生物质成型以及炭化技术

生物质成型以及炭化技术

• ⑵成型物内部粒子的粘结机制
• 1962年德国的Rumpf针对不同材料的压缩成型,将成型 物内部的粘结力类型和粘结方式分成5类: • • • • • ①固体颗粒桥接或架桥(Solid bridge); ②固体粒子间的充填或嵌合; ③自由移动液体的表面张力和毛细压力; ④非自由移动粘结剂作用的粘结力; ⑤粒子间的分子吸引力(范德华力)或静电引力。
• ⑴“热压缩”颗粒成型技术
• 是把粉碎后的生物质在220~280℃高温及高压下压缩成1 t/m3左右的高密度成型燃料。 • “热压缩”技术的工艺由粉碎、干燥、加热、压缩、冷却 过程组成。 对成型前粉料含水率有严格要求,必须控制在8% ~12%。
• ⑵“冷压缩”颗粒成型技术
• 也称湿压成型工艺技术。对原料含水率要求不高。 其成型机理是在常温下,通过特殊的挤压方式,使粉碎 的生物质纤维结构互相镶嵌包裹而形成颗粒。 • 因为颗粒成型机理的不同,“冷压缩”技术的工艺只需 粉碎和压缩2个环节。 • 特点: “冷压缩”技术与“热压缩”技术相比,具有原料适用 性广,设备系统简单、体积小、重量轻、价格低、可移 动性强,颗粒成型能耗低、成本低等优点。
• 生物质中的纤维素、半纤维素和木质素在不同的高温下,都能受热 分解转化为液、固和气态产物。 将生物质热解技术与压缩成型工艺结合,利用热解反应产生的热解 油或木焦油作为黏结剂,有利于提高粒子间的黏聚作用,提高成型 燃料的品位和热值。
1.3 生物质压缩成型的工艺类型
• 热压缩成型技术、冷压缩成型技术、炭化成型技术
• (3)半纤维素与纤维素的作用。 半纤维素水解转化为木糖,也可起到粘结剂的作用。 纤维素分子连接形成的纤丝,在粘聚体内发挥了类似于 混凝土中“钢筋”的加强作用,成为提高成型块强度的 “骨架”。

