2019年辽宁省丹东市中考数学试卷(解析版)

合集下载

丹东市2019年中考数学试题含答案(word版)

丹东市2019年中考数学试题含答案(word版)

2019年丹东市初中毕业生毕业升学考试数 学 试 卷考试时间:120分钟 试卷满分:150分第一部分 客观题(请用2B 铅笔将正确答案涂在答题卡对应的位置上)一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分) 1.2019的相反数是A. 2014-B. 2014C.D. 2.如图,由4个相同的小立方块组成一个立体图形,它的主视图是A.B.C.D.3.为迎接“2019丹东港鸭绿江国际马拉松赛”,丹东新区今年投入约4000万元用于绿化美化.4000万用科学记数法表示为A. 4×106B. 4×107C. 4×108D. 0.4×1074.下列事件中,必然事件是 A. 抛掷一枚硬币,正面朝上 B. 打开电视,正在播放广告C. 体育课上,小刚跑完1000米所用时间为1分钟D. 袋中只有4个球,且都是红球,任意摸出一球是红球 5.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直 平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为 A. 70°B. 80°C. 40°D. 30°6.下列计算正确的是 A. 331-=- B.743x x x =⋅ C. 532=⋅ D. ()3532q p q p -=-7.如图,反比例函数和一次函数 的图象交于 A 、B 两点. A 、B 两点的横坐标分别为2,-3.通过观察图象,若,则x 的取值范围是 A. 20<<x B. 03<<-x 或 2>x C. 20<<x 或 3-<x D. 03<<-x8.如图,在△ABC 中,CA=CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在 弧EF 上,则图中阴影部分的面积为第2题图2014120141-xky 11=21y y >b x k y +=22第8题图BACD E FBA第5题图E CD x-3yO AB 第7题图2A.212+π B. 41-π C. 214+π D. 214-π第二部分 主观题(请用0.5mm 黑色签字笔将答案写在答题卡对应的位置上)二、填空题(每小题3分,共24分)9.如图,直线a ∥b ,将三角尺的直角顶点放在直线b 上, ∠1=35°,则∠2= .10.一组数据2,3,x ,5,7的平均数是4,则这组数据的众数是 .11.若式子 有意义,则实数x 的取值范围是 .12.分解因式:22344xy y x x +-= .13.不等式组 的解集为 .14.小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x 元,每个圆规y 元.请列出满足题意的方程组 .15.如图,在菱形ABCD 中,AB =4cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动 (到点B 为止),点E 的速度为1cm /s ,点F 的速度为2cm /s , 经过t 秒△DEF 为等边三角形,则t 的值为 . 16.如图,在平面直角坐标系中,A 、B 两点分别在x 轴和y 轴上, OA=1,OB =3,连接AB ,过AB 中点C 1分别作x 轴和y 轴的 垂线,垂足分别是点A 1、B 1,连接A 1B 1,再过A 1B 1中点C 2作x 轴和y 轴的垂线,照此规律依次作下去,则点C n 的坐标为 .三、解答题(每小题8分,共16分) 17.计算:()231260tan 330-+-︒+-π.18.如图,在平面直角坐标系中,△ABC 的三个顶点坐标为 A (1,-4) ,B (3,-3) ,C (1,-1).(每个小方格都是边 长为一个单位长度的正方形)(1)将△ABC 沿y 轴方向向上平移5个单位,画出平移xyxOABC第18题图第9题图1 2 ab第16题图A 2 A 1 A O xB B 1B 2C 1 C 2 y xx-2⎩⎨⎧<->+.423,532x x C BA DE F第15题图后得到的△A 1B 1C 1;(2)将△ABC 绕点O 顺时针旋转90°,画出旋转后得 到的△A 2B 2C 2,并直接写出点A 旋转到点A 2所经 过的路径长.四、(每小题10分,共20分)19.某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A :踢毽子;B :篮球;C :跳绳;D :乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生? (2)请将两个..统计图补充完整. (3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?20.某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?五、(每小题10分,共20分)21.甲、乙两人用如图所示的两个分格均匀的转盘A 、B 做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果. (2)求甲、乙两人获胜的概率.A B12 34 57 6第21题图第19题图B C D A B C D 80 60 40 20 0803050人数(单位:人)项目A 40%25% 20%22.如图,在△ABC 中,∠ABC=90°,以AB 为直径的⊙O与AC 边交于点D ,过点D 的直线交BC 边于点E , ∠BDE =∠A .(1)判断直线DE 与⊙O 的位置关系,并说明理由.(2)若⊙O 的半径R =5,tan A = ,求线段CD 的长.六、(每小题10分,共20分)23.禁渔期间,我渔政船在A 处发现正北方向B 处有一艘 可疑船只,测得A 、B 两处距离为99海里,可疑船只 正沿南偏东53°方向航行.我渔政船迅速沿北偏东27° 方向前去拦截,2小时后刚好在C 处将可疑船只拦截. 求该可疑船只航行的速度. (参考数据:sin 27°≈209,cos 27°≈109,tan 27°≈21,sin 53°≈54,cos 53°≈53,tan 53°≈34)24.在2019年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≥60)元,销售量为y 套.(1)求出y 与x 的函数关系式.(2)当销售单价为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是 ] 七、(本题12分)25.在四边形ABCD 中,对角线AC 、BD 相交于点O ,将△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,旋转角为θ(0°<θ<90°),连接AC 1、BD 1,AC 1与BD 1交于点P . (1)如图1,若四边形ABCD 是正方形.43第22题图EABCDO53°北A第23题图B C27° )44,2(2ab ac a b --①求证:△AOC 1≌△BOD 1.②请直接写出AC 1 与BD 1的位置关系.(2)如图2,若四边形ABCD 是菱形,AC =5,BD =7,设AC 1=k BD 1.判断AC 1与BD 1的位置关系,说明理由,并求出k 的值.(3)如图3,若四边形ABCD 是平行四边形,AC =5,BD =10,连接DD 1,设AC 1=kBD 1.请直接写出k 的值和 的值.八、(本题14分)26.如图1,抛物线y=ax 2+bx -1经过A (-1,0)、B (2,0)两点,交y 轴于点C .点P 为抛物线上的一个动点,过点P 作x 轴的垂线交直线BC 于点D ,交x 轴于点E . (1)请直接写出抛物线表达式和直线BC 的表达式.(2)如图1,当点P 的横坐标为 时,求证:△O BD ∽△ABC .(3)如图2,若点P 在第四象限内,当OE =2PE 时,求△POD 的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P 的坐标.2121)(kDD ACPA B C DD 1 O C 1 C DAB D 1PC 1O 图1 图2 图3 第25题图 CDAB D 1PC 1 O32x PABCO PxyxyAB CO D E图1 图2 备用图yA B CO DE第26题图2014年丹东市初中毕业生毕业升学考试数学试卷参考答案及评分标准(若有其它正确方法,请参照此标准赋分)一、选择题:(每小题3分,共24分)二、填空题(每小题3分,共24分)9. 55°10. 3 11. x ≤2且x ≠0 12. x(x-2y)2 13. 