超声波测距系统(论文)正文、结论、参考文献等(1)

合集下载

超声波测距之文献综述

超声波测距之文献综述

文献综述一、引言伴随着时代的发展我国经济水平的提高,对于先进的技术的需求也越来越多。

超声波测距技术在越来越多的领域发挥着作用。

如今的石油勘测技术、汽车的倒车报警技术、汽车的维修与检测技术、现代植保机械与施药技术、物体识别、海洋测量等等。

由此可见超声波测距的前景还是十分广阔的,这也是选择超声波测距作为我的毕业课题的一个原因。

二、超声波测距原理超声波是超过人类听力范围的一种特殊的波,同样具有声波传输的最基本的物理特性。

超声波测距是一种非接触式的检测方式,与激光测距、红外线测距相比,超声波对外界光线、色彩和电磁场不敏感,对于被测物体处于黑暗、有灰尘、烟雾、电磁干扰大或者有毒等恶劣的环境下有一定的适应能力,同时超声波还具有指向性强,能量消耗缓慢以及在介质中传播距离远等优点。

超声波的工作原理是通过反射来实现的。

通过测量发射超声波和遭遇物体反射回来的反射波的时间间隔t,就可以通过公式计算出超声波发射点和观测点之间的距离S,如图1所示。

公式如下:S = 1/2vt式中v:超声波音速(声速)340m/s t:超声波的时间间隔。

S三、主要设计根据罗兆纬的《超声波测距系统设计》、王占选的《具有温度补偿功能的超声波测距系统设计》文章中所采取的系统整体结构设计,结合实际我的系统由为四部分组成,如图1所示。

分别是:数码管显示模块、TMS320F28027DSP芯片、超声波传感器模块、温度传感器模块。

TMS320F28027芯片用作控制单元,超声波传感器HC- SR04 用于超声波的发送以及回波信号的接收,温度传感器DS18B20 用于对外界环境温度的采集,数码管用于对目标与障碍物的距离进行显示。

1.超声波传感器模块王占选的《具有温度补偿功能的超声波测距系统设计》文章中超声波传感器HC - SR04 集超声波的发送和接收功能于一体,可以非常方便地提供 5 ~400 cm范围的非接触式距离感测功能。

引脚由上而下依次为电源引脚、超声波发送的触发引脚、回波信号的响应引脚以及接地引脚。

超声测距毕业论文

超声测距毕业论文

超声测距毕业论文超声测距技术在近年来得到了广泛的应用和研究,其在工业、医疗、交通等领域都有着重要的作用。

本文将从超声测距技术的原理、应用以及未来发展方向等方面进行探讨。

一、超声测距技术的原理超声测距技术是利用超声波在介质中传播的特性来实现距离测量。

其原理是通过发射超声波信号并接收回波信号,根据信号的时间差来计算出被测物体与测量仪器之间的距离。

超声波在空气中的传播速度约为340米/秒,而在固体、液体等介质中的传播速度则有所不同,因此可以根据超声波的传播时间来计算距离。

二、超声测距技术的应用1. 工业领域超声测距技术在工业领域中有着广泛的应用。

例如,在物流仓储中,可以利用超声测距技术来实现货物的自动堆垛和搬运。

此外,在制造业中,超声测距技术也可以用于机器人的定位和导航,提高生产效率和产品质量。

2. 医疗领域超声测距技术在医疗领域中有着重要的应用。

例如,超声测距技术可以用于医学影像的获取,如超声心动图和超声造影。

此外,超声测距技术还可以用于医疗器械的导航和定位,如手术导航系统和超声引导下的穿刺操作。

3. 交通领域超声测距技术在交通领域中也有着广泛的应用。

例如,在停车场中,可以利用超声测距技术来实现车位的自动检测和导航,提高停车效率。

此外,超声测距技术还可以用于智能交通系统中的车辆检测和跟踪,提高交通安全性和交通流畅度。

三、超声测距技术的未来发展方向随着科技的不断进步,超声测距技术也在不断发展和创新。

未来,超声测距技术有望在以下方面取得更大的突破和应用。

1. 精度提升目前的超声测距技术已经可以实现较高的测量精度,但仍有进一步提升的空间。

未来,可以通过改进传感器设计、优化信号处理算法等方式来提高测量精度,满足更高精度要求的应用场景。

2. 多功能化除了测距功能外,超声测距技术还可以结合其他传感技术实现更多功能。

例如,可以结合温度传感器实现温度测量,结合气体传感器实现气体浓度监测等。

未来,超声测距技术有望实现多功能化,满足不同领域的需求。

超声波测距论文(含原理图、程序)

超声波测距论文(含原理图、程序)

