mimics颈椎建模详细过程
Mimics14.0软件在胫骨螺钉外固定架模型建立的初步应用

Mimics14.0软件在胫骨螺钉外固定架模型建立的初步应用郑轶;尹庆水;王智运;马立敏【摘要】目的利用Mimics 14.0软件重建、组合、赋值外固定架螺钉的三维模型,为遴选适宜的外固定架材料创造条件.方法将CT扫描层厚0.625 mm的DICOM 格式图像1 000张导入Mimics 14.0软件,筛选出胫骨平台下5 cm处图片60张进行三维重建,将螺钉扫描后导入胫骨骨干的三维模型中,利用Mimics 14.0软件的自适应装配,赋值功能生成组合模型.结果胫骨生成4 744个三角面片,创建582 750 个单元,螺钉生成4 362个三角面片,创建11 868个单元.结论 Mimics 14.0软件可快速、有效生成三维模型,便于Ansys、Abaqus等有限元软件进行分析,为不同材料属性的螺钉的抗拔出力等生物力学研究提供基础.%Objective To utilize the Mimics 14. 0 software to reconstruct,combinate and assign the three dimensional model of external fixation screw to create the condition for selecting appropriate materials of external fixation. Methods 1 000 CT images (0. 625 mm) were inputted to the Mimics 14. 0 software. 60 images located at 5 cm below tibia plateau were screened to three dirnmensional reconstruction.Meanwhile,screws were scanned to input to the three dimensional model of tibia to generate the new comrnbined model with the functions of auto assembling and assigning material. Results The tibia and screw generated 4 744 triangles, 582 750 elements,4 362 triangles,11 868 elements respectively. Conclusion The Mimics 14. 0 software could generate three dimen sional model rapidly and effectively,which is convenient to be analyzed by finite element software(Ansys,Abaqus) ,andprovides the theoretical basis of biomechanic study on pullout resistance of different screws.【期刊名称】《重庆医学》【年(卷),期】2013(042)007【总页数】3页(P783-785)【关键词】胫骨骨折;外固定器;三维模型【作者】郑轶;尹庆水;王智运;马立敏【作者单位】南方医科大学研究生学院,510515;广州军区广州总医院骨科医院,510010;广州军区广州总医院骨科医院,510010;广州军区广州总医院骨科医院,510010【正文语种】中文四肢骨折是临床常见的疾病,在所有的战伤中,双下肢损伤占1/4[1]。
mimics建模教程

人体股骨远端和胫骨近端模型的mimics反求设计3.3.1数据采集股骨远端和胫骨近端的数据采集工作是在天津某医院完成的。
选取正常男性健康志愿者,年龄31岁,身高1.72米,膝关节无疾病及畸形。
对于其右侧膝关节行CT扫描。
扫描层厚1mm,扫描层数199层。
得到连续横断面图像以及矢状面图像。
所得DICOM数据资料通过工作站传输到移动硬盘,作为膝关节重建数据来源。
3.3.2数据预处理将扫描好的CT数据拷贝到计算机上,通过“File”菜单下“Import images”导入扫描图片,如图3-34所示,选择需要的图片数据并打开。
图3-34 MIMICS数据导入界面点击“Next”按钮,如图3-35所示,选中想要进行的转换项目(其中包含图片数量、像素大小、图片类型、定位参数等),点击“Convert”按钮,完成转换。
设置“定位参数”,界面如图3-35所示。
图3-35 图片转换和定位参数的设定导入并完成图片的转换之后,MIMICS软件会自动计算并生成冠状面图和矢状面图。
如图3-34所示,软件用三个视图来显示这三个位置的图片,并且这三个视图是相互关联的,可以通过鼠标和定位工具栏快速定位。
右上角的图是原始的扫描图像;左上角和下角是由原始横断面图像计算生成的冠状面和矢状面图像。
红线指示横断面图像的位置;黄线指示冠状面图像的位置;绿线指示矢状面位置。
由于扫描的CT 图片太多,在重建三维模型时必定过于繁琐,需要通过“Orangize images”命令简化CT 图片,不需要的图片将不会在项目中出现,这样可以减少工作量,节省计算机资源,提高建模效率。
3.3.3 股骨远端模型的构建图3-36 MIMICS 建模工具栏在这里详细介绍股骨远端模型的构建过程。
主要使用的命令如图3-36所示。
1. 阈值分析断层图片中,不同组织的灰度值不同,因此通过阈值来提取相应的组织,利用软件自带的“阈值设定”(Threshold)选择需要重建的模型。
MIMICS软件在人体骨组织重建方面的应用