1<x<2 14. ⎩⎨⎧=+=+35451923y x y x 15.34 16. ⎪⎪⎭⎫ ⎝⎛n n 23,21 三、解答题(每小题8分,共16分) 17.解:()231260tan 33-0-+-︒+π3232331-+-+=………………………………………………4分3=…………………………………………………………………………8分18. 解:(1)如图,△A 1B 1C 1即为所求. …………………………3分(2)如图,△A 2B 2C 2即为所求. …………………………6分点A 旋转到点A 2所经过的路径长为:217π………………8分四、(每小题10分,共20分)19.解:(1)80÷40%=200(人) ∴本次共调查200名学生. ………3分 (2)补全如图(每处2分). …………………7分 (3)1200×15%=180(人) ∴该学校喜欢乒乓球体育项目的学生约有180人. ……………………10分20.解:该服装厂原计划每天加工x 件服装,则实际每天加工1.5x 件服装,根据题意,得…………………………1分105.130003000=-xx ………………………………………5分 解这个方程得x=100…………………………………………………………………8分 经检验,x=100是所列方程的根. …………………………………9分 答:该服装厂原计划每天加工100件服装. ……………………10分五、(每小题10分,共20分) 21.解:(1)所有可能出现的结果如图:方法一:列表法 方法二:树状图法题号 1 2 3 4 5 6 7 8 答案ACBDDBCD4 (3,4) 124 (2,4) 85 (2,5) 106 (2,6) 127 (2,7) 144 (1,4) 45 (1,5) 56 (1,6) 67 (1,7) 712开始C 2B 2A 2C 1B 1A 1CBA O y x4025%DC20%15%B 40%A 人数(单位:人)项目D C B A 50308080604020…………………………………………………4分(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同, 其中积是奇数的结果有4种,即5、7、15、21,积是偶数的结果有8种,即4、6、8、10、12、14、12、18. …………………………………………6分∴ 甲、乙 两人获胜的概率分别为: 31124)(==甲获胜P ,32128)(==乙获胜P ……10分22. (1)解:直线DE 与⊙O 相切. ……………………………………………………1分理由如下:连接OD . ∵OA=OD ∴∠ODA=∠A 又∵∠BDE=∠A∴∠ODA=∠BDE ∵AB 是⊙O 直径∴∠ADB=90°………………………………………………………3分即∠ODA+∠ODB=90° ∴∠BDE+∠ODB=90° ∴∠ODE=90° ∴OD⊥DE∴DE 与⊙O 相切. ………………………………………………………5分 (2)∵R=5∴AB =10在Rt△ABC中∵tanA=AB BC =43∴BC= AB ·tanA=10×43=215…………………………6分 ∴AC=225215102222=⎪⎭⎫ ⎝⎛+=+BC AB …………………………7分 ∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD ∽△ACB …………………………8分 ∴CACB CBCD =∴…………………………………10分45671(1,4) 4(1,5) 5(1,6) 6(1,7) 72(2,4) 8(2,5) 10(2,6) 12(2,7) 143(3,4) 12(3,5) 15(3,6) 18(3,7) 21A BE C DBA O 29225)215(22===CA CB CDA BC53°北27°D(其它解法参考此标准赋分)六、(每小题10分,共20分)23.解:如图,根据题意可得,在△ABC 中,AB=99海里,∠ABC=53°,∠BAC=27°,过点C 作CD ⊥AB ,垂足为点D. ……………………………1分设BD=x 海里,则AD=(99-x )海里,在Rt △BCD 中, BDCD=︒53tan , 则CD=x ·tan53°≈x 34海里. ………………………………3分在Rt △ACD 中,,则∴ x 34=)99(21x -………………………………………………5分解得,x=27,即BD=27. ……………………………………7分 在Rt △BCD 中,BCBD =︒53cos ,则BC= 4545÷2=22.5(海里/时) ………………………………………9分∴该可疑船只的航行速度为22.5海里/时. ………………………10分(其它解法参考此标准赋分) 24.解:(1)20560240⨯--=x y∴y=-4x+480 …………………………2分(2)根据题意可得,x (- 4x+480)=14000…………………………………4分 解得,x 1=70,x 2=50(不合题意舍去)∴当销售价为70元时,月销售额为14000元. ………………………6分 (3)设一个月内获得的利润为w元,根据题意,得 w=(x-40)(-4x+480)……………………………………………………8分=-4x 2+640x-19200 =-4(x-80)2+6400当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.………………………………………10分七、(本题12分)25.解:(1)①证明:∵四边形ABCD 是正方形∴AC=BD,OC =OA=21AC,OD=OB=21BD ∴OC=OA=OD=OB ,∵△C 1OD 1由△COD 绕点O 旋转得到=≈︒532753cos BD ADCD=︒27tan )99(2127tan x AD CD -≈︒⋅=PABCDD 1OC 1∴O C 1= OC ,O D 1=OD ,∠CO C 1=∠DO D 1 ∴O C 1= O D 1 ∠AO C 1=∠BO D 1∴△A O C 1≌△BOD 1………………………………3分 ②AC 1⊥BD 1………………………………………4分 (2)AC 1⊥BD 1…………………………………………5分理由如下:∵四边形ABCD 是菱形∴OC =OA=21AC,OD=OB=21BD,AC ⊥BD ∵△C 1OD 1由△COD 绕点O 旋转得到∴O C 1= OC ,O D 1=OD ,∠CO C 1=∠DO D 1 ∴O C 1=OA ,O D 1=OB ,∠AO C 1=∠BO D 1∴OB OD OA OC 11=∴OBOA OD OC =11 ∴△A O C 1∽△BOD 1………………………………7分∴∠O AC 1= ∠OB D 1又∵∠AOB=90°∴∠O AB+∠ABP+∠OB D 1=90° ∴∠O AB+∠ABP+∠O AC 1=90° ∴∠APB=90° AC 1⊥BD 1∵△A O C 1∽△BOD 1∴75212111====BD AC BD ACOB OA BD AC ∴75=k ……………………………………… 9分(其它方法按此标准赋分)(3)21=k …………………………………………… 10分25)(2121=+kDD AC …………………………………12分八、(本题14分)图1图2 第26题图xAB CP yO D ExPO y AB C DE26. 解:(1)抛物线表达式:1212121--=x x y …………………………2分直线BC 的表达式:1212-=x y …………………………3分(2)如图1,当点P 的横坐标为32 时,把x=32代入1212-=x y ,得32132212-=-⨯=y …………4分∴DE=32又∵OE=32,∴DE =OE∵∠OED =90° ∴∠EOD=45°又∵OA=OC=1,∠AOC =90° ∴∠O AC=45° ∴∠O AC=∠EOD又∵∠OBD=∠ABC△OBD ∽△ABC ……………………………………6分(3)设点P 的坐标为P (x ,121212--x x )∴OE=x ,P E=121212--x x =121212++-x x又∵OE=2PE∴)12121(22++-=x x x解得21=x 22-=x (不合题意舍去)…………………8分∴P、D两点坐标分别为⎪⎪⎭⎫ ⎝⎛-22,2P , ⎪⎪⎭⎫ ⎝⎛-222,2D …………9分 ∴PD=12)22(222-=--- OE=2∴()2222122121-=⋅-⋅=⋅⋅=∆OE PD S POD ……………………10分 (4)(),1,11-P ,2527,542⎪⎭⎫ ⎝⎛-P ,553,5523⎪⎪⎭⎫ ⎝⎛--P .553,5524⎪⎪⎭⎫ ⎝⎛+--P ……………14分O数学试卷。

