重庆市初中数学二次根式专项训练答案

合集下载

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的定义】 (1)
【考点二二次根式有意义的条件】 (2)
【考点三求二次根式的值】 (3)
【考点四求二次根式中的参数】 (4)
【考点五利用二次根式的性质化简】 (6)
【考点六复合二次根式的化简】 (7)
【过关检测】 (9)
【典型例题】
【考点一二次根式的定义】
【考点二二次根式有意义的条件】
【考点三求二次根式的值】
【考点四求二次根式中的参数】
【考点五利用二次根式的性质化简】
【考点六复合二次根式的化简】
-=
)解:743
【过关检测】一、选择题
【详解】解:二次根式
a b
-≠a b
+= a b
14
【答案】22+-a b c。

八年级《数学》下册尖子生强化训练题及解析答案:二次根式(3套).docx

八年级《数学》下册尖子生强化训练题及解析答案:二次根式(3套).docx

tj|r>全国重点高中提前招生考试八年级下学期同步强化训练卷(一)(二次根式的性质和化简专题测试)总分:120分时间:120分钟—、选择题(每小题5分,共30分)1.若代数式謬矗有意义,则a■的取值范围是()A. x<2020B. x<2020 且± 2019C. x<2020 且乂工2019D. x<2020 且乂工一2019(“希望杯”竞赛试题改编)2.若化简11 —X I —A/JC2-8x+16的结果为2乂一5,则x的取值范围是()A.才为任意实数B. l<x<4 D.3.把(a-b'Jb'a根号外的因式移到根号内的结果为()D. —V a—b(华中师大一附中招生试题)4.已知实数a、b满足A/(a— I)2 + V(a—6)2 = 10 — | b + 3 | — I b— 2 | ,则a2 ~\~lr的最大值为()A. 50B. 45C. 40D. 0(芜湖一中理科实验班自主招生试题)5.已知y = +』5 —2丁一3,则2.z-y 的值为()15A. —15B. 15C. —6.计算4 丿3+2 血一丿41+24© =()A. 72-1B. 1C.V2二、填空题(5分X6 = 30分)D. 2(全国初中联赛试题)7.如果实数u、b、c在数轴上的位置如图1-1所示.那么代数式-/^-\a+h\ + /G—万尹+“+c何化简为—b " 0 c图1-1(全国初中竞赛题)&若实数.r、y满足|j—4| + ^7=8=0,则以y的值为边长的等腰三角形的周长为_9. __________________________________________________________ 已知实数m满足丨2019—rn \ + Jm—2020=加,那么m— 2019?= __________________________ .(重庆市竞赛试题)11. _______________________________________________ 若工+y= J3 V5—JC—y= V3 42—75 •则xy= ____________________________________________________ ・(天津市竞赛试题)12.若77— = —2,则F的值为.77 十 --------(天津市竞赛试题)三、解答题13.(12分)若」^的整数部分是a.小数部分是儿求a2 + (l+V7)a6的值.3—7711.( 13分)(1)先化简再求值:才存缶一(1一与护),其中a = 2+尽b=2—胚(2)已知a、b、c为ZSABC 的三边,化简:丿(a+6+c)2 + 丿―严 + jQ>_a—cV15.(11分)已知正实数a』满足:a+O=l,1—专+茫+】_茫—茫=_4,求:华的值.1—Jb—Jci 1—76+Va Jb16.(12分)已知7^=石+*(0<0<1),求代数式F+JT—6 . JT+317.(12分)先阅读再化简求值.(1)在化简丿匸刀而的过程中,小王和小李的化简结果不一样:小王的化简过程如下:原式=A/2-2 /2X^+5 = 7(T2)2-2V2 - 75 + (75)2 =丿近二丽=施一岳.小李的化简过程如下:原式=V(-/2)2-2V2 • V5 + (V5)2 = 7(72-75)2 =^-V2.请判断谁的化简结果正确,并说明理由.⑵化简求值:已知乂=“6 —2腐,求(上+*) • 2乙二;)的值(结果保留根号).全国重点高中提前招生考试 八年级下学期同步强化训练卷(二)(二次根式的化简求值专题测试) 总分:120分时间:120分钟一、选择题(5分X6 = 30分)1 •计算 14 + 6 75 — 14 6 75 的值是() A. 1 B.75C. 2 75D. 5(全国初中竞赛试题)2.已知非零实数 a 、b 满足 I 2a —4 | + | b+2 I + J (a — 3)624- 4 = 2a ,则 a~\~h 等于()3.化简J1+古+(”,1)2("〉0或1)所得的结果为()tj|r>A. -1B.0C. 1D. 2A.H 1'1w+1C. 141 1n+1D. 1—丄—一*(武汉市选拔赛试题)4.已知 2x-3 /亦一2y=0(z>0),则;;二器2的值是(16 -25A-fD-27(太原市竞赛题)5•设Dr]表示最接近的整数QHx+0・ 5,77为整数),则[/TX2] + Ly2X3] + L 5/3X4] + - +E7iooxioi]的值为( )C.5150D.5151(“五羊杯”竞赛题)6. 已知,=好兀+ 石弓均为实数).则y 的最大值与最小值的差为( )A. 2^2-2B. 4-2 72C. 3—2©D. 2 V2-1二、填空题(5分X6 = 30分)7. 计算 72017X2018X2019X2020+1-20182 的结果是 ________________ .&已知 a= 72018- v /2017.Z>= 72019- 72018.c= 72020-^/硕©,则 a 、b 、c 三者的大小关 系为.(武汉市竞赛试题改编)9.若实数"』满足乂2+$2_滋_2》+5=0.则石+$ 的值是 ____________________ .V3^—2 77(“希望杯”竞赛试题)华土华】=华二理.则兰+上=V3-V2 V3+V2 y &(“希望杯”竞赛试题)A /5+2 A /6 V 7+4 V3(湖北省黄冈中学理科实验班预录试题)12. [a]表示不大于a 的最大整数,{a}=a —[a].设a =[帚+斤],6=•则^ + (1+77)ab= _________・(鄂州高中自主招生考试数学试题)三、解答题13. (12分)计算与求值.(1)已知°=宀,求护_20 + 1_绍渔土1的值.2+V3 aTa L~a(244-4)<44+4)<64+4)<8<+4-)(104+-7-)4 4 4 4 4(r+4)<34+4-)<54+4-X74+-r )(94+-r )4 4 4 44(湖北黄冈中学理科实验班预录试题)10.已知x= (2)计算:14. (12分)正数心满足,”+4厉-2扁-皿+4,尸3.求倉豐爲的值.(北京市竞赛题)⑵设⑴册'求"2"曲7 + 18「17的值.16. (12 分)设 x= — . y = jZEEElzb/E, 为何值吋.代数式 20才 + 41>ry + 20b 的值 Vi+ 1+7? Jt +l —Jt为 2001.(全国初中数学联赛试题)15. (12 分)(1)化简:用十4血+3匹松)(腐_______________ 117. (12 分)定义/(JC)=求/(l)+/(3)+/(5)H ----------------- 1-■Z?-FZr+T+ \/ x2— 1+ 步卡一2JC+1/(2怡一1)+/(999)的值.(上海市竞赛试题)5. 已知 J25—yi5-x 2=2,则丿25—F + J15—F 的值为(A. 3B. 4C. 5(山东省竞赛题)6-设$=/+*+寺+/+*+* + J1++++ +…+/+壽 +誌?,则与5最接近 的数是( )A.2017B. 2018C. 2019D. 2020二、填空题(5分X6=30分)7.