MIMICS软件在人体骨组织重建方面的应用具体的建模步骤如下:第一步,将现有的ct数据导入mimics是通过以下的步骤:导入ct数据得到下图这里的图像以mimics自带的图像为例。
第二步,进行阈值分析,点下图右下角的按钮在股骨头的部分画一条线,出现下图点弹出对话框上的start threholding,如下图绿色显示的是根据ct图像灰度所生成的阈值,一般不需要调节,但如果你觉得边界不是分割的很清楚的话可以适当调整一下。
点close后,点上面对话框的apply,然后切换上面的表单到如图所示状态点这个按钮,然后在图中绿色的股骨头上点一下,记住,是股骨头,如下图第三步,对模型进行处理。
点close,这时生成的股骨中间有很多的空洞,这在后面的ansys处理中会有很大的麻烦,所以就要求你仔细的一幅一幅的ct图片进行修改,就是把股骨中间有空的地方添满。
点下图右下角的按钮,下面的两张图是经过处理和处理之前的差别,股骨头上面的空洞没有了。
空洞的产生是由于ct阈值的差别造成的,并不是原来就有的,因此这样处理不影响后续计算。
上面的工作是细活,要有耐心然后点建立三位模型点calculate得到三维图形,这时的图形只是面,而不是体如图点击进入migics9.9点 smooth 进行光滑处理后,exit并保存,只需要点弹出对话框的yes系统自动退回到mimics点export如图,导出ansys文件在ansys中划分网格后就可以导入mimics赋值了。
注意:这里必须选ansys area files 如果选element划分网格就困难了。
导入ansys进行划分网格后保存文件。
将模型另存为一个文件名,在这里是hipout。
点击下图按钮弹出对话框如下图,选择ansys file导入后,点击materials按钮弹出对话框,设置数据如下图系统运算后生成的模型就是下图利用下图弹出对话框按照图示进行设定。
打开ansys,注意ansys的工作目录必须和存放文件的地址一致。
mimics教程

mimics教程第一单元什么是MimicsMimics是Materialise公司的交互式的医学影像控制系统,即为Materiaise's interactive medical image control system.它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS软件介绍MIMICS是一套高度整合而且易用的3D图像生成及编辑处理软件,它能输入各种扫描的数据(CT、MRI),建立3D模型进行编辑,然后输出通用的CAD(计算机辅助设计)、FEA(有限元分析),RP(快速成型)格式,可以在PC机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD模块是医学影像数据与CAD之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与CAD数据的相互转换。
在MIMICS的项目中建立CAD项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下,MIMICS自动在分离出的掩模上生成轮廓线,MEDCAD能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学CAD模型中。
创建的CAD模型的可能方法:-B样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以iges格式输出到CAD软件中制做植入体,另一个典型的运用是用MEDCAD模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式CAD建模可在2D或3D视图中直接创建CAD对象,或者用参数设置的方式创建(如定义圆心、半径来创建一个圆),创建后可用鼠标进行交互式编辑。
方便设计验证:为验证CAD植入体的设计,MIMICS输入STL文件格式在2D视图及标准视图中显示,或在3D视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在CAD设计软件中的调用。
RP-SLICE模块:Rp-slice模块在MIMICS与多数RP机器之间建立SLICE格式的接口,RP-Slice 模块能自动生成RP模型所需的支撑结构。
mimics教程

mimics 教程第一单元什么是 MimicsMimics 是 Materialise 公司的交互式的医学影像控制系统,即为 Materiaise's interactive medical image control system. 它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS 软件介绍MIMICS 是一套高度整合而且易用的 3D 图像生成及编辑处理软件,它能输入各种扫描的数据(CT 、MRI),建立 3D 模型进行编辑,然后输出通用的 CAD (计算机辅助设计) 、FEA (有限元分析), RP (快速成型) 格式,可以在 PC 机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD 模块是医学影像数据与 CAD 之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与 CAD 数据的相互转换。
在 MIMICS 的项目中建立 CAD 项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下, MIMICS 自动在分离出的掩模上生成轮廓线, MEDCAD 能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学 CAD 模型中。
创建的 CAD 模型的可能方法:-B 样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以 iges 格式输出到 CAD 软件中制做植入体,另一个典型的运用是用 MEDCAD 模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式 CAD 建模可在 2D 或 3D 视图中直接创建 CAD 对象,或者用参数设置的方式创建 (如定义圆心、半径来创建一个圆) ,创建后可用鼠标进行交互式编辑。
方便设计验证:为验证 CAD 植入体的设计, MIMICS 输入 STL 文件格式在 2D 视图及标准视图中显示,或在 3D 视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在 CAD 设计软件中的调用。
mimics颈椎建模详细过程