2019年初中毕业升学考试(辽宁丹东卷)数学【含答案及解析】

2019年初中毕业升学考试(辽宁丹东卷)数学【含答案及解析】

2019年初中毕业升学考试(辽宁丹东卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. -2015的绝对值是().A.-2015 B.2015 C. D.-2. 据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万,用科学计数法将27.8万表示为().A.2.78×106 B.27.8×106C.2.78×105 D.27.8×1053. 如图,是某几何体的俯视图,该几何体可能是().A.圆柱 B.圆锥 C.球 D.正方体4. 如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是().A.5.2 B.4.6 C.4 D.3.65. 过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.6. 一次函数(为常数)与反比例函数的图象交于A、B两点,当A、B两点关于原点对称时的值是().A.0 B.-3 C.3 D.4二、填空题7. 如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.8. 分解因式:.9. 若,且a、b是两个连续的整数,则.10. 不等式组的解集为.11. 在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.12. 如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均为等边三角形,点A1、A2、A3…An+1在x轴的正半轴上依次排列,点B1、B2、B3…Bn在直线OD上依次排列,那么点Bn的坐标为.三、解答题13. 先化简,再求值:,其中,3.14. 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.15. 某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.16. 从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?17. 一个不透明的口袋中装有4个分别标有数字-1,-2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P (x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.18. 如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA CD,求阴影部分的面积;(2)求证:DE DM.19. 23.如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.20. 某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:21. x30323436y40363228td22. 在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD m·BP时,请直接写出PE与PF的数量关系.23. 如图,已知二次函数的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。

2019年辽宁省丹东市中考数学试卷含答案解析(word版)

2019年辽宁省丹东市中考数学试卷含答案解析(word版)

2019年辽宁省丹东市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.2019年1月19日,国家统计局公布了2019年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A.6.76×106B.6.76×105C.67.6×105D.0.676×1063.如图所示几何体的左视图为()A.B.C.D.4.一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6B.7,6C.7,8D.8,75.下列计算结果正确的是()A.a8÷a4=a2B.a2•a3=a6C.(a3)2=a6D.(﹣2a2)3=8a66.二元一次方程组的解为()A.B.C.D.7.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8B.10C.12D.148.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个二、填空题(每小题3分,共24分)9.分解因式:xy2﹣x=.10.不等式组的解集为.11.一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是.12.反比例函数y=的图象经过点(2,3),则k=.13.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为.14.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.15.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.16.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为.三、解答题(每小题8分,共16分)17.计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2019)0.18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.四、(每小题10分,共20分)19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?20.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.五、(每小题10分,共20分)21.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?22.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.六、(每小题10分,共20分)23.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)24.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?七、(本题12分)25.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.八、(本题14分)26.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.2019年辽宁省丹东市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.﹣3的倒数是()A.3B.C.﹣D.﹣3【考点】倒数.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.2019年1月19日,国家统计局公布了2019年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A.6.76×106B.6.76×105C.67.6×105D.0.676×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将676000用科学记数法表示为6.76×105.故选B.3.如图所示几何体的左视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故选:A.4.一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6B.7,6C.7,8D.8,7【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7.故选D.5.下列计算结果正确的是()A.a8÷a4=a2B.a2•a3=a6C.(a3)2=a6D.(﹣2a2)3=8a6【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a8÷a4=a4,故A错误;B、a2•a3=a5,故B错误;C、(a3)2=a6,故C正确;D、(﹣2a2)3=﹣8a6,故D错误.故选:C.6.二元一次方程组的解为()A.B.C.D.【考点】二元一次方程组的解.【分析】根据加减消元法,可得方程组的解.【解答】解:①+②,得3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选C.7.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8B.10C.12D.14【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.8.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;由F是AB的中点,BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正确;即可得出结论.【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,∴S△ABC=2S△ABD=4S△ADF.④正确;故选:D.二、填空题(每小题3分,共24分)9.分解因式:xy2﹣x=x(y﹣1)(y+1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).10.不等式组的解集为2<x<6.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>2,由②得,x<6,故不等式组的解集为:2<x<6.故答案为:2<x<6.11.一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是\frac{2}{5}.【考点】概率公式.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵一个袋中装有两个红球、三个白球,∴球的总数=2+3=5,∴从中任意摸出一个球,摸到红球的概率=.故答案为:.12.反比例函数y=的图象经过点(2,3),则k=7.【考点】反比例函数图象上点的坐标特征.【分析】根据点的坐标以及反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k﹣1=2×3,解得:k=7.故答案为:7.13.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为60(1+x)2=100.【考点】由实际问题抽象出一元二次方程.【分析】设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.14.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是﹣\frac{122}{11}.【考点】规律型:数字的变化类.【分析】根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.15.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为6\sqrt{2}.【考点】相似三角形的判定与性质;正方形的性质.【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【解答】解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3=6,故答案为:6.16.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为(3,4)或(\frac{96}{25},\frac{72}{25})或(﹣\frac{21}{25},\frac{28}{25}).【考点】全等三角形的判定;坐标与图形性质.【分析】由条件可知AB为两三角形的公共边,且△AOB为直角三角形,当△AOB和△APB 全等时,则可知△APB为直角三角形,再分三种情况进行讨论,可得出P点的坐标.【解答】解:如图所示:①∵OA=3,OB=4,∴P1(3,4);②连结OP2,设AB的解析式为y=kx+b,则,解得.故AB的解析式为y=﹣x+4,则OP2的解析式为y=x,联立方程组得,解得,则P2(,);③连结P2P3,∵(3+0)÷2=1.5,(0+4)÷2=2,∴E(1.5,2),∵1.5×2﹣=﹣,2×2﹣=,∴P3(﹣,).故点P的坐标为(3,4)或(,)或(﹣,).故答案为:(3,4)或(,)或(﹣,).三、解答题(每小题8分,共16分)17.计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2019)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、乘法,然后从左向右依次计算,求出算式4sin60°+|3﹣|﹣()﹣1+(π﹣2019)0的值是多少即可.【解答】解:4sin60°+|3﹣|﹣()﹣1+(π﹣2019)0=4×+2﹣3﹣2+1=2+2﹣4=4﹣418.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).四、(每小题10分,共20分)19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.【解答】解:(1)80÷40%=200(人).∴此次共调查200人.(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.20.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【考点】游戏公平性;列表法与树状图法.【分析】(1)利用列表法得到所有可能出现的结果,根据概率公式计算即可;(2)分别求出甲、乙获胜的概率,比较即可.【解答】解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.∵>,∴甲获胜的概率大,游戏不公平.五、(每小题10分,共20分)21.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?【考点】分式方程的应用.【分析】设甲商品的单价为x元,乙商品的单价为2x元,根据购买240元甲商品的数量比购买300元乙商品的数量多15件列出方程,求出方程的解即可得到结果.【解答】解:设甲商品的单价为x元,乙商品的单价为2x元,根据题意,得﹣=15,解这个方程,得x=6,经检验,x=6是所列方程的根,∴2x=2×6=12(元),答:甲、乙两种商品的单价分别为6元、12元.22.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE•AE,∴16=2(2+AD),∴AD=6.六、(每小题10分,共20分)23.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【考点】解直角三角形的应用-仰角俯角问题.【分析】Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC﹣BD 可得关于AB 的方程,解方程可得.【解答】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.24.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【考点】二次函数的应用.【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.(2)列出方程解方程组,再根据实际意义确定x的值.(3)构建二次函数,利用二次函数性质解决问题.【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.七、(本题12分)25.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.【考点】相似形综合题.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点P、M、N分别为AD、AB、DE的中点,所以PM=BD,PN=AE,进而可证明PM=kPN.【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.八、(本题14分)26.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数的表达式;(2)根据二次函数的对称轴x=2写出点C的坐标为(3,3),根据面积公式求△ABC的面积;(3)因为点P是抛物线上一动点,且位于第四象限,设出点P的坐标(m,﹣m2+4m),利用差表示△ABP的面积,列式计算求出m的值,写出点P的坐标;(4)分别以点C、M、N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM 或CN的长,利用面积公式进行计算.【解答】解:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得解得:,∴抛物线表达式为:y=﹣x2+4x;(2)点C的坐标为(3,3),又∵点B的坐标为(1,3),∴BC=2,∴S△ABC=×2×3=3;(3)过P点作PD⊥BH交BH于点D,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S﹣S△BPD,四边形HAPD6=×3×3+(3+m﹣1)(m2﹣4m)﹣(m﹣1)(3+m2﹣4m),∴3m2﹣15m=0,m1=0(舍去),m2=5,∴点P坐标为(5,﹣5).(4)以点C、M、N为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,则△CBM≌△MHN,∴BC=MH=2,BM=HN=3﹣2=1,∴M(1,2),N(2,0),由勾股定理得:MC==,∴S△CMN=××=;②以点M为直角顶点且M在x轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt△NEM和Rt△MDC,得Rt△NEM≌Rt△MDC,∴EM=CD=5,MD=ME=2,由勾股定理得:CM==,∴S△CMN=××=;③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,作辅助线,同理得:CN==,∴S△CMN=××=17;④以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,同理得:CN==,∴S△CMN=××=5;⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述:△CMN的面积为:或或17或5.2019年7月13日。