1 绪论之阿布丰王创作以后社会经济的不竭发展和工业科学技术的不竭提高,汽车已逐渐进入很多苍生家.汽车使用数量的不竭增加,从而由此招致的倒车交通平安问题也非常严重,路途交通压力增加,交通平安问题也是面临严峻挑战.在面临如此严峻的交通平安问题,许多涉及平安问题的汽车辅助系统也纷纷现世.而本设计就是利用单片机知识、传感器知识等,进行的汽车防撞装置的设计,在汽车倒车时,这种装置可以在驾驶员对车尾与障碍物体的距离远近无法目测和判断时进行报警.1.1 课题布景及意义我国社会经济的不竭发展,人们对汽车这种交通工具的依赖性也越来越年夜,招致了车辆的日益增加在给城市交通不竭施加压力的同时,也引发了非常多行车的平安问题.一些由驾驶员反应不够迅速而招致的汽碰擦,还有很多时候是由于驾驶员对离障碍物的距离判断禁绝确而造成的,如果驾驶员能提前知道障碍物的存在而且知道障碍物的距离,那么驾驶员就能及时地采用办法,从而能防止事故的发生.因此,许多平安系统也应运而生,诸如为了防止交通事故发生的主动平安系统和在发生事故时的防护平安的主动平安系统,而主动平安系统对汽车交通事故的发生能起到防止的作用,所以,主动平安系统的研究更为重要.随着汽车数量的增加,停车场的数量也急剧增加,停车车辆密集,停车人多,所以汽车碰撞亦逐渐增多.而本设计的汽车防撞装置就是主动平安系统,通过对汽车与障碍物之间距离的提示报警防止汽车与障碍物之间的擦碰.本设计要求设计的汽车防撞装置能减少驾驶员的驾驶压力和判断毛病,使驾驶员停车倒车更加平安方便,本设计将对提高交通平安起到重要作用.本设计基于单片机实现汽车防撞,将超声波测距和传感器联系在一起,利用单片机的实时控制和数据处置功能丈量并显示汽车与障碍物之间的距离,并在分歧距离利用蜂鸣器分歧频率发出分歧声音及时报警.这样驾驶员就能通过测距的显示甚至分歧的声音来直接判断汽车玉障碍物之间的距离.本设计的设计简易,虽然精度不高,还不能丈量过远的距离,但规模小,外围电路简单,调试也方便,本钱也不高,器件更换容易,灵活性高,而且能完全满足驾驶员停车时的需要,可以完全解除驾驶员在倒车过程中的顾虑和困扰,提高停车的平安.汽车防撞装置这种汽车平安辅助装置能年夜年夜减少汽车驾驶员在倒车的时候顾虑和对距离判断的失误,从而能够防止倒车的平安问题的发生,故此装置对提高交通平安将起到重要的作用.所以,本课题所要求设计的基于单片机的汽车防撞装置将具有极年夜的现实意义和市场.1.2 国内外研究现状本汽车防撞装置包括有单片机控制电路、超声波测距传感器、蜂鸣器报警电路及数码管显示部件等,装置将各部件有机地结合起来,实现超声波测距及蜂鸣器报警提示的功能.倒车雷达系统的开始是以蜂鸣器报警为标识表记标帜的.汽车离障碍物距离越近,蜂鸣器报警声越急,蜂鸣器报警虽然使驾驶员知道有障碍物的存在,但却不能确定汽车车尾离障碍物有多远,所以,蜂鸣器报警对驾驶员帮手不是很年夜;之后一个质的飞跃就是液晶屏显示的呈现,特别是液晶显示开始呈现静态显示系统,驾驶员就是只要发动车辆,而且不用挂倒挡,液晶显示器上就会呈现汽车图案以及汽车与周围的障碍物的距离,液晶显示是静态显示,液晶显示器的外表美观,显示的色彩也很清晰,而且可以直接粘贴在仪表盘上,装置也很方便[1].不外由于液晶显示的灵敏度比力高,而且它的抗干扰能力也不是很强,所以误报的情况也较多.现在市面上的魔幻镜倒车雷达应该算是比力先进的倒车雷达了,它结合了前几代产物的优点,并采纳了最新仿生超声雷达技术,并用高速电脑控制,可全天准确地进行探测2m以内的障碍物,并以分歧的声音提示和直观的距离显示来提醒驾驶员;魔幻镜倒车雷达把后视镜、倒车雷达、免提德律风、温度显示和车内空气温度显示等多项功能整合在一起[1],并设计了语音功能,因为其外形就是一块倒车镜,所以可以不占用车内空间,可以直接装置在车内倒视镜的位置,而且它样式种类繁多,可以依照个人需求和车内装饰选配,固然它的价格也是比力贵的[1].最新的一代倒车雷达是整合影音系统,除具备前几代倒车雷达的功能外还兼有影音系统[1].随着科学技术水平的迅速发展,相关电子技术也是飞跃前进,固然,汽车电子财富也获得飞速发展,电子财富的飞速发展使得车载电子平顺产物有很年夜的发展前景.倒车雷达固然是每辆车必备的电子平顺产物,如今市面上的主流的汽车倒车雷达基本都是以单片机芯片为控制核心的智能测距报警系统.这些的倒车雷达能够连续测距并显示汽车与障碍物之间的距离,而且采纳蜂鸣器的分歧频率的鸣叫声进行报警提示和距离显示提示,从而能够尽量不占用驾驶员的视觉空间[1].另外,汽车电子系统的网络化的发展还要求作为汽车行驶平安辅助系统的倒车雷达要具有通信功能,并能够把数据发送到汽车总线上去[2].就目前市面上的产物来讲,目前的汽车倒车雷达主要是具备数码管或者液晶屏的距离显示而且带有蜂鸣器的语音报警为主的汽车平安系统.这些系统主要采纳的是以单片机为控制核心的智能超声波测距传感器和蜂鸣器报警系统,这种汽车平安辅助系统廉价耐用,而且达到了汽车电子系统网络化的发展需求.1.3 课题研究内容及章节安插本文所介绍的超声波测距报警系统在测距的时候采纳的是两个超声波探头分别进行超声波发射和接收来进行距离的丈量的.