1.材料与方法此步骤将使用本课题组合作单位购买得Mimics16、0软件构建C0、C1、C2、C3四个骨性结构得初步三维模型,再利用其3-Matic得功能将骨性模型及本课题组得仿生关节得三维模型重新划分网格来修正模型,然后将修正过得三维模型倒入Geomagic12、0软件进行进一步处理,以使模型能符合有限元分析得要求。
1.1利用Mimcs16、0从颈椎CT图像建立枕骨(C0)、C1、C2、C3骨性结构得初始三维模型将本课题组原有得颅底及全颈段CT断层扫描图像294张,层距1、25mm,导入Mimics16、0软件,确定图像得前后、左右、上下得正确方位,使用软件得Pro及阈值分割功能选择出骨组织得灰度阈值,最小为226,最大为3071,如图1-1。
由于阈值分割只会选择出阈值范围内得物体,并不会自动识别颈椎结构,而且原始得CT 数据就是包含了患者背后得金属板得,因此阈值分割选出来得并不就是我们想要得颈椎结构。
所以我们使用区域增长得功能单独选出颈椎及下颅骨得结构,如图1-2。
区域增长后得颈椎结构被用黄色填充,包括有皮质骨与松质骨,但就是这些区域显示并不完善,有得在松质骨区有很多空洞,而且各个椎骨之间并未分隔开,因此我们使用软件自带得编辑工具调整修饰所有断层图片,解决上述问题,然后采用Calculate 3D功能建立三维模型,得到C0、C1、C2、C3骨性结构得初步三维模型,如图1-3。
流程图如1-4所示。
1、2 使用3-Matic修洁三维模型通过上述步骤获得得枕骨及上颈椎(C0、C1、C2、C3)得三位模型就是由一个相当粗糙得模型,有许多尖刺、不平滑得结构及生理颈椎不存在得结构,这就是将CT数据转化为三维模型必然会出现得结果。
而且此三维模型划分得网格实际上就是一个面网格结构,有许多三角片,有许多实际结构中不存在得空洞以及杂乱得三角片这种模型就是不能直接进行有限元分析得,也不能用于Geomagic12、0得处理。
mimics应用教程

mimics教程第一单元什么是MimicsMimics是Materialise公司的交互式的医学影像控制系统,即为Materiaise's interactive medical image control system.它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS软件介绍MIMICS是一套高度整合而且易用的3D图像生成及编辑处理软件,它能输入各种扫描的数据(CT、MRI),建立3D模型进行编辑,然后输出通用的CAD(计算机辅助设计)、FEA(有限元分析),RP(快速成型)格式,可以在PC机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD模块是医学影像数据与CAD之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与CAD数据的相互转换。
在MIMICS的项目中建立CAD项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下,MIMICS自动在分离出的掩模上生成轮廓线,MEDCAD 能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学CAD模型中。
创建的CAD模型的可能方法:-B样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以iges格式输出到CAD软件中制做植入体,另一个典型的运用是用MEDCAD模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式CAD建模可在2D或3D视图中直接创建CAD对象,或者用参数设置的方式创建(如定义圆心、半径来创建一个圆),创建后可用鼠标进行交互式编辑。
方便设计验证:为验证CAD植入体的设计,MIMICS输入STL文件格式在2D视图及标准视图中显示,或在3D视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在CAD设计软件中的调用。
RP-SLICE模块:Rp-slice模块在MIMICS与多数RP机器之间建立SLICE格式的接口,RP-Slice 模块能自动生成RP模型所需的支撑结构。
基于Mimics软件分析新型复合型颈椎前路内固定方式的可行性