辽宁省丹东市2019年中考数学试卷及答案(word版含解析)

辽宁省丹东市2019年中考数学试卷及答案(word版含解析)

2019年辽宁省丹东市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)2.(3分)(2019•丹东)如图,由4个相同的小立方块组成一个立体图形,它的主视图是()B3.(3分)(2019•丹东)为迎接“2019丹东港鸭绿江国际马拉松赛”,丹东新区今年投入约5.(3分)(2019•丹东)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB 于点D,交AC于点E,连接BE,则∠CBE的度数为()C=•=≠•=≠7.(3分)(2019•丹东)如图,反比例函数y1=和一次函数y2=k2x+b的图象交于A、B两点.A、B两点的横坐标分别为2,﹣3.通过观察图象,若y1>y2,则x的取值范围是()8.(3分)(2019•丹东)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为()BAB=1DM=.=.﹣.二、填空题(每小题3分,共24分)9.(3分)(2019•丹东)如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=35°,则∠2=55°.10.(3分)(2019•丹东)一组数据2,3,x,5,7的平均数是4,则这组数据的众数是3.11.(3分)(2019•丹东)若式子有意义,则实数x的取值范围是x≤2且x≠0.12.(3分)(2019•丹东)分解因式:x3﹣4x2y+4xy2=x(x﹣2y)2.13.(3分)(2019•丹东)不等式组的解集是1<x<2.,14.(3分)(2019•丹东)小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.请列出满足题意的方程组.由题意得,故答案为:15.(3分)(2019•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.解答:t=故答案为:.16.(3分)(2019•丹东)如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为.OA=,OB=,的坐标为(,==的坐标为(,=的坐标为故答案为:三、解答题(每小题8分,共16分)17.(8分)(2019•丹东)计算:.﹣+2=318.(8分)(2019•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C(1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.OA==所经过的路径长为:四、(每小题10分,共20分)19.(10分)(2019•丹东)某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球;C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生?(2)请将两个统计图补充完整.(3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?20.(10分)(2019•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?五、(每小题10分,共20分)21.(10分)(2019•丹东)甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.=,=.22.(10分)(2019•丹东)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.(1)判断直线DE与⊙O的位置关系,并说明理由.(2)若⊙O的半径R=5,tanA=,求线段CD的长.tanA=×=,六、(每小题10分,共20分)23.(10分)(2019•丹东)如图,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A、B两处距离为99海里,可疑船只正沿南偏东53°方向航行.我渔政船迅速沿北偏东27°方向前去拦截,2小时后刚好在C处将可疑船只拦截.求该可疑船只航行的速度.(参考数据:sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈),再根据x=(,°≈x°≈x==BC=24.(10分)(2019•丹东)在2019年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].)七、(本题12分)25.(12分)(2019•丹东)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=k BD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.OC=OA=AC OD=OB=,==,k===,所以k=;根据OC=OA=BD,===;==,;八、(本题14分)26.(14分)(2019•丹东)如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x 轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.点的横坐标代入直线,求得则m+1=m时,则m∴抛物线表达式:.的表达式:.时,把,得,)PE==,(不合题意舍去)两点坐标分别为PD=,,m﹣m m+1m mm,时,则m=,,。

辽宁省丹东市中考数学试卷(解析版)

辽宁省丹东市中考数学试卷(解析版)