本设计的汽车防撞系统能丈量出倒车方向的障碍物与汽车之间的距离, 并通过数码管显示单位模块显示两者之间的距离,然后通过蜂鸣器发出分歧频率的声响, 从而起到提示和报警的作用.本系统利用一片89S51单片机对超声波信号循环不竭地进行收集.系统包括超声波测距单位(超声波集成模块)、89S51单片机控制、蜂鸣器报警模块和数码管显示模块.这个设计的汽车倒车雷达要能够连续测距,数据经过单片机的处置后,用4位数码管显示所丈量获得的距离,并利用分歧频率使蜂鸣器发出分歧的鸣叫声进行语音报警.论文构成主要由以下部份组成:第1章主要介绍了本课题的布景意义和相关技术在国内外的研究现状.第2章介绍的是汽车防装系统的总体方案设计.首先介绍汽车防撞系统的设计要求,然后分别对测距传感器的选择和显示报警系统的方案设计做了介绍,最后提出本系统的总体的设计方案,为硬件系统的设计打下了基础.第3章对硬件系统的设计进行了介绍.首先对超声波传感器的工作原理进行了分析,然后具体讨论了超声波测距模块中的超声波发射电路和超声波接收电路的硬件设计,最后介绍了显示模块电路和蜂鸣器报警电路的设计.第4章主要是对系统的软件设计进行了介绍.在软件设计中采纳分歧模块分歧编程进行设计的,本设计分别对系统的主法式模块、中断子法式模块、超声波测距模块、蜂鸣器报警模块和数码管的显示模块的各个法式进行了设计.第5章是硬件的组装及其性能进行分析.首先对实物进行硬件排版组装和焊接,然后讨论了系统的性能发生的误差.第6章是对本设计的总结和展望.最后一章对全文进行了总结,并指明了系统设计的缺乏之处,最后也对本系统的倒车雷达报警系统的发展前景进行了展望.2 总体方案论证本章从系统方案等一些方面来进行论证.本设计主要是进行距离的丈量和报警,设计中涉及到的内容较多,主要是将单片机控制模块、超声波测距模块、蜂鸣器报警模块、4位数码管显示模块这几个模块结合起来.而本设计的核心是超声波测距模块,其他相关模块都是在测距的基础上拓展起来的,测距模块是利用超声波传感器,之后选择合适单片机芯片,以下就是从相关方面来论述的. 2.1 设计方案论证2.1.1 测距传感器(1)激光测距传感器激光传感器利用激光的方向性强和传光性好的特点,它工作时先由激光传感器瞄准障碍物发射激光脉冲,经障碍物反射后向各个方向散射,部份散射光返回到接受传感器,能接受其微弱的光信号,从而记录并处置光脉冲发射到返回所经历的时间即可测定距离,即用往返时间的一半乘以光速就能获得距离.其优点是丈量的距离远、速度快、丈量精确度高、量程范围年夜,缺点是对人体存在平安问题,而且制作的难度年夜本钱也比力高[3].(2)红外线测距传感器红外线测距传感器利用的就是红外线信号在遇到障碍物其距离的分歧则其反射的强度也分歧,根据这个特点从而对障碍物的距离的远近进行丈量的.其优点是本钱昂贵,使用平安,制作简单,缺点就是丈量精度低,方向性也差,丈量距离近[3].(3)超声波传感器超声波是一种超越人类听觉极限的声波即其振动频率高于20kHz的机械波.超声波传感器在工作的时候就是将电压和超声波之间的互相转换,当超声波传感器发射超声波时,发射超声波的探头将电压转化的超声波发射出去,当接收超声波时,超声波接收探头将超声波转化的电压回送到单片机控制芯片.超声波具有振动频率高、波长短、绕射现象小而且方向性好还能够为反射线定向传布等优点,而且超声波传感器的能量消耗缓慢有利于测距[4].在中、长距离丈量时,超声波传感器的精度和方向性都要年夜年夜优于红外线传感器,但价格也稍贵.从平安性,本钱、方向性等方面综合考虑,超声波传感器更适合设计要求.根据对以上三种传感器性能的比力,虽然能明显看出来激光传感器是比力理想的选择,可是它的价格却比力高,而且平安度不够高.而且汽车在行驶的过程中超声波传感器测距时应具有较强的抗干扰能力和较短的响应时间,因此选用超声波传感器作为此设计方案的传感器探头.2.2 系统方案此方案选择51单片机作为控制核心,所测得的距离数值由4位共阳极数码管显示,与障碍物之间的分歧距离利用蜂鸣器频率的分歧报警声提示,超声波发射信号由51单片机的P0.1口送出到超声波发射电路,将超声波发送出去,超声波接收电路由CX20106A芯片和超声波接收探头组成的电路构成,报警系统由蜂鸣器电路构成.本设计中将收发超声波的探头分离这样不会使收发信号混叠,从而能防止干扰,可以很好的提高系统的可靠性.本设计的汽车防撞装置的系统框图如图2.1所示.图2.1 汽车防撞装置的系统框图本设计由Keil编程软件对51单片机进行编程,51单片机在执行法式后由P0.1端口发生40kHz的脉冲信号通过74LS04电路进行放年夜并送到到超声波发射探头,发生超声波.在超声波发射电路启动的同时单片机启动中断按时器,利用其计数的功能记录超声波发射超声波到接收到超声波回波的时间.当接收回射的超声波时,接收电路的输出端发生负跳变输出到单片机发生中断申请,执行外部中断子法式计算距离.