基于Mimics软件分析新型复合型颈椎前路内固定方式的可行性侯志鹏;叶森琦;张吉辉;赵刘军;顾勇杰;于亮【期刊名称】《中国骨伤》【年(卷),期】2024(37)1【摘要】目的:探讨Mimics软件分析新型复合型颈椎前路内固定方式——下颈椎前路椎弓根螺钉(anterior transpedicular screw,ATPS)固定+零切迹内固定方式的可行性。
方法:选取2021年1月至2022年9月50例行颈椎CT扫描的正常人行C_(1)-C_(7)节段扫描,其中男27例,女23例,年龄25~65(46.0±9.0)岁。
导出Dicom格式,刻入光盘,通过Mimics软件对各节段进行三维重建。
并在图像上置入模拟螺钉,按照零切迹螺钉的临界值(头尾倾角44。
,内倾角29。
)置入,观察每个节段零切迹螺钉所在位置,确定下颈椎前路椎弓根螺钉固定+零切迹内固定方式的可行性。
结果:在本次研究中,对于上位零切迹螺钉,50例研究对象的颈椎三维图像在C_(3)-C_(7)节段中均处于安全位置中,且没有出现上位零切迹螺钉与ATPS螺钉相交。
对于下位零切迹螺钉,在C_(3)-C_(4)、C_(4)-C_(5)中,50例研究对象的颈椎三维图像中有4例处于安全位置,46例在最大尾倾角分别为(32.3±1.9)°和(36.1±2.2)°时可实现安全置钉;在C_(5)-C_(6)、C_(6)-C_(7)2个节段中,没有出现下位零切迹螺钉与ATPS螺钉相交,螺钉均处于安全位置。
结论:下颈椎前路椎弓根螺钉固定+零切迹内固定方式通过选择的进钉点、位置可以实现置钉成功。
【总页数】5页(P81-85)【作者】侯志鹏;叶森琦;张吉辉;赵刘军;顾勇杰;于亮【作者单位】宁波大学医学部;浙江省宁波市第六医院脊柱外科【正文语种】中文【中图分类】R683.2【相关文献】1.颈椎后前路减压内固定术翻修颈椎前路内固定失效的临床研究2.颈椎前路4间隙融合内固定治疗长节段颈椎病变可行性分析3.前路减压椎间植骨融合内固定术治疗神经根型颈椎病保留钩椎关节的可行性分析4.显微镜辅助下前路颈椎间盘切除融合内固定术与后路经皮颈椎内镜下椎间盘摘除术治疗单节段神经根型颈椎病2年疗效分析5.颈椎前路减压椎间融合术治疗单节段颈椎病:不应用钢板内固定的可行性分析因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.材料与方法
此步骤将使用本课题组合作单位购买的Mimics16、0软件构建C0、C1、C2、C3四个骨性结构的初步三维模型,再利用其3-Matic的功能将骨性模型及本课题组的仿生关节的三维模型重新划分网格来修正模型,然后将修正过的三维模型倒入Geomagic12、0软件进行进一步处理,以使模型能符合有限元分析的要求。
1.1利用Mimcs16、0从颈椎CT图像建立枕骨(C0)、C1、C2、C3骨性结构的初始三维模型
将本课题组原有的颅底及全颈段CT断层扫描图像294张,层距1、25mm, 导入Mimics16、0软件,确定图像的前后、左右、上下的正确方位,使用软件的Pro及阈值分割功能选择出骨组织的灰度阈值,最小为226,最大为3071,如图1-1。
由于阈值分割只会选择出阈值范围内的物体,并不会自动识别颈椎结构,而且原始的CT 数据就是包含了患者背后的金属板的,因此阈值分割选出来的并不就是我们想要的颈椎结构。
所以我们使用区域增长的功能单独选出颈椎及下颅骨的结构,如图1-2。
区域增长后的颈椎结构被用黄色填充,包括有皮质骨与松质骨,但就是这些区域显示并不完善,有的在松质骨区有很多空洞,而且各个椎骨之间并未分隔开,因此我们使用软件自带的编辑工具调整修饰所有断层图片,解决上述问题,然后采用Calculate 3D功能建立三维模型,得到C0、C1、C2、C3骨性结构的初步三维模型,如图1-3。
流程图如1-4
所示。
1、2 使用3-Matic修洁三维模型
通过上述步骤获得的枕骨及上颈椎(C0、C1、C2、C3)的三位模型就是由一个相当粗糙的模型,有许多尖刺、不平滑的结构及生理颈椎不存在的结构,这就是将CT数据转化为三维模型必然会出现的结果。
而且此三维模型划分的网格实际上就是一个面网格结构,有许多三角片,有许多实际结构中不存在的空洞以及杂乱的三角片这种模型就是不能直接进行有限元分析的,也不能用于Geomagic12、0的处理。
所以需要使用Mimics16、0自带的3-Matic8、0进行进一步处理,去掉无效的三角片并简化三角片的数量,以利于后面的运算。
首先使用软件的Fix Wizard功能处理三维模型中的错误
然后使用Remesh中的Creat Inspection Scene功能为三维模型划分网格,然后使用Auto Mesh优化三角片质量。
最后将处理过的模型保存为二进制STL格式文件,为下一步处理做准备。