辽宁省丹东市中考数学试卷(解析版)辽宁省丹东市中考数学试卷(解析版)第一部分:选择题(共40小题,每小题2分,满分80分)1. 某商品原价为300元,现以原价的3折出售,则现价为多少元?2. 若正数a、b的比为5:6,且a的倒数与b的倒数的和等于31/30,则a+b的和为多少?3. 若正方体每个面积减小60%,则新的表面积是原表面积的几分之几?4. 将一块积木按正六面体剖开,并去掉与底部平行的一层,华华剩下的是矩形,若正方形的边长是5 cm,则剩下的矩形的长和宽的比例是多少?5. 由4个2和2个6组成一个六位数,使得这个数能被8整除,且剩余2个数字的和最小,那么这个数是多少?6. 将一个边长为10 cm的正方体截去一个边长为4 cm的正方体,剩下的是一个几何图形,它的体积是多少?7. 甲乙两地相距200 km,两车同时从甲地、乙地出发,乙地有一辆车在甲车出发1小时后向甲地出发,并以时速80 km/h行驶,两车相遇在距离甲地40 km的地方,则甲车的时速是多少?8. 已知若正方形的面积增大24%,则边长增长的百分数为6%,则这个正方形的边长是多少?9. 若2x+5>1+x,则x的取值范围是?10. 若甲地海拔高度为1000 m,乙地比甲地低的高度是甲地海拔的2/5,且甲地与乙地的相对高度差为200 m,则乙地的相对海拔高度是多少?11. 2019年1月1日是星期二,那么2020年1月1日是星期几?12. 设两个相交的圆$O_1, O_2$半径分别为r, 2r,且相交弧AB为$O_1$的1/3,则弧AB所对的圆心角的度数是?13. 若把一个平面图形的面积扩大为原面积的9倍,则原边长为5 cm的图形扩大后的边长是多少?14. 一年有365天,若将365写成x,其中x代表某个数,则这个数字x是多少?15. 在矩形中,长的边长是宽的3倍,若周长是36 cm,则这个矩形的面积是多少?16. 若若方程3(x-a)=7-2(x-a)在x=a成立,那么a的值是多少?17. 一个长方体的长宽高依次增大为原来的2倍、3倍、4倍,它的体积变为原来的多少倍?18. 一个价格为1200元的商品,先涨价25%,后又降价25%,这个商品现在的价格是多少元?19. 若a:b=3:4,b:c=8:9,a+c=24,则b的值是多少?20. 已知函数y=2x-1,那么当x=3时,y的值是多少?第二部分:解答题(共20小题,共120分)21. 设AB为平行四边形ABCD的一条对角线,AB=6 cm,BC=8 cm,当为 $ \angle ABC $ 求 $ \angle ABC $ 的正弦值。

2019年辽宁省丹东市中考数学试题及参考答案(word解析版)

2019年辽宁省丹东市中考数学试题及参考答案(word解析版)

2019年辽宁省丹东市中考数学试题及参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2019的相反数是()A.﹣2019 B.2019 C.﹣D.2.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为()A.2.748×102B.274.8×104C.2.748×106D.0.2748×1073.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.4.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C.以点E为圆心、DM的长为半径的弧D.以点E为圆心、OD的长为半径的弧6.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是()A.11 B.12 C.13 D.147.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8 B.9 C.8或9 D.128.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共8小题,每小题3分,共24分)9.因式分解:2x3﹣8x2+8x=.10.在函数y=中,自变量x的取值范围是.11.有5张无差别的卡片,上面分别标有﹣1,0,,,π,从中随机抽取1张,则抽出的数是无理数的概率是.12.关于x的不等式组的解集是2<x<4,则a的值为.13.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是.14.如图,点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=(x>0)经过点C,则k=.15.如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为.16.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB =60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B2019,A2019的圆的圆心坐标为.三、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤)17.(8分)先化简,再求代数式的值:,其中x=3cos60°.18.(8分)在下面的网格中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣3,0),(﹣1,﹣1).(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.(2)将△ABC绕着坐标原点顺时针旋转90°,画出旋转后的△A′B'C′.(3)接写出在上述旋转过程中,点A所经过的路径长.四、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)19.(10分)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.(10分)如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).五、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)21.(10分)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.22.(10分)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.六、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)23.(10分)如图,在某街道路边有相距10m、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A处测得路灯PQ的顶端仰角为14°,向前行走25m到达B处,在地面测得路灯MN的顶端仰角为24.3°,已知点A,B,Q,N在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到0.1m.参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,sin24.3°≈0.41,cos24.3°≈0.91,tan24.3°≈0.45)24.(10分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?七、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤)25.(12分)已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF.②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出的值,并用含α的代数式直接表示∠DEF的度数.八、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤)26.(14分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t≤),请直接写出S与t的函数关系式.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2019的相反数是()A.﹣2019 B.2019 C.﹣D.【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数,可得答案【解题过程】解:2019的相反数是﹣2019,故选:A.【总结归纳】主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为()A.2.748×102B.274.8×104C.2.748×106D.0.2748×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:数据274.8万用科学记数法表示为274.8×104=2.748×106.故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从上面看得到的图形是俯视图,可得答案.【解题过程】解:从上面看第一层是两个小正方形,第二层是三个小正方形,俯视图为:。