结合各方面的因素考虑,依据设计的要求,查阅相关数据资料,选择了超声波测距传感器TR40-16Q(其中T暗示超声波发射探头,R暗示超声波接收探头),综合考虑设计的要求出于简便角度,选用了HC-SR04超声波集成模块.此超声波模块的最年夜探测距离为 5 m,精度可以达到0.3cm,盲区为2cm,而且发射扩散角不年夜于15°,更有利于测距的准确性.而且,此模块的工作频率范围为39 kHz~41 kHz左右,完全能在40 kHz工作频率工作.由于超声波的发射和接收是分开发送和接收的,所以发射探头和接收探头必需在同一条水平行直线上,这样才华准确地接收反射的回波.而由于丈量的距离分歧和发射扩散角所引起的误差以及超声波信号在空气中传布的过程中的超声波衰减问题,发射探头和接收探头距离不成以太远,而且还要防止发射探头对接收探头在接收信号时发生的干扰,所以二者又不能靠得太近.根据对相关资料查阅,将两探头之间的距离定在5cm~8cm最为合适.本设计所用的HC-SR04模块的超声波探头之间的距离年夜约在6 cm左右.3 硬件电路设计本设计的汽车防撞装置由51单片机、超声波发射探头、超声波接收探头、4位共阳极数码管、蜂鸣器组成.汽车防撞系统的测距是利用超声波测距的原理,在单片机内部法式的控制下,由超声波发射探头发射超声波,在超声波遇到障碍物时反射到超声波接收探头,由此回应到单片机,由单片机进行中断处置和数据的处置,计算出距离,由数码管显示距离,并由蜂鸣器报警提示.本设计的硬件电路分为五部份:单片机最小系统、超声波发射和接收电路、蜂鸣器报警电路和数码管显示电路.3.1 单片机系统设计3.1.1 单片机的选择一般在系统的设计傍边,能否完成设计任务最重要的就在于系统的核心器件是否选择合适,而单片机更是是系统控制的核心,所以对单片机的选择更是异常重要.如果选择了一个合适的单片机不单可以最年夜地简化系统的把持,而且其功能可能是最好的,可靠性也比力高,对整个系统来说更方便.目前,市面上的单片机的种类繁多,而且他们在功能方面也是各自有各自的特点.在一般的情况下来讲,在选择单片机时要需要考虑的几个方面有[5]:(1)单片机最基赋性能参数指标.例如:执行一条指令的速度、法式存储器的容量,I/O口的引脚数量等.(2)单片机的某些增强的功能.(3)单片机的存储介质.例如:对法式存储器来说,最好选用的是Flash的存储器.(4)单片机的封装形式.封装的形式多种多样,例如:双列直插封装、PLCC封装及概况贴附等.(5)单片机对工作的温度范围的要求.例如:在进行设计户外的产物时,就必需要选用工业级的芯片,以达到温度范围的要求.(6)单片机的功耗.例如,如果信号线取电只能提供几mA的电流,所以为了能满足低功耗的要求这个时候选用STC的单片机是最合适的.(7)单片机在市面上的销售渠道是否疏通、其价格是否廉价.(8)单片机技术的支持网站如何,卖家提供的芯片资料是否足够完善,是否包括了用户手册,设计方案举例,相关范例法式等.(9)单片机的保密性是否很好,单片机的抗干扰的性能如何等.51系列单片机它在指令系统、硬件结构和片内资源等方面与标准的52系列的单片机可以完全的兼容.51系列的单片机执行速率快(最高时钟频率为90MHz),功耗低,在系统、在应用可编程,不占用用户的资源[5].根据本系统设计的实际要求,选择AT89S51单片机做为本设计的单片机使用,它是由ATMEL公司生产的高性能、低功耗的CMOS 8位单片机.89S51单片机具有以下几个性能特点:4 k字节的闪存片内法式存储器,128字节的数据存储器,32个外部输入和输出口,2个全双工串行通信口,看门狗电路,5个中断源,2个16位可编程按时计数器,片内震荡和时钟电路且全静态工作并由低功耗的闲置和失落电模式[5].单片机的引脚功能图如图3.1所示.图3.151单片机的引脚功能图3.1.2 单片机引脚功能(1)电源引脚Vcc(40脚):正电源的引脚,工作电压是5V.GND(20脚):接地端.(2)时钟电路的引脚XTAL1和XTAL2为了发生时钟信号,在89S51单片机的芯片内部已经设置了一个反相放年夜器,其中XTAL1端口就是片内反相放年夜器的输入端,XTAL2端则是片内振荡器反相放年夜器的输出端 [5].单片机使用的工作方式是自激振荡的方式,XTAL1和XTAL2外接的是12MHz 的石英晶振,使内部振荡器依照石英晶振的频率频率进行振荡,从而就可以发生时钟信号.时钟信号电路如图3.2所示.图3.2 时钟信号电路(3)复位RST(9脚)当振荡器运行时,只要有有两个机器周期即24个振荡周期以上的高电平在这个引脚呈现时,那么就将会使单片机复位,如果将这个引脚坚持高电平,那么51单片机芯片就会循环不竭地进行复位[5].复位后的P0口至P3口均置于高电平,这时法式计数器和特殊功能寄存器将全部清零[5].本课题设计的单片机复位电路如图3.3所示.