若 u+b —2 Va —1~4 "―2 = 3 J c —3— c ——5,贝9 a+〃+e= _______________ .(武汉市竞赛题)9. _____________________________________________________________ 若的最大值是a,最小值是几则a 2+62的值为 _______________________________________________________ .(全国初中数学竞赛试题)10. 已知a= V7-1.则代数式3a 3 + 12a 2-6a-12的值为 ________________ .(全国初中数学联赛试题)全国重点高中提前招生考试 八年级下学期同步强化训练卷(三)(二次根式综合测试) 总分:120分时间:120分钟―、选择题(5分X6 = 30分)1.已知 7x 2-4 + 727+3^=0.则 乂一y 的值为( ) A. 2B. 6C. 2 或一22.计算(721-3)(73+ 710-77)的值等于( )A. 6^7B. -6V7C. 20 73 + 6^73. 已知/+丄=7(0VzVl ),则石一-的值为()D. 6 或一6D. 20 73-6/7B. —-75D.V5(天津市竞赛试题)4. 已知整数.r 、y 满足点+2心=丿丽,那么整数对(_r,y )的个数是(A. 0B. 1C. 2D. 3(江苏省竞赛题)D. 68-当―点时•化简牛严+今芋1的结果是11.非零实数满足(Z?+2019-J-)(+2019—y) =2019,则孟洛¥;=_(湖北省鄂州市自主招生试题改编)12.已知a、Z>为有理数分别表示5-V7的整数部分和小数部分,且a>nn+bn2 = l.则2a+b三、解答题13.(12分)化简:丿37+20站+丿37-20箱.14. (12分)先化简.再求值:(弄务 a — 1-宦,其中"=血一1・«2+4a+415.(12 分)若〃201172012-1,求m 5— 2m 4—201 lzn 3 的值. 求n 的值.16. (12 分)乂=为自然数,如果2乂2 + 197刊+2)2 = 1993成立,17. ( 12分)求和:S = J1+令+壬 + J1+贪+令 + J1+寺+壬 + J1+令+右 + …4 1224 102参考答案全国重点高中提前招生考试八年级下学期同步强化训练卷(一)(二次根式的性质和化简专题测试)(2020-Q0 (J <20201. B 提示:由条件可知:「 则:,, 故工£2020且;rH±2019.I 1^-1-2019^0, I |却工2019.2. B 提示:•・•丨 1—工| 一 J£ -8工+16= 11—工| 一 丿(乂一4严=11一工| 一 |工一41 •则丨1一却一"一4|=2工一5,I x —1^011—^| =乂一 1, — b —41 =x —4.因此即 1 £乂=4・4—4W0.3. C 提示:由条件可甸:乙」石>0,・°・b —a>0, ・°・a — b<0.故原式=—(5_0)丿方二 =_『(/>_* • =—Jb —a.故选 C.4. B 提示:化简得:\a — l| + |a — 6 | + 16+3 | + “一2 | =10,由绝对值的意义可知・lWa£6・一3Wb 《2,所以 a=6“= —3时.a 2+62有最大值且为45.(2x —5^0cc5. A 提示:由二次根式的非负性得: ・・・工=可,,=一3.故2Q=2X_yX(—3) = —15.【5—2心0, 2 26. B 提示:原式=4 7( 7FFT)2- 7(4 72+3)2 =4(72 + 1)-(4 72+3) = 1.7. —a 提示:由实数aJ )-c 在数轴上的位置口]知:XCaVOVc.且“|>c,所以/—la+引+ J (c —a)? + |b+c| =—(a+6)+ (c —a) —(6-Fc) = —a.I x —4=0.(jr=4 8. 20提示:由题意得:解得:(1)若4是腰长,则三角形三边长分别为4,4,8不能组成三角丨夕一8=0,b=&形.(2)若4是底边长,则腰长为8•能组成三角形,周长为4+8+8=20.9. 2020 提示:由条件可知加$2020,・・・2019—加V0,・•・原等式可化为加一2019+丿加—2020=加,/.丿加一2020 =2019. .\T ?7-2020=20192.故 w-20192 =2020.卡_2>05«r —4"…2_a5 z _ 1则有•r2=2*3,= 2.j?2+y = 2+22 =6.fMwo 5^—411. 用—血 提示:由Q+_y)2 —(彳―$)2=4才〃得:4才3;=(虫岛一血)_(丿17兀騎)'=3站—血一(3血—75)=4頁—4 42.故 _J2.12. —2472 提示:(石'— )2 = ( —2尸=4,即 x ---—2 = 4,乂 -- =6.・°・.才--+2 = 8,即-- )2 =&77 乂 •!•工 77J~r~\-- =2 5/2» /. J ~2— =(无+丄)■(右 -- )•(岛— )=—24 J2.77 工 工 丘 丘 呼.又 2<疗<3..・.5<3+疗<6....2<呼<3..“2.=呼-13. 解:•••占=?3=^7)=10. 6提示:因为y3+疗14.解:(1)原式=(g—b)ab(a~\~b—2ab = 2(cz—6)2a~b'2=^=^ ・・・・/ + (1+疗)肪=2'+(1+疗)><2><^^=4+(7一1) = 10.______ 2 _______ = _ _ =_V3 (2+ 站)一(2—站)_ 2侑_3'(2)由三角形三边关系可知:a-b-cV0,b —a — cV0,c —a —b<0,.・・ V(a-b~c)2 =b-\~c~a, VCb-a-c)2 =a+c~b. V(c-b~a)2=a-^b-c.:.原式= (a+b+c) + (b+c —a) + (a+(—") —(“+"—小=心・ 15.解:原式=(1—心+俾 +(1 一片皿 =_4.即2[(1—心严+(石)右=—4[(]—乔严_(岛旧,整理得: (1—V6)z —(Va)z6(1—0)2=2°,即 3(1—石)2=a ・由于 4+〃=1,・・・3(1—心)2 = 1—〃=(1一心)(1+心),整理得:(1一亦)(3— 376 — 1—76)=0,1—7^=0 或 2—476=0.当 1—心=0,即 6=1 时,a=0,不合题意.当 2 — 476 = 0,即 b=.1 丄11 a 十十〒 1 1a 2 H — +2 * =a 2 H — +2 =a 2 +2.a 2 丄1丄 1 a aa ~\ aa a17.解:(1)小李的化简正确.(2) g = V (>/5 — I )2 =4^— 1,原式=-7 = [—-- = 3 +岳 无—1 V5-1-1全国重点高中提前招生考试八年级下学期同步强化训练卷(二)(二次根式的化简求值专题测试)1. C 提示:原式=V(3+V5)2 — V (3—V5)2 = 3 +站一3 +站=275.2. C 提示:由题设可知"$3,所以题设等式可化为:2a — 4+|b + 2| + J (a —3)圧+4 = 2°,即|方十2| + J (a —3)// =0,・°・b+2 = 0 且(a —3)Z>2 =0,・°・a = 3,b= —2,・°・a+〃=l,故选 C.4. D 提示:由 2JT —3 V xy —2)=0(工〉0)得:2(V^)2 — 3 V xy —2(Vj^)2 =0, /. (2 (-Zr —2 ^/y) =0.*•*2 V7 IVy>0・・2/y = 0. /.V7=2/y. A.r=4^.故原式=(塔=普・ 5. B 提示:设 x 为正整数,考察积.r(j —Fl).Vj*2<Cx(jr +l) = (jr+0. 5)2—0. 25V(«r+0. 5)2».\x<Z A /JT (才+1) VLr+O. 5,・°・[5/工(无+1)]=不,故原式=1+2+3 +…+ 100=5050.故选 B.6. A 提7B :J /=4 + 2 J —(立一6;r+5) =4 + 2 -J —(工一3严+ 4,当工=3时,西大值=2返,当工=1或5时, »最小值=2 •所求值为2 42 — 2 ♦选A.7. 