2019年丹东中考数学试题

2019年丹东中考数学试题

2019年辽宁省丹东市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2019的相反数是( ) A .2019-B .2019C .12019-D .120192.(3分)十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A .22.74810⨯B .4274.810⨯C .62.74810⨯D .70.274810⨯3.(3分)如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为( )A .B .C .D .4.(3分)下面计算正确的是( ) A .321a a -=B .224246a a a +=C .325()x x =D .826x x x ÷=5.(3分)如图,点C 在AOB ∠的边OA 上,用尺规作出了//CP OB ,作图痕迹中,FG 是( )A .以点C 为圆心、OD 的长为半径的弧B .以点C 为圆心、DM 的长为半径的弧 C .以点E 为圆心、DM 的长为半径的弧D .以点E 为圆心、OD 的长为半径的弧6.(3分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是( )A .11B .12C .13D .147.(3分)等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程260x x k -+=的两个实数根,则k 的值是( ) A .8B .9C .8或9D .128.(3分)如图,二次函数2(0)y ax bx c a =++≠的图象过点(2,0)-,对称轴为直线1x =.有以下结论: ①0abc >; ②80a c +>;③若1(A x ,)m ,2(B x ,)m 是抛物线上的两点,当12x x x =+时,y c =;④点M ,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得PM PN ⊥,则a 的取值范围为1a ;⑤若方程(2)(4)2a x x +-=-的两根为1x ,2x ,且12x x <,则1224x x -<<. 其中结论正确的有( )A .2个B .3个C .4个D .5个二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)因式分解:32288x x x -+= .10.(3分)在函数y =中,自变量x 的取值范围是 .11.(3分)有5张无差别的卡片,上面分别标有1-,0,13,π,从中随机抽取1张,则抽出的数是无理数的概率是 .12.(3分)关于x 的不等式组2401x a x ->⎧⎨->-⎩的解集是24x <<,则a 的值为 .13.(3分)如图,在ABC ∆中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若1DE =,则BC 的长是 .14.(3分)如图,点A 在双曲线6(0)y x x =>上,过点A 作AB x ⊥轴于点B ,点C 在线段AB 上且:1:2BC CA =,双曲线(0)ky x x=>经过点C ,则k = .15.(3分)如图,在平面直角坐标系中,点A ,C 分别在x 轴、y 轴上,四边形ABCO 是边长为4的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP ,AP ,当点P 满足DP AP +的值最小时,直线AP 的解析式为 .16.(3分)如图,在平面直角坐标系中,1OA =,以OA 为一边,在第一象限作菱形1OAA B ,并使60AOB ∠=︒,再以对角线1OA 为一边,在如图所示的一侧作相同形状的菱形121OA A B ,再依次作菱形232OA A B ,343OA A B ,⋯⋯,则过点2018B ,2019B ,2019A 的圆的圆心坐标为 .三、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(8分)先化简,再求代数式的值:2222421121x x x x x x x ---÷+--+,其中3cos60x =︒.18.(8分)在下面的网格中,每个小正方形的边长均为1,ABC∆的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(3,0)--.-,(1,1)(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.(2)将ABC''.∆绕着坐标原点顺时针旋转90︒,画出旋转后的△A B C'(3)接写出在上述旋转过程中,点A所经过的路径长.四、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)19.(10分)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.(10分)如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).五、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)21.(10分)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.22.(10分)如图,在Rt ABCACB∠=︒,点D在AB上,以AD为直径的⨀O与边BC相切∆中,90̂=EĜ,连接GO并延长交⨀O于点F,连接BF.于点E,与边AC相交于点G,且AG(1)求证:①AO AG=.②BF是⨀O的切线.(2)若6BD=,求图形中阴影部分的面积.六、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤) 23.(10分)如图,在某街道路边有相距10m 、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A 处测得路灯PQ 的顶端仰角为14︒,向前行走25m 到达B 处,在地面测得路灯MN 的顶端仰角为24.3︒,已知点A ,B ,Q ,N 在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到0.1m .参考数据:sin140.24︒≈,cos140.97︒≈,tan140.25︒≈,sin24.30.41︒≈,cos24.30.91︒≈,tan 24.30.45)︒≈24.(10分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x 元,平均月销售量为y 件. (1)求出y 与x 的函数关系式,并写出自变量x 的取值范围. (2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?七、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤) 25.(12分)已知:在ABC ∆外分别以AB ,AC 为边作AEB ∆与AFC ∆.(1)如图1,AEB ∆与AFC ∆分别是以AB ,AC 为斜边的等腰直角三角形,连接EF .以EF 为直角边构造Rt EFG ∆,且EF FG =,连接BG ,CG ,EC . 求证:①AEF CGF ∆≅∆. ②四边形BGCE 是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在ABC ∆外分别以AB ,AC 为斜边作Rt AEB ∆与Rt AFC ∆,并使30FAC EAB ∠=∠=︒,取BC 的中点D ,连接DE ,EF 后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出EDEF的值及DEF ∠的度数. (3)小颖受到启发也做了探究:如图3,在ABC ∆外分别以AB ,AC 为底边作等腰三角形AEB 和等腰三角形AFC ,并使90CAF EAB ∠+∠=︒,取BC 的中点D ,连接DE ,EF 后发现,当给定EAB α∠=时,两者间也存在一定的数量关系且夹角度数一定,若AE m =,AB n =,请你帮助小颖用含m ,n 的代数式直接写出EDEF的值,并用含α的代数式直接表示DEF ∠的度数.八、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤) 26.(14分)如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于B ,C 两点,与y 轴交于点A ,直线122y x =-+经过A ,C 两点,抛物线的对称轴与x 轴交于点D ,直线MN 与对称轴交于点G ,与抛物线交于M ,N 两点(点N 在对称轴右侧),且//MN x 轴,7MN =. (1)求此抛物线的解析式. (2)求点N 的坐标.(3)过点A 的直线与抛物线交于点F ,当1tan 2FAC ∠=时,求点F 的坐标. (4)过点D 作直线AC 的垂线,交AC 于点H ,交y 轴于点K ,连接CN ,AHK ∆沿射线AC 以每秒1个单位长度的速度移动,移动过程中AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为(05)t t,请直接写出S与t的函数关系式.。

2019年辽宁丹东中考数学试卷及答案

2019年辽宁丹东中考数学试卷及答案

【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,辽宁丹东2019年中考将于6⽉中旬陆续开始举⾏,辽宁丹东中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年辽宁丹东中考数学试卷及答案信息。

考⽣可点击进⼊辽宁丹东中考频道《、》栏⽬查看辽宁丹东中考数学试卷及答案信息。

中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。

确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。

在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。

中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取辽宁丹东中考数学试卷答案信息,特别整理了《2019辽宁丹东中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。

数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年辽宁丹东中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。