图3.3 单片机复位电路图(4)输入输出口(I/O口)引脚P0口是一个三态的双向口,既可以作为数据和地址的分时复用口,又可以作为通用输入输出口[5].P0口在有外部扩展存储器时将会被作为地址/数据总线口,此时P0口就是一个真正的双向口;而在没有外部扩展存储器时,P0口也可以作为通用的I/O接口使用,但此时只是一个准双向口;另外,P0口的输出级具有驱动8个LSTTL负载的能力即输出电流不小于800uA[5].P1口是一个带内部上拉电阻的8位双向I/O口,而P1口只有通用I/O接口一种功能,而且P1口能驱动4个LSTTL负载;在使用时通常不需要外接上拉电阻就能够直接驱动发光二极管;在端口置1时,其内部上拉电阻将端口拉到高电平,作输入端口用[5].对输出功能,在单片机工作的时候,可以通过用法式指令控制单片机引脚输出高电平或低电平[5].例如:指令CLR是清零的意思,CLR P1.0的意思就是让单片机的P1.0端口输出低电平;而指令SETB是置1的意思,SETB P1.0的意思就是让单片机P1.0端口输出高电平[5].P2口是一个带内部上拉电阻的8位双向I/O口,而且P2口具有驱动4个LSTTL负载的能力[5].P2端口置1时,内部上拉电阻将端口的电位拉到高电平,作为输入口使用;在对内部的Flash法式存储器编程时,P2口接收高8位地址和控制信息,而在访问外部法式和16位外部数据存储器时,P2口就送出高8位地址[5].在访问8位地址的外部数据存储器时,P2引脚上的内容在此期间不会改变[5].P3口也是一个带内部上拉电阻的8位双向I/O口,P3口能驱动4个LSTTL负载,这8个引脚还用于专门的第二功能[5].P3口作为通用I/O口接口时,第二功能输出线为高电平.P3口置1时,内部上拉电阻将端口电位拉到高电平,作输入口使用;在对内部Flash法式存储器编程时,此端接控制信息[5].P3口的第二功能,如表3.1所示[5].表3.1 P3口第二功能表(5)其它控制或复用引脚(a)ALE/PROG(30脚):地址锁存有效信号输出端.在访问片外存储器时,ALE(地址锁存允许)以每机器周期两次进行信号输出,其下降沿用于控制锁存P0口输出的低8位地址;在不访问片外存储器的时候,ALE端仍以不变的频率输出脉冲信号(此频率是振荡器频率的1/6),而在访问片外数据存储器时,ALE脉冲会跳空一个,此时是不成以做为时钟输出[5].对片内含有EPROM的机型在编程时,这个引脚用于输入编程脉冲/PROG的输入端[5].(b)/PSEN(29脚):片外法式存储器读选通信号输出端,低电平时有效.当89S51从外部法式存储器取指令或常数时,每个机器周期内输出2个脉冲即两次有效,以通过数据总线P0口读回指令或常数.但在访问片外数据存储器时,/PSEN将不会有脉冲输出[5].(c)/EA/Vpp(31脚):/EA为片外法式存储器访选用端.当该引脚访问片外法式存储器时,应该输入的是低电平,要使89S51只访问片外法式存储器,这时该引脚必需坚持低电平;而在对Flash存储器编程时,用于施加Vpp编程电压[5].3.1.3单片机最小系统单片机最小系统是其他拓展系统的最基本的基础,单片机最小系统是指一个真正可用的单片机最小配置系统即单片机能工作的系统.对80S51单片机,由于片内已经自带有了法式存储器,所以只要单片机外接时钟电路和复位电路就可以组成了单片机的最小系统了.单片机的最小系统如图3.4所示.图3.4 单片机最小系统原理图3.2 超声波发射和接收电路设计超声波是一种振动频率超越20 kHz的机械波,它可以沿直线方向传布,而且传布的方向性好,传布的距离也较远,在介质中传布时遇到障碍物在入射到它的反射面上就会发生反射波[6].由于超声波的以上几个特点,所以超声波被广泛地应用于物体距离的丈量、厚度等方面[6].而且,超声波的丈量是一种比力理想的的非接触式的测距方法[6].当进行距离的丈量时,由装置在同一水平线上的超声波发射器和接收器完成超声波的发射与接收,而且同时启动按时器进行计数[7].首先由超声波发射探头向倒车的方向发射超声波并同时启动按时器计时,超声波在空气中传布的途中一旦遇到障碍物后就会被反射回来,当接收探头收到反射波后就会给负脉冲到单片机使其立刻停止计时[6.7].这样,按时器就能够准确的记录下了超声波发射点至障碍物之间往返传布所用的时间t(s)[7].由于在常温下超声波在空气中的传布速度年夜约为340m/s[7],所以障碍物到发射探头之间的距离为:S=340×t/2=170×t因为单片机内部按时器的计时实际上就是对机器周期T的计数,而本设计中时钟频率fosc取12MHz,设计数值N,则:T=12/f osc=1μst=N×T=N×0.000001(s)S=170×N×T=170×N/1000000(m)在法式中按式S=170×N×T=170×N/1000000计算距离.3.2.1 超声波发射电路设计超声波发射电路是由超声波探头和超声波放年夜器组成.超声波探头将电信号转换为机械波发射出去,而单片机所发生的40 kHz的方波脉冲需要进行放年夜才华将超声波探头驱动将超声波发射出去,所以发射驱动实际上就是一个信号的放年夜电路,本设计选用74LS04芯片进行信号放年夜,超声波发射电路如图3.5所示.图3.5 超声波发射电路。