2017 提示:设工=2018,则原式=J (&—1).疋(工+1)(工+2) + 1_.z 2 = A /[(G •—1)(/+2)][工(工+1)] + 1—JT 2rs-4-丄I a+丄 +1 1 1 ca 1 a —— 1 2 1 Z 1 a 丄] a n ------ 1 a ----- a 3. C 提示:原式(1+T )2_f +(^+T7 (1+X )2_2X n±l._X_+ 册"l+十—治S>0或D •故选C.・°・原式=広=壬2+乂一 1 —工2 =乂—i=2oi8—1 = 2017,9. 3 + 2 V2 提示:由已知条件可知:(債•一2)' + (»—I 2) =0・•°・」=2・』=1.故原式=~ =—=V 3-2 72 V(72-l)2^^1 = 3+2 血.V2-110. 98 提示:乂 =冬土纟= 5 + 2 76» y =冬一李=5 — 2 用,.I 工 + y = 10,刊=1, /. — + ^-= 十必=V3-V2V3+V2,龙 对(工+孙―2 可=1O2 = 2X1 = ]OO _2=9&11.2—72*提7F: *.* J 5+2 庇=J («/^+返')?=胚~\~匝、A /7 + 4 胚=J (2+>/^)? =2+>/§".故原式= ~~ +V3+V2—=庇—41 + 2 —厄=2 —42,2+7312. 10 提示:a=2、b= 7?13. 解:(1)原式=° — 1 賈一 =a — l --.当 a = 2~4^时,代入得:a —1 — =2—后一1+2+府=3.a(a —1) a a(1X2+*)(2X3+4_)(3X4+¥)(4X5+-|-)・・・(9X1O+4~)(1OX11+-|') lOXll+与(2)原式= ---------- 台 ------- 台 -------- 台 -------- 台 ----------- f ----------------- 严一= ------ =(0XH-y)(lX2+y)(2X3+y)(3X4+y )M.(8X9+y)(9X10+y) OXl+y 221.此题用到公式”++ =(点+卡)2—沪=(〃2+卄*)(”2—卄今)=[心一i )+g_][讥卄])+*]. 14.解:原式变形为:(^frn + 2 Vn — 3)( Vm + 2石+ 1) = 0.・°・+ 2 石=3,・°・ _8_ = _A —§_斥+2 石+2002 3+20021_401-15-S?:<1'用+翁)爲+②+(用;為游:血厂用—反(2) *• a =~_-— = V 17 — 1,「•a +1 = -/17,•:/ +2a +1 = 17,故 a 2 -\~2a —16 = 0,・:原式=(a' 2d' — /I7 + 116a 3) — («3 -\~2a 2 — 16a) + (a 2 +2a —16) — l=a 3 (a? +2Q —16)—a(.a 2 +2a —16) + (/ +2a —16) — 1 = — 1.16. 解:巧/=1口+,=虹+2,于是 20K2+4Lry+20b=20Gr+y)2+Hy=20(4r+2)2+l = 2001,・・・4r+2=±10, t = 2或z =—3(舍去)・・°・£=2.17. 解:./ (.r) -^====q-^=r===^y===-____________________ ^TT — __________________________ C 敦卄1严 + »Cr+l)Cr —1)+ »Cr —1严](vCTl-8. a>b>c提不:*•* a =]72018+72017 ] .72019+72018^ 13(兀+亦扬;血 J(5)=兀;弭,…,/(999) = J •'/W. .・./(i)+f(3)-------------- ---------------------- /(999) = 全国重点高中提前招生考试八年级下学期同步强化训练卷(三)(二次根式综合测试)(无2—4:=0 (工^2 (—21.D提示:由条件可知:或故x~y=6或一6.(2工+夕=0, »=—4, »=4,2. A 提示:原式=箱(质+疗一箱)(站+ /10-V7)7T0 + (V7-V3)]E 710-(V7~V3)]=A/3[( 7T0)2-(V7-V3)2]=V3(10-10+2 721)=73X2 721 = 677,故选A.3. B 提示:(7^ )2 =工+ 2 = 5(0<«rVl),故=—A/5*.77 & 77严+4 屈=5 屈,(a,y) = (2・8)4. D 提示:质=5施・•・•- 3血+2屈=5血,・・・(工,歹)=(18・2)故(工*)的个数是3•故选D.V572+0=55/2 Cr,y)=(50・0),近寺丸^=2.故血乞+砖7=5.6.B 提示:•••V1+J+(5TP=1+V_^+i'AS=1+l_T+1+T_l+1+l_l+'"+1+2M7—金=2018—佥.故选B.提示:(Va— 1 — I)2 + ( Jb一2 — 2严+*( \/c—3—3)'=0.・°・a = 2・b=6,c=12. .•・a+Z>+c=20.提示:a = 2-A<0.原式=年书=仏二3—丄=1a—3 aka—1) a—3 a(a—1) a5.C 提示:••• E- (冒9-1 提示:由1 — Jr 0.且工0«x1,则"=*十2 一#+歩-卡=* + 27. 20a—3v 25—jc l + v 15—J?214.解:原式=[a —2a(a+2)1 . a — 4_a?—4—a?+aa+2 a (a+2)''.a+2_ ]a—4 a(.a—2) (72-1)(72-1+2)、/_Q严+寻・丁*<■!■< 1,・°・当尤=号时取最大值1 •故a = l;当/=*或取最小值g■,故b 42・2..23 =1■…E =百10.24 提示:原式=3Q(Q2+2a)+6疋一6a —12=Qa2 ~\~\2a—12 = 6X6—12 = 24.11.—1提示:由题意可知%=—』.12.y 提示:•••2</7V3・・・・一3V-V7V—2,・・・2V5—V7V3,S = 2" = 5—V7—2 = 3—V7,・・・aX2X(3—疗)+风3—疗)2 = 1,.・・4(6—2存)+久16 — 6疗)=1,・・・ 6«-2 V7a +166-6 41b= 1, A (6a+ 16Z>) - (2tz += _3_l (6a+16b=l a~~2o 166)77 = 1.根据等式两边对应系数相等,得:解得:2 ・・・2a+b=2X号一£ = 3 —l-(2a+6b)=0. . 1 2 21 _ 5~2~~2'13 .解:原式=725+20 V3 + 12 + 725-20 73 + 12 = 7(5+2 V3)2 + 丿(5—2 府严=5+2 膚+5—2 用=10.1L 5 ••20ll 2011 X ( •/20l2~\~ l) /ccr c I i •1/eel c • 2 c I i ccic15.M: . m= — = ----------- /,---- =』2012 + ]…加一1= J2012…亦一2加+] = 20]2,V2012 — 1( 72012)2-1m2—2m—2011=0. 原式=加3 (?w2—2m—2011) =0.16.解:x=(2n+l)-2 %AiG+l),_y=(2 卄1)+2 /?G+1),工+ y = 4n + 2,£y= 1,又2(工+ 3^ + 193工夕= 1993,得2(4w+2)24-193=1993,(4n+2)z=900,n>0,得宛=7.17.解:A“=Jl+* + d)2 = 1 + —^^2s=Ai +A2 +A3 H ------------------------- An, = (1+ ) + (1+ ) +9 9 9 9 9 9 9 9n-\~—----- )-1-…+O+ ---------- )= io+二 + --------- -- =1?—3 5 10 12 1 2 11 12 66°。