考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年辽宁省丹东市中考数学试卷一、选择题(每小题3分,共24分)1.2019的相反数是()A.﹣2019 B.2019 C.﹣D.2.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为()A.2.748×102B.274.8×104C.2.748×106D.0.2748×107 3.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.4.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C .以点E 为圆心、DM 的长为半径的弧D .以点E 为圆心、OD 的长为半径的弧6.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是( ) A .11B .12C .13D .147.等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程x 2﹣6x +k =0的两个实数根,则k 的值是( ) A .8B .9C .8或9D .128.如图,二次函数y =ax 2+bx +c (a ≠0)的图象过点(﹣2,0),对称轴为直线x =1.有以下结论: ①abc >0; ②8a +c >0;③若A (x 1,m ),B (x 2,m )是抛物线上的两点,当x =x 1+x 2时,y =c ;④点M ,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得PM ⊥PN ,则a 的取值范围为a ≥1;⑤若方程a (x +2)(4﹣x )=﹣2的两根为x 1,x 2,且x 1<x 2,则﹣2≤x 1<x 2<4. 其中结论正确的有( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分) 9.因式分解:2x 3﹣8x 2+8x = .10.在函数y =中,自变量x 的取值范围是 .11.有5张无差别的卡片,上面分别标有﹣1,0,,,π,从中随机抽取1张,则抽出的数是无理数的概率是.12.关于x的不等式组的解集是2<x<4,则a的值为.13.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是.14.如图,点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=(x>0)经过点C,则k=.15.(3分)如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为.16.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B2019,A2019的圆的圆心坐标为.三、解答题17.(8分)先化简,再求代数式的值:,其中x=3cos60°.18.(8分)在下面的网格中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣3,0),(﹣1,﹣1).(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.(2)将△ABC绕着坐标原点顺时针旋转90°,画出旋转后的△A′B'C′.(3)接写出在上述旋转过程中,点A所经过的路径长.四、解答题19.(10分)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.(10分)如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).五、解答题21.(10分)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.22.(10分)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.六、解答题23.(10分)如图,在某街道路边有相距10m、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A处测得路灯PQ的顶端仰角为14°,向前行走25m到达B 处,在地面测得路灯MN的顶端仰角为24.3°,已知点A,B,Q,N在同一条直线上,请(结果精确到0.1m.参考数据:sin14°≈0.24,你利用所学知识帮助小明求出路灯的高度.cos14°≈0.97,tan14°≈0.25,sin24.3°≈0.41,cos24.3°≈0.91,tan24.3°≈0.45)24.(10分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?七、解答题25.(12分)已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF 为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF.②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出的值,并用含α的代数式直接表示∠DEF的度数.八、解答题26.(14分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t≤),请直接写出S与t的函数关系式.参考答案一、选择题1.解:2019的相反数是﹣2019,故选:A.2.解:数据274.8万用科学记数法表示为274.8×104=2.748×106.故选:C.3.解:从上面看第一层是两个小正方形,第二层是三个小正方形,俯视图为:故选:D.4.解:∵3a﹣2a=a,故选项A错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选:D.5.解:由作图可知作图步骤为:①以点O为圆心,任意长为半径画弧DM,分别交OA,OB于M,D.②以点C为圆心,以OM为半径画弧EN,交OA于E.③以点E为圆心,以DM为半径画弧FG,交弧EN于N.④过点N作射线CP.根据同位角相等两直线平行,可得CP∥OB.故选:C.6.解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4.所以这5个数据分别是x,y,2,4,4,且x<y<4,当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,所以这组数据可能的最大的和是0+1+2+4+4=11.故选:A.7.解:当等腰三角形的底边为2时,此时关于x的一元二次方程x2﹣6x+k=0的有两个相等实数根,∴△=36﹣4k=0,∴k=9,此时两腰长为3,∵2+3>3,∴k=9满足题意,当等腰三角形的腰长为2时,此时x=2是方程x2﹣6x+k=0的其中一根,∴4﹣12+k=0,∴k=8,此时另外一根为:x=4,∵2+2=4,∴不能组成三角形,综上所述,k=9,故选:B.8.解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x 轴下方的抛物线上存在点P ,使得PM ⊥PN ,即≤﹣3,∵8a +c =0, ∴c =﹣8a , ∵b =﹣2a ,∴,解得:a,故④错误;⑤易知抛物线与x 轴的另外一个交点坐标为(4,0), ∴y =ax 2+bx +c =a (x +2)(x ﹣4) 若方程a (x +2)(4﹣x )=﹣2,即方程a (x +2)(x ﹣4)=2的两根为x 1,x 2, 则x 1、x 2为抛物线与直线y =2的两个交点的横坐标, ∵x 1<x 2,∴x 1<﹣2<4<x 2,故⑤错误; 故选:A . 二、填空题9.解:原式=2x (x 2﹣4x +4) =2x (x ﹣2)2. 故答案为:2x (x ﹣2)2.10.解:根据二次根式的性质,被开方数大于等于0可知:1﹣2x ≥0,即x ≤时,二次根式有意义.又因为0做除数无意义, 所以x ≠0.因此x 的取值范围为x ≤且x ≠0. 故答案为:x ≤且x ≠0.11.解:在﹣1,0,,,π中,无理数有,π,共2个,则抽出的数是无理数的概率是.故答案为:.12.解:解不等式2x﹣4>0,得:x>2,解不等式a﹣x>﹣1,得:x<a+1,∵不等式组的解集为2<x<4,∴a+1=4,即a=3,故答案为:3.13.解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DA B=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案为:3.14.解:连接OC,∵点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,∴S=×6=3,△OAB∵BC:CA=1:2,∴S=3×=1,△OBC∵双曲线y=(x>0)经过点C,∴S=|k|=1,△OBC∴|k|=2,∵双曲线y=(x>0)在第一象限,∴k=2,故答案为2.15.