超声波测距-毕业设计论文完整版.doc

超声波测距-毕业设计论文完整版.doc

摘要随着社会的发展,人们对距离或长度测量的要求越来越高。

在社会生活中应用超声波测距技术已很广泛,如汽车倒车雷达、测距仪和物位测量仪等都可以通过超声波来实现。

由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声测距技术的研究和开发具有实际意义。

本文介绍了一种利用超声波测距的系统,该系统是一种基于STC12C2052 单片机的超声波测距系统,它根据超声波在空气中传播的反射原理,以超声波传感器为检测部件,应用单片机技术和超声波在空气中的时间差来测量距离。

该系统主要由主控制器模块、超声波发射模块、超声波接收模块和显示模块等四个模块构成。

通过单片机的I/O口控制超声波发射电路发出40KHz的超声波,反射波经由超声波检测接收电路、放大电路送入单片机外部中断端,通过计算超声波的发射和返回的时间,确定超声波发生器和反射物体之间的距离,完成测距。

该系统可实现4米内测距,盲区20厘米。

关键词:超声波;测距;单片机AbstractWith the development of society, the demand on the measurement of distance or length is increasing. It is applied widely by ultrasonic to measure distance,such as cars reversing radar,range finder and level measurement and so on.Because of the strong point of ultrasonic, low energy consumption,long distance transporting in media, thus it is practical and significant to measure distance by ultrasonic.In this paper ,it introduces a system to measure distance by ultrasonic,which is based on the STC12C2052.The theory is based on the principles of reflection of ultrasonic spreading in the air. The system uses ultrasonic sensors as a detector, and applies MCU and the time difference of ultrosonic spreading in the air to measure the distance. The system consists of the main controller module, ultrasonic transmitter module, ultrasonic receiver module and display module. The MCU I / O port controls ultrasonic transmitter to send 40 KHz ultrasonic, and the reflecting singal is received by the ultrasonic receiver circuit, and it is amplified,and finally,it starts the interruptor of the MCU.The MCU calculates the time of launch and return of ultrasonic to get the disctance between the ultrasonic generator and the reflective objects. The range of measurement is within four meters,with the blind spot of 20 cm。

超声波测距系统(论文设计)正文、结论、参考文献等

超声波测距系统(论文设计)正文、结论、参考文献等

1 绪论1.1 超声波技术的广泛应用超声的研究和发展,与媒质中超声的产生和接收的研究密切相关。

1883年Galton 首次制成超声气哨,其原理是将压缩气体经过狭缝喷嘴形成气流,吹动圆形刀口振动形成共振腔,从而产生超声。

此后又出现了各种形式的汽笛和液哨等机械型超声换能器。

由于这类换能器成本低,所以经过不断改进,至今仍广泛地用于超声处理技术中。

20世纪初,电子学的发展使人们能利用某些材料的压电效应和磁致伸缩效应制成各种机电换能器。

1917年,法国物理学家Paul Langevin用天然压电石英制成了夹心式超声换能器,并成功地应用于水下探测潜艇。

随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型等多种超声换能器。

材料科学的发展,使得应用广泛的压电换能器也由天然压电晶体发展到机电耦合系数高、价格低廉、性能良好的压电瓷、人工压电单晶、压电半导体以及塑料压电薄膜(PVDF)[1]等。

产生和检测超声波的频率,也由几十千赫提高到上千兆赫。

产生和接收的波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。

如频率为几十兆赫到上千兆赫的微型表面波都己成功地用于雷达、电子通信和成像技术等方面。

利用超声波作为定位技术是蝙蝠等一些无目视能力的生物作为防御及捕捉猎物生存的手段,也就是由生物体发射不被人们听到的超声波(20kHz以上的机械波),借助空气媒质传播由被待捕捉的猎物或障碍物反射回来的时间间隔长短与被反射的超声波的强弱判断猎物性质或障碍位置的方法。

由于超声波的速度相对于光速要小的多,其传播时间就比较容易检测,并且易于定向发射,方向性好,强度好控制,因而人类采用仿真技能利用超声波测距。

超声波测距是一种利用声波特性、电子计数、光电开关相结合来实现非接触式距离测量的方法。

它在很多距离探测应用中有很重要的用途,包括非损害测量、过程检测、机器人检测和定位、以及流体液面高度测量[2]等。

超声波测距仪论文

超声波测距仪论文

第一章导言1.1项目设计的目的和意义设计的目的随着科学技术的飞速发展,超声波将广泛应用于测距仪中。

母丹在技术层面之前,人们可以利用的测距技术还是很有限的。

所以这是一个正在蓬勃发展,前景无限的技术和产业领域。

展望未来,超声波测距仪作为一种新型的非常重要和有用的工具,在各方面都将有很大的发展空间,它将朝着定位和精度更高的方向发展,以满足日益增长的社会需求。

比如声纳的发展趋势基本是:发展定位精度更高的被动测距声纳,以满足水下武器全隐蔽攻击的需要;继续发展低频线谱探测的潜艇拖曳线列阵声呐,实现超远程被动探测识别;发展更适合浅水的潜艇声纳,特别是解决浅水中的目标识别问题;大力降低潜艇自噪声,改善潜艇声纳工作环境。

毫无疑问,未来的超声波测距仪将与自动化和智能化融为一体,并与其他测距仪集成在一起,形成多测距仪。

随着测距仪的技术进步,测距仪会从简单的判断功能发展到学习功能,最后发展到创造力。

在新世纪,新型测距仪将发挥更大的作用。

1.1.2设计的意义超声波测距系统主要应用于汽车倒车雷达、机器人自动避障行走、建筑工地以及一些工业现场如液位、井深、管道长度等。

因此,研究超声波测距系统的原理具有重要的现实意义。

本课题的研究和设计可以进一步提高电路设计水平,加深对单片机的理解和应用。

1.2超声波测距仪的设计思路超声波测距的原理发射器发射的超声波以速度υ在空气中传播,到达被测物体时被反射并返回,被接收器接收。

它的往返时间为t,被测物体的距离可由s=vt/2算出。

由于超声波也是一种声波,其声速V与温度有关。

下表列出了几种不同温度下的声速。

使用时,如果温度变化不大,可以认为声速基本不变。

如果测距精度很高,就要进行温度补偿修正。

表1-1超声波速度与温度的关系 温度(℃) -30 -20 -10 0 10 20 30 100声速(米/秒) 313 319 325 323 338 344 349 3861.2.2超声波测距仪的原理框图如下单片机发出40kHZ 的信号,经超声波发射器放大后输出。