(完整版)二次根式专题练习(含答案).doc

(完整版)二次根式专题练习(含答案).doc

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2,第 4 个等式: a 4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化17.,的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.,,⋯,., S=(用含n的代数式表示,其中n 正整数).三.解答18.算或化:(3+);19.算:( 3)(3+)+(2)20.先化,再求:,其中x=3(π 3)0.21.算:(+ )× .22.算:×() +| 2 |+ ()﹣3.23.算:(+1 )(1)+ ()0.24.如,数 a 、b 在数上的位置,化:.25.材料,解答下列.例:当 a >0 ,如 a=6|a|=|6|=6,故此a的是它本身;当a=0 , |a|=0 ,故此 a 的是零;当a <0 ,如 a= 6 |a|=|6|= ( 6),故此 a 的是它的相反数.∴ 合起来一个数的要分三种情况,即,种分析方法渗透了数学的分思想.:( 1)仿照例中的分的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.28.化求:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C .【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A ..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A .【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A . 0 B.2 C .﹣ 2D. 2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A .B. C .D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C 、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A .B. C .D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C .【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3..【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.( 2016? 聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 ..【点】本考了二次根式的算:先把各二次根式化最二次根式,再行二次根式的乘除运算,然后合并同二次根式.在二次根式的混合运算中,如能合目特点,灵活运用二次根式的性,恰当的解途径,往往能事半功倍.14.( 2016? 黄石)察下列等式:第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2,第 4 个等式: a 4= = 2,按上述律,回答以下:( 1)写出第 n 个等式: a n= = ;;( 2) a 1+a 2+a 3+⋯+a n = 1 .【分析】( 1)根据意可知,a 1= = 1,a 2 = = ,a 3= =2,a4==2,⋯由此得出第 n 个等式: a n = = ;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2 ,第 4 个等式: a 4= =2,∴第 n 个等式: a n= = ;(2) a 1+a 2+a 3+⋯+a n=(1)+()+(2)+(2) +⋯ +()故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a=0∴a=1 或 1∵a <0∴a= 1∴原式 =0 2= 2.【点】解决本的关是根据二次根式内的数非数得到 a 的.17.,,,⋯,., S=(用含n的代数式表示,其中n 正整数).【分析】由 S n =1++===,求,得出一般律.【解答】解:∵ S n =1++===,∴==1+=1+,∴S=1+1+1++⋯ +1+=n+1==.故答案:.【点】本考了二次根式的化求.关是由S n形,得出一般律,找抵消律.三.解答(共11 小)18.( 2016? 泰州)算或化:( 3+);【解答】解:(1)﹣( 3 + )=﹣( + )=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:( 3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=× 4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当a=0 时, |a|=0 ,故此时 a 的绝对值是零;当a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点】本关是先求出a+b 、ab 的,再将被开方数形,整体代.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.【分析】(1 )中,通察,:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到分的目的;( 2)中,注意找律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出抵消的情况.【解答】解:(1)=,=;.(2)原式 =+⋯+=++⋯+=.【点】学会分母有理化的两种方法.28.化求:,其中.【分析】由 a=2+,b=2,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,分后得+,接着分母有理化和通分得到原式=,然后根据整体思想行算.【解答】解:∵ a=2+>0,b=2>0,∴a+b=4 ,ab=1 ,∴原式 =+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点】本考了二次根式的化求:先把各二次根式化最二次根式,再合并同二次根式,然后把字母的代入(或整体代入)行算.。