生物质炭化工艺

生物质炭化工艺

生物质炭化工艺生物质炭化工艺是将生物质原料在高温无氧或低氧条件下进行热解,生成炭质产物的过程。

这种工艺可以将生物质转化为生物质炭,具有广泛的应用前景和环境保护意义。

生物质炭化工艺一般包括预处理、干燥、炭化和冷却等几个步骤。

首先,生物质原料经过预处理,去除杂质、调整湿度和粒度,以提高炭化效率和产物质量。

然后,生物质原料经过干燥,除去水分,以降低炭化过程中的能耗。

接下来,生物质原料进入炭化炉进行热解,热解过程中,生物质中的有机物发生裂解和重组,生成炭质产物和气体产物。

最后,炭质产物经过冷却,得到生物质炭。

生物质炭化工艺有多种方法,常见的包括焦化、气化和热解等。

焦化是将生物质原料在高温下分解,生成焦炭的过程。

焦炭具有高热值和良好的化学稳定性,可以用作燃料或冶金原料。

气化是将生物质原料在高温下与气体反应,生成可燃气体的过程。

气化产物可以用作燃料或化工原料。

热解是将生物质原料在低氧或无氧条件下进行加热,生成炭质产物的过程。

热解产物主要是生物质炭,具有良好的吸附性能和环境友好性。

生物质炭化工艺具有多项优点。

首先,生物质炭化可以将生物质转化为高附加值的炭质产物,实现资源的高效利用。

其次,生物质炭化可以减少生物质的体积和质量,便于储存和运输。

再次,生物质炭化可以降低生物质的水分含量,提高热值和燃烧效率。

此外,生物质炭化过程中产生的气体可以用作燃料或化工原料,实现能源的综合利用。

生物质炭化工艺在能源、农业和环境保护等领域具有广泛的应用前景。

在能源领域,生物质炭可以替代传统的化石燃料,减少温室气体的排放,降低能源消耗。

在农业领域,生物质炭可以用作土壤改良剂,提高土壤肥力和作物产量。

在环境保护领域,生物质炭可以吸附和去除水体和大气中的有害物质,净化环境。

然而,生物质炭化工艺也面临一些挑战和问题。

首先,生物质原料的选择和处理对炭化效果和产物质量有很大影响。

不同的生物质原料具有不同的结构和组成,需要针对性地进行处理和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
7.2.4生物质碳化产品 • 生物质碳化产品—木炭,可用于冶金、有色金属
生产、活性炭制造等,用途极其广泛
-
(1)木炭的主要成分:
除C元素外,还有H和O等元素。各种元素含量 多少,依赖于热裂解方法和炭化最终温度,与原料 无关。随炭化最终温度的升高,木炭中C元素的含 量增加,H和O的含量降低。
-
固定碳 木炭放入白金坩埚内,900℃喷灯火焰下煅烧
-
(3)节柴炭烧炉
节柴炭烧炉由砖砌成,烧炭同时,可利用产 生的热量取暖或烧水。 结构:由炉盖、炭化室、燃烧室、火山墙、迎风
墙、烟囱、炉门等组成。 程序:装料、缺氧闷烧、闭炉和出炭。
-
(3)可移出式烧炭炉
结构紧凑、操作容易、移动方便、出炭率高、 炭质较好、劳动强度和受季节影响小。 结构:上炉体、下炉体、烟道、风孔、炉
炭化温度高,木炭的炭含量就大。
-
(4)木炭的反应能力 在高温下与活性气体和蒸气相互作用的能力,
是评价固体原料在工业中使用的基本性质的方法 之一,与其含碳素的无定形多孔结构有关。其中 所含的灰分,尤其是碱金属、碱土金属及其氧化 物的存在,对木炭的化学反应能力也起催化作用。
-
谢谢
-Hale Waihona Puke 7.2 生物质炭化设备-
7.2.1生物质炭化设备
• 烧炭在我国已有2000年以上的历史。 • 常见的碳化设备:
炭窑、移动式炭化炉、果壳炭化炉和流态 化炉。
-
(1)炭窑
原料:薪炭材
结构:炭化室、烟道、燃烧室和 排烟孔。
特点:1、最简单的木材热裂解 方法。
2、得炭率25%,周期3~7 天。
3、闷窑熄火熄火产物为 黑炭,窑外熄火产物 为白炭。
-
-
(4)流态化炉
原料:木屑等粉状或颗粒 原料
结构:立式圆筒或圆锥形 炉体。
特点:用螺旋加料器从下 部送料,从底部吹入空气 作为流态化气体,使原料 进行流态化炭化,得炭率 为20%。
-
-
7.2.2炭化工艺技术类型
• 木炭制取的主要方法: 堆烧法(欧美国家常用方法)、窑烧法(我
国常用方法)和炉烧法。
-
(2)移动式炭化炉
原料:薪炭材
结构:2mm钢板焊接而成,由炉 下体、炉上体和顶盖叠接 而成。
特点:1、劳动强度和受季节影响 小。
2、得炭率25%,周期24h。
-
(3)果壳炭化炉
原料:果壳 果壳经风选,送至炉顶的加料槽,分别通过
预热段、炭化段、冷却段从卸料口出料,得炭率: 25%~30%,周期 4~5小时,灰分小于2%,挥发 分为8%~15%。
• 内热式:木材通过载热体进入釜内与木材 直接接触的加热方式。
• 外热式:热量通过釜壁传给木材的加热方 式。
-
影响干馏釜产量的主要因素: 木材含水率、 木材形态、加料速度、载热体温度和数量以及气体 出口温度与压力等。
其中木材含水率和载热体温度对产量的影响 最大。一般每立方米的木材可以得到137kg木炭、 37kg乙酸和65kg焦油。
5min,或在电炉内加热2.5h将温度升高到900℃来 测定其固定碳的含量,由于热裂解方法和炭化最终 温度不同,木炭中可能含有70%~86%的固定碳。 随着煅烧温度的升高,木炭中固定碳的含量将会增 加。
-
水分 木炭与水接触时的吸水能力取决于其结构特
性和表面浸润的情况,能吸收超过它自身质量的 水分。长时间储存在空气中,即使不淋雨雪,其 含水量可能超过50%,此时木炭很容易破碎,而 且不能用于冶炼。
盖、点火架、炉栅。 出炭率:25~30%。
-
7.2.3木材干馏的工艺流程
木材干流的工艺流程包括木材干燥、木 材干馏、气体冷凝冷却、木炭冷却和供热 系统。要求原料的含水率低于20%。木材 干馏产生的蒸气气体混合物在焦油分离器 或列管冷凝器中进行冷凝冷却,是其中可 凝结的蒸气冷凝为木醋酸和焦油。
-
木材干馏设备即干馏釜,根据加热的方式 不同,可分为内热式和外热式。
-
(2)窑烧法
程序:烘窑、缺氧闷烧、闷窑。 出炭率:黑炭15%~20%,白炭比黑炭少
1/4~1/3。 现状:发展中国家许多地方使用最简易的烘窑,用土覆盖木
柴或将木柴放入地坑内。这种窑不仅炭化过程慢而且 效果和质量都很差。
-
-
用窑烧法烧制木炭,其木炭的质量和产 量与操作水平关系甚大。如果控制不好, 火候太过,产炭量减少;若火候不足,会 烧出夹生炭。
-
(1)堆烧法
程序: 将炭化原料竖立或横放在垫木上,上铺 一层小树枝或柴草,再用黏土覆盖密封,同时修 筑一排烟口或装一根排烟管,然后点火烧制。烧 炭过程中,要注意供给的空气量。
出炭率:硬木原料 20%~35%,软木原料 14%~18%。
-
• 比利时兰姆比奥特公司利用立式干馏釜进 行连续生产,由于这种大规模生产投资强 度大,所以限制了在发展中国家的应用。
-
灰分 木炭中的灰分含量及其组成与炭化最终温度、
原料种类和组成等因素有关。炭化最终温度越高, 灰分含量越大。
-
(2)木炭的相对密度和孔隙度 木炭的相对密度随炭化原料种类、含碳量及
炭化温度的不同而不同。炭化原料的相对密度越 大、含碳量越大、炭化温度越高,则相对密度越 大。
-
(3)木炭的发热量 木炭的发热量主要取决于木炭的含碳量。而
相关文档
最新文档