超声波测距系统_毕业设计论文1 精品

超声波测距系统_毕业设计论文1 精品

毕业设计(论文)中文摘要本文详细介绍了一种基于单片机的超声测距系统。

该系统以空气中超声波的传播速度为确定条件,利用反射超声波测量待测距离。

在介绍了单片机性能和特点的基础上,分析了超声波测距的发展及基本原理,介绍了传感器的原理及特性。

由此提出了系统的总体构成。

然后简要介绍了利用51系列单片机设计测距仪的原理:单片机发出的超声波,通过换能器发射出去,遇到被测物体后反射回来,计算此超声波从发射出到接受的时间差从而得出被测物体到测距仪的距离。

针对测距系统发射、接收、检测、显示部分的总体设计方案做了论证。

设计了一种基于8051单片机的超声波测距系统。

介绍了超声波测距的原理及8051单片机的性能和特点,并在此基础上,给出了实现超声波测距方案的系统框图及软、硬件设计。

超声波指向性强,能量消耗缓慢,在介质中传播距离远,常用于距离的测量。

利用超声波检测距离,设计比较方便,计算处理也较简单,且在测量精度方面也能达到要求。

测试结果表明,该设计满足设计要求,具有一定的实用价值。

关键词:超声波;8051单片机;测距目录1 引言 (3)2 微控制器MC9S12DG128B (7)3 DS18B20温度补偿电路 (9)4 超声波传感器 (11)5 集成电路CX20106A简介 (13)6 超声波传感器测距模块的硬件设计 (17)6.1 硬件电路设计方法 (18)6.2 多路同步超声波测距系统 (19)6.2.1 FPGA内部各组成模块设计 (20)6.2.2 发射电路 (22)6.2.3接收电路 (22)6.3超声波的产生与功率放大 (23)6.4接收模块 (25)7 AT89C51单片机简介 (26)8 LED动态扫描显示电路 (28)9 提高敏感器件抗干扰性能 (30)9.1系统硬件干扰 (33)9.2降低外时钟频率 (35)9.3系统软件结构设计 (36)9.4 多任务调度管理的仿真实现 (40)结论 (42)致谢 (43)参考文献 (44)1 引言近年来,随着单片机在我国的推广,以其简单实用、功能强、体积小而日益广泛的被广大设计师采用,尤其在控制领域中的应用更为突出。

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言在现代电子技术的迅猛发展中,精确测量距离的设备扮演着重要的角色。

随着人类对于生活环境安全性的关注提升,对于各种设备的精度要求也在逐渐加强。

超声波测距技术以其非接触性、高精度、低成本等优点,在众多领域得到了广泛的应用。

本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计。

二、系统概述本系统以STM32单片机为核心控制器,结合超声波测距模块,实现对目标物体的精确测距。

系统主要由STM32单片机、超声波测距模块、电源模块、信号处理模块和显示模块等组成。

通过单片机对超声波模块的控制,实现对目标的精确测距,并通过显示模块实时显示测距结果。

三、硬件设计1. STM32单片机:作为系统的核心控制器,负责整个系统的控制与数据处理。

STM32系列单片机具有高性能、低功耗的特点,能够满足系统对于精确度和稳定性的要求。

2. 超声波测距模块:采用高精度的超声波测距传感器,实现对目标物体的距离测量。

通过超声波的发送与接收,实现对目标的距离计算。

3. 电源模块:为系统提供稳定的电源支持,确保系统的正常工作。

电源模块需考虑到功耗问题,以实现系统的长时间运行。

4. 信号处理模块:对超声波测距模块的信号进行滤波、放大等处理,以提高测距的准确性。

5. 显示模块:实时显示测距结果,方便用户观察与操作。

四、软件设计1. 主程序:负责整个系统的控制与数据处理。

主程序通过控制超声波测距模块的发送与接收,获取目标物体的距离信息,并通过显示模块实时显示。

2. 超声波测距模块控制程序:控制超声波的发送与接收,实现对目标物体的距离测量。

通过计算超声波的发送与接收时间差,计算出目标物体的距离。

3. 数据处理程序:对获取的测距数据进行处理,包括滤波、计算等操作,以提高测距的准确性。

4. 显示程序:将处理后的测距结果显示在显示模块上,方便用户观察与操作。

五、系统实现1. 通过STM32单片机的GPIO口控制超声波测距模块的发送与接收,实现超声波的发送与接收功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 绪论
1.1 超声波技术的广泛应用
超声的研究和发展,与媒质中超声的产生和接收的研究密切相关。

1883年Galton 首次制成超声气哨,其原理是将压缩气体经过狭缝喷嘴形成气流,吹动圆形刀口振动形成共振腔,从而产生超声。

此后又出现了各种形式的汽笛和液哨等机械型超声换能器。

由于这类换能器成本低,所以经过不断改进,至今仍广泛地用于超声处理技术中。

20世纪初,电子学的发展使人们能利用某些材料的压电效应和磁致伸缩效应制成各种机电换能器。

1917年,法国物理学家Paul Langevin用天然压电石英制成了夹心式超声换能器,并成功地应用于水下探测潜艇。

随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型等多种超声换能器。

材料科学的发展,使得应用广泛的压电换能器也由天然压电晶体发展到机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜(PVDF)[1]等。

产生和检测超声波的频率,也由几十千赫提高到上千兆赫。

产生和接收的波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。

如频率为几十兆赫到上千兆赫的微型表面波都己成功地用于雷达、电子通信和成像技术等方面。

利用超声波作为定位技术是蝙蝠等一些无目视能力的生物作为防御及捕捉猎物生存的手段,也就是由生物体发射不被人们听到的超声波(20kHz以上的机械波),借助空气媒质传播由被待捕捉的猎物或障碍物反射回来的时间间隔长短与被反射的超声波的强弱判断猎物性质或障碍位置的方法。