初中数学二次根式的混合运算专项训练题4(附答案详解)

初中数学二次根式的混合运算专项训练题4(附答案详解)

初中数学二次根式的混合运算专项训练题4(附答案详解)1.计算(1(2)(1-+;(3)÷(40(12.计算(1)(2(2+(2(33-(4)11 201922 ()π-⎛⎫-+ ⎪⎝⎭3.计算:(1(2)2-.4.计算:(1)+1)()(22-52-6.计算:(1)(2)2(17.计算:(1)1 201901 (1)1(3)3π-⎛⎫-+--+ ⎪⎝⎭(2(3)(4)21+8.(1 (2)解方程组:215x y y x +=⎧⎨=-⎩9.计算(10(⎛÷- ⎝;(2(3-;(4)1-⎫÷;(531)(1+;(6)2;10.计算:(1(2(3)÷(4)2(1(1-+--.11 12.计算:(1)118863--⨯ (2)(5481263)3+-÷(3)2(21)(21)(32)+---13.计算:(1—6)×2+1214.计算(1)18322-+ (2)27506⨯÷(3)()()()23223322331+-+- (4)()238127232+---+- 15.计算:(1)223+(2)-;(2)33791627184-+--; (3)|3﹣2|﹣|﹣2+1|+|1﹣22|.16.计算:(1)61266-+; (2)22(5)(2)81-+--;(3)118(1)326⨯--; (4)2(32)(32)(12)+-++.17.计算(1)32527-(2)()3335+- 18.计算:2÷×. 1932331+一样的式子,这3353333=⨯2236333⨯==⨯,(()()23131313131-==-++-以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:(1)化简:53+; (2)若a 是2的小数部分,求3a 的值; (3)矩形的面积为35+1,一边长为5﹣2,求它的周长.20.计算: (1)2(2)|13|+-(2)233627(2)-+-21.计算:(1)13×2. (2)(1243)3-÷.22.计算:(3+2)(3-2)+2(2)-23.计算:218+612-56+3 24.计算(1)3111658224-+ (2)(232)(232)-+++ 25.计算:(. 263912532-.27.计算(115455; (2)231)32)(32)+.28.计算:(1)()()23222a b b -⋅-;(2 29.计算:(1)2011)2-⎛⎫⨯- ⎪⎝⎭(221)- 30.计算(1)2((2)2(3(1+++(3)()35223x x -<+(4)121132x x +++≥参考答案1.(1(2)7-;(3)2+(4【解析】【分析】(1)先化成最简二次根式,再合并同类二次根式即可;(2)利用平方差公式展开计算即可;(3)根据二次根式的除法运算法则计算即可;(4)根据二次根式的乘除法则、0指数幂的定义运算即可.【详解】(1==(2)(1-+221=-18=-7=-;(3)÷=2=(40(1÷121=÷== 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.2.(1)1-;(2;(3)1;(4)5+【解析】【分析】(1)利用平方差公式计算即可;(2)化成最简二次根式,利用二次根式的乘法运算法则计算,再合并即可;(3)先进行二次根式的除法运算,然后合并即可;(4)首先计算乘方、开方、绝对值、负整数指数幂,然后从左向右依次计算,求出算式的值即可.【详解】+(1)(2(2222=-=-54=-;1(2=+=;2(33=3=-43=;1(4)11 201922 ()π-⎛⎫-+ ⎪⎝⎭212++=5=+【点睛】本题主要考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.3.(1)(2)【解析】【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式;(2)原式+3-(2-3)+1.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.利用乘法公式计算是解决(2)小题的关键.4.(1;(2)6.【解析】【分析】(1)根据二次根式的混合运算法则,去括号,同类二次根式合并化简即可;(2)根据二次根式的混合运算法则,先算除法和利用完全平方公式计算,进一步化简合并即可.【详解】(1)原式22+=;(2)原式3(63)=-396=+=故答案为:6.【点睛】本题考查了二次根式的混合运算法则,完全平方公式的应用,注意计算结果化成最简. 5.﹣3【解析】【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.6.(1)(2)4.【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的乘法法则和完全平方公式计算,然后化简后合并即可.【详解】解:(1)原式=-=(2)原式=(13)44-=+=.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.(1;(2)-(3)3-;(4)4+.【解析】【分析】(1)分别根据−1的奇数次幂等于−1,绝对值的意义、任何非零数的零次幂等于1,负整数指数幂的运算法则计算即可;(2)根据二次根式的运算法则和立方根的性质计算即可;(3)根据平方差公式以及二次根式的性质计算即可;(4)根据二次根式的运算法则以及完全平方公式计算即可.【详解】解:(1)原式=3111-+=-;(2)原式=44-=-(3)原式=7553--=-;(4)原式=44+=+【点睛】本题主要考查了实数的运算以及二次根式的运算,熟记相关运算法则是解答本题的关键.8.(1)5;(2)23 xy=⎧⎨=-⎩【解析】【分析】(1)根据二次根式的除法法则运算;(2)利用代入消元法解方程组.【详解】解:(1235 =+=;(2)215x yy x+=⎧⎨=-⎩①②,把②代入①得:2x+x﹣5=1,解得x=2,把x=2代入②得y=2﹣5=﹣3,所以方程组的解为23 xy=⎧⎨=-⎩.【点睛】本题考查了二次根式的除法运算以及解二元一次方程组,熟练掌握运算法则是解题的关键.9.(1)-5;(2)7-;(3);(4)3-;(5)11-;(6)18-+【解析】【分析】(1)先算括号里的,再算乘法,最后算减法;(2)先用二次根式的性质化简各项,再作加减法;(3)先去括号,再计算加减法;(4)利用乘法分配律计算即可;(5)先化简各项,再作加减法;(6)利用多项式的乘法法则计算即可.【详解】解:(1)原式=(1--=1⎛-⎝=41--=-5;(2)原式=16=241++=7-;(3)原式==(4)原式=()2=)2=3-(5)原式4612-+=11-;(6)原式=(62+=322+=)2232⎡⎤-⎢⎥⎣⎦=18-+.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则和运算顺序,注意运算律和乘法公式的运用.10.(1)(2)(3(4)27-+ 【解析】【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后进行二次根式的乘除法运算;(3)先把各二次根式化为最简二次根式,然后进行二次根式的除法和减法运算;(4)利用平方差公式和完全平方公式计算即可.【详解】解:(1-=(2)2÷(3)6÷6(4)2(1(1-+--=120(8---=120--=27-+【点睛】本题考查二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.4.【解析】【分析】先进行二次根式化简和乘除运算,然后再进行加减即可.【详解】解:原式=4==4.