解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,∵OC=OA=AB=4,∴C(0,4),A(4,0),∵D为AB的中点,∴AD=AB=2,∴D(4,2),设直线CD的解析式为:y=kx+b,∴,∴,∴直线CD的解析式为:y=﹣x+4,∵直线OB的解析式为y=x,∴,解得:x=y=,∴P (,),设直线AP 的解析式为:y =mx +n ,∴,解得:,∴直线AP 的解析式为y =﹣2x +8, 故答案为:y =﹣2x +8.16.解:过A 1作A 1C ⊥x 轴于C , ∵四边形OAA 1B 是菱形,∴OA =AA 1=1,∠A 1AC =∠AOB =60°,∴A 1C =,AC =,∴OC =OA +AC =,在Rt △OA 1C 中,OA 1==,∵∠OA 2C =∠B 1A 2O =30°,∠A 3A 2O =120°, ∴∠A 3A 2B 1=90°, ∴∠A 2B 1A 3=60°,∴B 1A 3=2,A 2A 3=3,∴OA 3=OB 1+B 1A 3=3=()3∴菱形OA 2A 3B 2的边长=3=()2,设B 1A 3的中点为O 1,连接O 1A 2,O 1B 2,于是求得,O 1A 2=O 1B 2=O 1B 1==()1,∴过点B 1,B 2,A 2的圆的圆心坐标为O 1(0,2),∵菱形OA 3A 4B 3的边长为3=()3,∴OA 4=9=()4,设B 2A 4的中点为O 2, 连接O 2A 3,O 2B 3,同理可得,O 2A 3=O 2B 3=O 2B 2=3=()2,∴过点B 2,B 3,A 3的圆的圆心坐标为O 2(﹣3,3),…以此类推,菱形菱形OA 2019A 2020B 2019的边长为()2019,OA 2020=()2020,设B 2018A 2020的中点为O 2018,连接O 2018A 2019,O 2018B 2019,求得,O 2018A 2019=O 2018B 2019=O 2018B 2018=()2018,∴点O 2018是过点B 2018,B 2019,A 2019的圆的圆心, ∵2018÷12=168…2, ∴点O 2018在射线OB 2上,则点O 2018的坐标为(﹣()2018,()2019),即过点B 2018,B 2019,A 2019的圆的圆心坐标为(﹣()2018,()2019),故答案为:(﹣()2018,()2019).三、解答题17.解:原式=﹣•=﹣=,当x =3cos60°=3×=时,原式==.18.解:(1)如图,A点坐标为(﹣2,3);(2)如图,△A′B′C′为所作;(2)如图,OA==,所以点A所经过的路径长==π.△A2B2C2为所作;点A2的坐标为(﹣1,﹣1).四、解答题19.解:(1)本次抽样调查学生的人数为:8÷20%=40,故答案为:40;(2)A所占的百分比为:×100%=5%,D所占的百分比为:×100%=50%,C所占的百分比为:1﹣5%﹣20%﹣50%=25%,获得三等奖的人数为:40×25%=10,补全的统计图如右图所示,扇形统计图中A所对应扇形圆心角的度数是360°×5%=18°;(3)840×25%=210(人),答:获得三等奖的有210人.20.解:(1)列表如下:由表可知,共有12种等可能结果,其中指针所在区域的数字之积为奇数的有4种结果,所以甲获胜概率为=;(2)∵指针所在区域的数字之积为偶数的概率为=,∴这个游戏规则对甲、乙双方不公平,将转盘A上的数字2改为1,则游戏公平.五、解答题21.解:(1)设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x米/分钟,根据题意得+2.5=+,解得x=80.经检验,x=80是原分式方程的解.所以2.5×8×80=1600(m)答:乙到达科技馆时,甲离科技馆还有1600m.22.解:(1)证明:①如图1,连接OE,∵⊙O与BC相切于点E,∴∠OEB=90°,∵∠ACB=90°,∴∠ACB=∠OEB,∴AC∥OE,∴∠GOE=∠AGO,∵,∴∠AOG=∠GOE,∴∠AOG=∠AGO,∴AO=AG;②由①知,AO=AG,∵AO=OG,∴∠AO=OG=AG,∴△AOG是等边三角形,∴∠AGO=∠AOG=∠A=60°,∴∠BOF=∠AOG=60°,由①知,∠GOE=∠AOG=60°,∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,∴∠FOB=∠EOB,∵OF=OE,OB=OB,∴△OFB≌△OEB(SAS),∴∠OFB=∠OEB=90°,∴OF⊥BF,∵OF是⊙O的半径,∴BF是⊙O的切线;(2)如图2,连接GE,∵∠A=60°,∴∠ABC=90°﹣∠A=30°,∴OB=2BE,设⊙O 的半径为r , ∵OB =OD +BD , ∴6+r =2r , ∴r =6,∴AG =OA =6,AB =2r +BD =18,∴AC =AB =9,∴CG =AC ﹣AG =3, 由(1)知,∠EOB =60°, ∵OG =OE ,∴△OGE 是等边三角形, ∴GE =OE =6,根据勾股定理得,CE ===3,∴S 阴影=S 梯形GCEO ﹣S 扇形OGE =(6+3)×﹣=.六、解答题23.解:设PQ =MN =xm ,在Rt △APQ 中,tan A =,则AQ =≈=4x ,在Rt △MBN 中,tan ∠MBN =,则BN=≈=x,∵AQ+QN=AB+BN,∴4x+10=25+x,解得,x≈8.4,答:路灯的高度约为8.4m.24.解:(1)由题意得:y=80+20×∴函数的关系式为:y=﹣2x+200 (30≤x≤60)(2)由题意得:(x﹣30)(﹣2x+200)﹣450=1800解得x1=55,x2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w元,由题意得:w=(x﹣30)(﹣2x+200)﹣450=﹣2(x﹣65)2+2000∵﹣2<0∴当x≤65时,w随x的增大而增大∵30≤x≤60∴当x=60时,w最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.七、解答题25.(1)证明:①如图1中,∵△EFC与△AFC都是等腰直角三角形,∴FA=FC,FE=FG,∠AFC=∠EFG=90°,∴∠AFE=∠CFG,∴△AFE≌△CFG(SAS).②∵△AFE≌△CFG,∴AE=CG,∠AEF=∠CGF,∵△AEB是等腰直角三角形,∴AE=BE,∠BEA=90°,∴CG=BE,∵△EFG是等腰直角三角形,∴∠FEG=∠FGE=45°,∴∠AEF+∠BEG=45°,∵∠CGE+∠CGF=45°,∴∠BEG=∠CGE,∴BE∥CG,∴四边形BECG是平行四边形.(2)解:如图2中,延长ED到G,使得DG=ED,连接CG,FG.∵点D是BC的中点,∴BD=CD,∵∠EDB=∠GDC,∴EB=GC,∠EBD=∠GCD,在Rt△AEB与Rt△AFC中,∵∠EAB=∠FAC=30°,∴=,=,∴=,∵∠EBD=∠2+60°,∴∠DCG=∠2+60°,∴∠GCF=360°﹣60°﹣(∠2+60°)﹣∠3=360°﹣120°﹣(∠2+∠3)=360°﹣120°﹣(180°﹣∠1)=60°+∠1,∵∠EAF=30°+∠1+30°=60°+∠1,∴∠GCF=∠EAF,∴△CGF∽△AEF,∴==,∠CFG=∠AFE,∴∠EFG=∠CFG+∠EFC=∠AFE+∠EFC=90°,∴tan∠DEF==,∴∠DEF=30°,∴FG=EG,∵ED=EG,∴ED=FG,∴=.(3)如图3中,延长ED到G,使得DG=ED,连接CG,FG.作EH⊥AB于H,连接FD.∵BD=DC,∠BDE=∠CDG,DE=DG,∴△CDG≌△BDE(SAS),∴CG=BE=AE,∠DCG=∠DBE=α+∠ABC,∵∠GCF=360°﹣∠DCG﹣∠ACB﹣∠ACF=360°﹣(α+∠ABC)﹣∠ACB﹣(90°﹣α)=270°﹣(∠ABC+∠ACB)=270°﹣(180°﹣∠BAC)=90°+∠BAC=∠EAF,∴△EAF≌△GCF(SAS),∴EF=GF,∠AFE=∠CFG,∴∠AFC=∠EFC,∴∠DEF=∠CAF=90°﹣α,∵∠AEH=90°﹣α,∴∠AEH=∠DEF,∵AE=m,AH=AB=n,∴EH===,∵DE=DG,EF=GF,∴DF⊥EG,cos∠DEF=cos∠AEH===.八、解答题26.解:(1)直线y=﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣x2+bx+2,将点C坐标代入上式并解得:b=,故抛物线的表达式为:y=﹣x2+x+2…①;(2)抛物线的对称轴为:x=,点N的横坐标为: +=5,故点N的坐标为(5,3);(3)∵tan∠ACO==tan∠FAC=,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=,即点R的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AR的表达式为:y=﹣x+2…②,联立①②并解得:x=,故点F(,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tanα==,则sinα=,cosα=;①当0≤t≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT====t,DS=,S=S=DT×DS=t2;△DST②当<t≤时(右侧图),同理可得:S=S=×DG×(GS′+DT′)=3+(+﹣)=t﹣;梯形DGS′T′综上,S=.。

相关文档
最新文档