由于超声波的速度相对于光速要小的多,其传播时间就比较容易检测,并且易于定向发射,方向性好,强度好控制,因而人类采用仿真技能利用超声波测距。

超声波测距是一种利用声波特性、电子计数、光电开关相结合来实现非接触式距离测量的方法。

它在很多距离探测应用中有很重要的用途,包括非损害测量、过程检测、机器人检测和定位、以及流体液面高度测量[2]等。

超声波方法在某些方面具有突出的优点:
(1)超声波对色彩、光照度不敏感,可用于识别透明及漫反射性差的物体(如玻璃、抛光体);
(2)对外界光线和电磁场不敏感,可用于黑暗、有灰尘或烟雾、电磁干扰强、有毒等恶劣环境中;
(3)超声波传感器结构简单,体积小,费用低,信息处理简单可靠,易于小型化和集成化。

因此超声检测法己越来越引起人们的重视,被广泛应用在液位测量、机械手控制、车辆自动导航、物体识别等方面。

特别是在空气测距中,由于空气中波速较慢,其回波信号中包含的沿传播方向上的结构信息很容易检测出来,具有很高的分辨力,因而其准确度也较其它方法高[3]。

1.2 超声波测距的研究背景与意义
随着社会的发展,传统的测距方法在很多场合已无法满足人们的需求,例如在井深,液位,管道长度等场合,传统的测距方法根本无法完成测量的任务。

还有在很多要求实时测距的情况下,传统的测距方法也很难完成测量的任务。

于是,一种新的测距方法诞生了——非接触测距。

超声波可用于非接触测量,具有不受光、电磁波以及粉尘等外界因素的干扰的优点,是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,对被测目标无损害。

而且超声波传播速度在相当大范围内与频率无关。

超声波的这些独特优点越来越受到人们的重视。

目前对于超声波精确测距的需求也越来越大,如油库和水箱液面的精确测量和控制,物体内气孔大小的检测和机械内部损伤的检测等。

在机械制造,电子冶金,航海,宇航,石油化工,交通等工业领域也有广泛地应用。

此外,在材料科学,医学,生物科学等领域中也占具重要地位。

随着计算机技术、自动化技术和工业机器人的不断发展和广泛应用,测距问题显得越来越重要。

目前常用的测距方式主要有雷达测距、红外测距、激光测距和超声测距4种。

与其他测距方法相比较,超声测距具有下面的优点[4]:
(1)超声波对色彩和光照度不敏感,可用于识别透明及漫反射性差的物体(如玻璃、抛光体)。

(2)超声波对外界光线和电磁场不敏感,可用于黑暗、有灰尘或烟雾、电磁干扰强、有毒等恶劣环境中。

(3)超声波传感器结构简单、体积小、费用低、技术难度小、信息处理简单可靠、易于小型化和集成化。

因此,超声波作为一种测距识别手段,已越来越引起人们的重视。

而我国,关于超声的大规模研究始于1956年。

迄今,在超声的各个领域都开展了研究和应用,其中有少数项目已接近或达到了国际水平。

2 超声波测距技术综述
2.1 超声波
2.1.1 超声波的基本性质
声波是一种传递信息的媒体,它与机械振动密切相关,可以由物体的撞击、运动所产生的机械振动以波的形式向外传播。

根据振动所产生波的频率高低分为可闻声波、次声波和超声波,高于20kHz的声波称为超声波[5]。

波长这样短的超声波具有类似光线的一些物理性质[6,7]:
(1)超声波的传播类似于光线,遵循几何光学的规律,具有反射、折射现象,也能聚焦,因此可以利用这些性质进行测量、定位、探伤和加工处理等。

在传播中,超声波的速度与声波相同;
(2)超声波的波长很短,与发射器、接收器的几何尺寸相当,由发射器发射出来的超声波不向四面八方发散,而成为方向性很强的波束,波长愈短方向性愈强,因此超声用于探伤、水下探测,有很高的分辨能力,能分辨出非常微小的缺陷或物体;
(3)能够产生窄的脉冲,为了提高探测精度和分辨率。

要求探测信号的脉冲极窄,但是一般脉冲宽度是波长的几倍(如要产生更窄的脉冲在技术上是有困难的),超声波波长短,因此可以作为窄脉冲的信号发生器;
(4)功率大,超声波能够产生并传递强大的能量。

声波作用于物体时,物体的分子也要随着运动,其振动频率和作用的声波频率一样,频率越高,分子运动速度越快,物体获得的能量正比于分子运动速度的平方。

超声频率高,故可以给出大的功率。

声波在真空中不能进行传播,必须通过气体、液体、固体或者三者的组合体作为介质才能传播。

通常情况下,声波在空气中的传播速度约为344m/s。

根据声源在介质中施力方向与声波传播方向的不同,声波的波形也不同,通常有以下几种[8]:(1)纵波。

质点的振动方向与波的传播方向一致的波。

它能在固体、液体和气体中传播;
(2)横波。

质点振动方向垂直于传播方向的波。

它只能在固体中传播;
(3)表面波。

质点的振动介于纵波与横波之间,沿表面传播。

振幅随深度增加而迅速衰减的波。

从上述分类可看出,只有纵波可以在气体中传播。

因此,目前在空气中的超声波测量系统大多依靠纵波来实现。

而实际测量用的超声波主要集中在频率为。

相关文档
最新文档