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.(1)0;(2)16;(3)4.【分析】(1)先同时化简二次根式及乘法计算,再合并同类二次根式;(2)先化简二次根式并合并,再计算除法即可;(3)同时运算平方差公式及完全平方公式计算,再合并同类项.【详解】=-=-=.解:(1)原式0=+-÷==;(2)原式16=---=-+=.(3)原式21(5154【点睛】此题考查二次根式的混合运算,正确化简二次根式,掌握正确的运算顺序是解题的关键.13【解析】【分析】原式各项化为最简二次根式后,先算乘法后算加减,合并可得到结果.【详解】解:原式【点睛】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.14.(1)0;(2)15;(3)10-(4)6-【解析】【分析】(1)根据二次的加减运算法则即可;(2)根据二次根式的乘除法则即可;(3)根据二次根式的混合运算法则即可;(4)根据二次根式、立方根、绝对值的性质即可.解:(1)原式=0=,(2)原式3515==⨯=,(3)原式=((2231-+-=181231-+-=10-(4)原式=9322--+-=6【点睛】本题考查了二次根式的运算,解题的关键是掌握二次根式的运算法则.15.(1)5;(2)﹣1;(3.【解析】【分析】(1)根据开平方的运算进行计算即可得;(2)根据开平方和开立方的运算进行化简,然后进行加减计算即可;(3)根据绝对值概念可知,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,进行化简计算即可.【详解】(1=3+2=5,故答案为:5.(2=4﹣3﹣12﹣32=﹣1,故答案为:-1.(3)|﹣|+1|+|1﹣|﹣1【点睛】本题考查了实数的混合运算法则,开平方,开立方的化简求值,去绝对值符号的化简,注意化简时符号的问题.16.(1)1(2)-2;(3)(4)10+【解析】【分析】(1)先进行二次根式的除法运算,再进行加减运算即可;(2)先根据二次根式的性质进行化简,再进行加减运算即可;(3)先化简二次根式,再根据乘法分配律去括号,最后进行加减运算即可;(4)先利用乘法公式进行计算,然后进行二次根式的加减运算即可.【详解】==解:(1)原式11=+-=-;(2)原式5292=--=(3)原式6(4)原式921210=-++=+【点睛】本题考查二次根式的混合运算,掌握基本运算法则是解题的关键.17.(1)2;(2)【解析】【分析】(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可; (2)先去括号,然后再进行加减运算即可. 【详解】 (1)32527- =5-3=2; (2)()3335+- =3335+- =435-.【点睛】本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键.18.24.【解析】【分析】直接利用二次根式乘除运算法则计算得出答案.【详解】解:原式=4÷×3=8×3=24. 【点睛】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.19.(153(2)2;(3)5【解析】【分析】(1)根据题目中的例子可以解答本题;(2)根据题意,可以得出a 2﹣1,可以求得所求式子的值;(3)根据题意,可以求得矩形的另一边长,从而可以求得该矩形的周长.【详解】解:(12=22(2)∵a∴a﹣1,∴3a)3+1)=; (3)∵矩形的面积为2,∴=)=, ∴该矩形的周长为:(2)×2= 答:它的周长是【点睛】本题考查估算无理数的大小、二次根式的混合运算、二次根式的应用,解题关键是明确它们各自的计算方法.20.(1)(2)5【解析】【分析】(1)首先计算乘方和求绝对值,然后计算加法,求出算式的值是多少即可.(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】(1)2|1+=1=(26﹣3+2=5【点睛】此题主要考查了实数运算,正确把握相关定义是解题关键.21.(1)3;(2)-2.【解析】【分析】(1)直接利用二次根式的乘法法则,进行化简,得出答案;(2)先化简二次根式,进而计算得出答案.【详解】(1;(2)原式=(﹣=﹣2.【点睛】本题主要考查二次根式的性质和运算法则,掌握二次根式的性质和运算法则是解题的关键.22.1【解析】【分析】直接利用平方差公式以及完全平方公式分别化简得出答案.【详解】解:原式=3-4+2=1.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.23.【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】解:原式-5【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题24.(1)8622-;(2)342+【解析】【分析】(1)首先化简二次根式,然后合并同类二次根式即可;(2)利用完全平方公式和平方差公式计算,然后进行加减计算即可.【详解】(1)原式=8622-(2)原式22(22)(3)342=+-=+【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则.25.7-2【解析】【分析】利用平方差公式和完全平方公式计算即可.【详解】原式==7﹣2. 【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.26.3-【解析】【分析】直接利用算术平方根以及绝对值的性质、立方根的性质分别化简得出答案.【详解】 3912532-33此题主要考查了实数运算,正确化简各数是解题关键.27.(1)5;(2). 【解析】【分析】(1)根据二次根式的运算法则计算即可得答案;(2)利用完全平方公式及平方差公式,根据二次根式的运算法则计算即可得答案.【详解】(1(2)21)2)+【点睛】本题考查实数的运算,熟练掌握完全平方公式和平方差公式及运算法则是解题关键. 28.(1)484a b - ;(2)43. 【解析】【分析】(1)先运用幂的乘方进行计算,再运用同底数幂的乘法进行计算即可解答;(2)运用平方根和立方根的运算法则进行计算即可解答.【详解】解:(1)()()()()23224264824==4a b b a b b a b -⋅-⋅--;(2423-+.本题考查了幂的乘方、平方根和立方根的运算法则,准确计算是解题的关键.29.(15;(2)12【解析】【分析】(1)根据二次根式,零次幂,负指数幂与立方根的运算法则进行计算;(2)根据二次根式的除法与完全平方公式展开计算.【详解】(1)2011)2-⎛⎫⨯- ⎪⎝⎭141⨯-5(221)-1(101)--1101-+=12【点睛】本题考查实数的混合运算,熟练掌握二次根式,零次幂,负指数幂与立方根的运算是解题的关键.30.(1)-(2)10+(3)3x >-;(4)5x ≥-【解析】【分析】(1)先化简二次根式,然后合并同类项,即可得到答案.(2)利用完全平方公式和平方差公式进行计算,然后合并同类项即可;(3)先去括号,然后移项,合并同类项,系数化为1,即可得到答案;(4)先去分母,去括号,然后移项,合并同类项,系数化为1,即可得到答案;解:(1)2(-=22--=-;(2)2(3(1+++=9212-++=10+(3)()35223x x -<+,∴3546x x -<+,∴39x -<,∴3x >-;(4)121132x x +++≥, ∴2(12)63(1)x x ++≥+,∴24633x x ++≥+,∴5x ≥-.【点睛】本题考查了实数的混合运算,二次根式的混合运算,以及解一元一次不等式,解题的关键是熟练掌握运算法则进行计算.。

初中数学分式和二次根式专题训练【含答案】

分式和二次根式专题训练一、填空题:(每题 3 分,共 36 分)1、当 x____时,分式有意义。

2、当____时,有意义。

3、计算:-a-1=____。

4、化简:(x2-xy)÷=____。

5、分式,,的最简公分母是____。

6、比较大小:2____3。

7、已知=,则的值是____。

8、若最简根式和是同类根式,则 x+y=____。

9、仿照2=·==的做法,化简3=____。

10、当 2<x<3 时,-=____。

11、若的小数部分是 a,则 a=____。

12、若=++2成立,则 x+y=____。

二、选择题:(每题 4 分,共 24 分)1、下列各式中,属于分式的是()A、 B、 C、x+ D、2、对于分式总有()A、=B、=C、=D、=3、下列根式中,属最简二次根式的是()A、 B、 C、 D、4、可以与合并的二次根式是()A、 B、 C、 D、5、如果分式中的 x 和都扩大为原来的 2 倍,那么分式的值()A、扩大 2 倍B、扩大 4 倍C、不变D、缩小 2 倍6、当 x<0 时,|-x|等于()A、0B、-2xC、2xD、-2x或0三、计算:(每题 6 分,共 24 分)1、()3÷()0×(-)-22、(+)÷3、-+4、(3-2)2四、计算:(每题 6 分,共 24 分)1、-+2、÷(x+1)·3、-·4、4b+-3ab (+)五、解答题:(每题 8 分,共 32 分)1、某人在环形跑道上跑步,共跑两圈,第一圈的速度是 x 米/分钟,第二圈的速度是米/分钟(x>),则他平均一分钟跑的路程是多少?2、若菱形的两条对角线的长分别为 3+2和 3-2,求菱形的面积。

3、如图,是某住宅的平面结构示意图,图中标明了有关尺寸(墙体厚度忽略不计,单位:m),房主计划把卧室以外的地面都铺上地砖,如果他选用的地砖的价格是 a 元/m2,则买砖至少需要多少元?若每平方米需砖 b 块,则他应该买多少块砖?(用含 a,x,的代数式表示)。

2023-2024教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)

第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.已知n是正整数,是整数,则n的最小值是.【答案】21【解析】∵189=32×21,∴,∴要使是整数,n的最小正整数为21.故填:21.【考点】二次根式的定义2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.列二次根式中,最简二次根式是()A.B.C.D.【答案】B.【解析】A、,被开方数含能开得尽方的因数,不是最简二次根式,故A选项错误;B、,满足最简二次根式条件,故B选项正确;C、,被开方数含分母,不是最简二次根式,故C选项错误;D、,被开方数含能开得尽方的因数和因式,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.计算下列各题(1)(2)(3)(4)【答案】(1);(2);(3);(4).【解析】(1)先将括号里面的式子进行通分化简,然后再进行除法运算即可;(2)先化简二次根式,再合并同类二次根式即可;(3)先把方程组中的①化简,利用加减消元法或者代入消元法求解即可;(4)先去分母,然后利用前两个方程消掉y,第一个方程和第三个方程消掉y得到两个关于x、z的方程,然后根据二元一次方程组的解法求出x、z的值,再代入第一个方程求出y的值,从而得解.试题解析:(1)原式=;(2)原式=;(3),由①得:③,③×3-②×2得:,解得:,把代入①得:,∴;(4)整理得:,①+②×2,得:④,①+③得:⑤,④+⑤×7,得:,把代入⑤,得:,把,代入①,得:,∴.【考点】1.二次根式的混合运算;2.解二元一次方程组;3.解三元一次方程组.5.(1)已知:(x+5)2=16,求x;(2)计算:【答案】(1),;(2).【解析】本题考查了平方根、立方根的定义及性质和绝对值的性质.(1)根据平方根的定义,先得出:,再分别计算出的值;(2)先利用平方根、立方根的性质及绝对值的性质分别计算出每个式子的值,最后相加.试题解析:解:(1)∵∴∴,原式【考点】1、平方根的定义及性质;2、立方根的定义及性质;3、绝对值的性质.6.如果实数满足y=,那么的值是().A.0B.1C.2D.-2【答案】C【解析】由题意可知,,,所以,,所以.故选.【考点】1、算术平方根的非负性.7.-的相反数是.【答案】.【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此-的相反数是.【考点】相反数.8.若m=-2,则m的范围是A.1 < m < 2B.2 < m < 3C.3 < m < 4D.4 < m < 5【答案】C【解析】根据,可得,即可作出判断.故选C.【考点】无理数的估算点评:解题的关键是熟练掌握“夹逼法”是估算无理数的常用方法,也是主要方法.9.设,,则的值等于 .【答案】-【解析】先解方程同时结合得到a与b的关系,再代入求值即可.解方程得当时,当时,.【考点】解方程,代数式求值点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.10.当时,二次根式的值为 .【答案】3【解析】先把代入二次根式,再根据二次根式的性质求值即可.当时,.【考点】绝对值的规律,二次根式的性质点评:解题的关键是熟练掌握二次根式的性质:当,;当,.11.(1)计算: ①;②÷(2)解方程:①;②【答案】(1)①;②;(2)①;②【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)①先移项,方程两边同加一次项系数一半的平方,再根据完全平方公式分解因式,最后根据直接开平方法求解即可;②先去括号,再移项、合并同类项,最后选择恰当的方法解方程即可.(1)①;②;(2)①解得;②解得.【考点】实数的运算,解一元二次方程点评:点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.平方等于64的数是 .【答案】±8【解析】由题意分析可知,,所以平方等于64的数是±8【考点】平方根点评:本题属于对平方的基本知识和平方根定义的熟练把握13.把下列各数分别填入相应的集合中: -,, 0.232323有理数集合无理数集合【答案】无理数:,-有理数是,0.232323【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,所以无理数是,-,有理数是,0.232323【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.14.下列说法正确的是()A.8的立方根是±2B.负数没有立方根C.互为相反数的两个数立方根也互为相反数D.立方根是它本身的数是0【答案】C【解析】根据立方根的定义依次分析各选项即可判断.A.8的立方根是2,B.负数的立方根是负数,D.立方根是它本身的数是0,±1,故错误;C.互为相反数的两个数立方根也互为相反数,本选项正确.【考点】立方根点评:解题的关键是熟练掌握正数的立方根是正数,0的立方根是0,负数的立方根是负数.15.设,则代数式的值为( ).A.-6B.24C.D.【答案】A【解析】先根据完全平方公式配方,再代入求值即可.当时,故选A.【考点】代数式求值点评:解题的关键是熟练掌握完全平方公式:16.如果一个数的平方根与它的立方根相同,那么这个数是()A.±1B.0C.1D.0和1【答案】B【解析】根据平方根、立方根的定义依次分析各选项即可判断.∵1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1∴平方根与它的立方根相同的数是0故选B.【考点】平方根,立方根点评:本题属于基础应用题,只需学生熟练掌握平方根、立方根的定义,即可完成.17.估算的值是()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【答案】B【解析】根据,即可作出判断.的值是在2和3之间故选B.【考点】无理数的估算点评:解答本题的关键是熟练掌握“夹逼法”是估算无理数的常用方法,也是主要方法.18.若,,那么a b的值等于A.-8B.8C.-16D.16【答案】D【解析】先根据立方根及算术平方根的定义求得a、b的值,再根据乘方法则计算即可.∵,∴故选D.【考点】立方根、算术平方根点评:解题的关键是熟记一个正数有两个平方根,且它们互为相反数,其中正的平方根叫算术平方根.19.在,,,,这五个实数中,无理数的是.【答案】,【解析】是循环小数,不是无理数;是整数之比,不是无理数;开放后是无限小数,是有理数;为无限小数;,不是无理数。

初中数学二次根式的混合运算专项训练题5(附答案详解)

初中数学二次根式的混合运算专项训练题5(附答案详解)1.已知32x =+,32y =-,求()22xy x y -的值. 2.在计算×2-÷的值时,小亮的解题过程如下: 解:原式=2-……① =2-……② =(2-1)……③ =……④.(1)老师认为小亮的解法有错,请你指出:小亮是从第 步开始出错的;(2)请你给出正确的解题过程.3.计算: (111822(2)232)52)(52)-412753533.5.计算:24122332--. 611824327.计算: (1)1134831838- (2)2338125(2)---8.计算:1(83)63+ 940÷52-1)210. 先化简,再求值:(x+2+342x x +-)÷2692x x x ++-,其中33 11(27224238-- 12.计算下列各小题.(1(2))(222-+13.化简:(1(2(3(40(114.计算:(1)2- (2)221cos60cos 45tan 603+-15.(1(2)21)+16.计算21)2)+17.计算:2(31)-18.计算:(1(2)2(11)1)+19.先化简再求值:(x−2y)(x+2y)−4y(x−y),其中1x =,1y =.20.(1)(221.计算:(1(2)22-22.计算:(1);(2)11()5-+(1.23.计算:(1)(2(3)111)()2-24.计算:(1) ⎛÷ ⎝(2) (2.25.计算:()). 26.计算:(1)2-(2)1)27.已知﹣1,y=+1,求x y y x+的值. 28.计算:(1)011|3(2019)()3π---+-(2)29.计算(1).(21. 30.计算:(1)2201801(1)( 3.14)2π-⎛⎫---+ ⎪⎝⎭(2)222111442x x x x x x --⋅---+- (3)()()2223123ab c a b c ----÷(4参考答案 1.46 【解析】 【分析】 根据题意,先求出x y +和x y -的值,然后代入计算,即可得到答案.【详解】解:∵32x =+,32y =-, ∴323223x y +=++-=,323222x y -=+-+=;∴()22()()xy x y xy x y x y -=+-=(32)(32)2322+⨯-⨯⨯=(32)2322-⨯⨯=46.【点睛】本题考查了实数的混合运算,二次根式的混合运算,以及完全平方公式和平方差公式的应用,解题的关键是熟练掌握运算法则进行解题.2.(1)③;(2).【解析】【分析】(1)第③步错误,应该先化简后再进行计算;(2)根据二次根式的运算法则即可解答.【详解】(1)③;(2)原式==2- =6﹣2 =4. 【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.3.(1);(2).【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式=﹣=;(2)原式=+2﹣(5﹣4)=.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.1【解析】【分析】先根据二次根式的乘法法则和平方差公式计算得到原式,然后化简后进行减法运算.【详解】解:原式=()()22333521⎡⎤--=--=⎢⎥⎣⎦【点睛】 此题考查二次根式的混合运算,解题关键在于掌握运算法则.5.﹣.【解析】【分析】先将二次根式化简,同时根据完全平方公式计算,再根据平方差公式计算,最后合并同类项即可得到结果.【详解】原式)(2﹣)﹣(3+2﹣),=4﹣12﹣,=﹣.【点睛】此题考查二次根式的混合计算,掌握完全平方公式,平方差公式的计算方法是解题的关键.6.【解析】【分析】根据二次根式的性质先化简为最简二次根式,然后合并同类二次根式即可.【详解】⨯解:原式=42==7.(1)(2)9【解析】【分析】(1)先化简二次根式,再合并同类二次根式;(2)先计算立方根和算术平方根,再计算加减可得.【详解】解:(1)原式=(2)原式=2+5+2=9.【点睛】本题主要考查实数的运算,解题的关键是熟练掌握实数的运算顺序和运算法则.8+【解析】【分析】先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可.【详解】,===+3【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.3【解析】【分析】先同时计算除法和乘方,再将结果合并同类二次根式.【详解】解:原式+1,+1,=3.【点睛】此题考查二次根式的混合运算,掌握乘除法计算法则是解题的关键.10.3x x +,【解析】【分析】首先计算括号里面的加减,然后再计算除法,化简后再代入x 的值即可.【详解】解:原式=24342x x x -++-×22(3)x x -+, =()32x x x +-•22(3)x x -+ =3x x +.当-3时,原式 【点睛】 此题主要考查了分式的化简求值,关键是掌握分式加减和除法的计算法则.11.4--【解析】【分析】先将二次根式都化成最简根式,同时利用完全平方公式对括号进行展开,再进行化简即可【详解】解:原式()43=-+7=-37=-4=--【点睛】本题考查二次根式的混合运算,解答本题关键在于掌握二次根式的化简以及同类二次根式的合并12.(1) 5(2)2【解析】【分析】(1)首先化简二次根式,然后合并同类二次根式即可;(2)先运用平方差公式计算,再合并即可.【详解】=5=-(2))(222-+(222=-(2222⎡⎤=-+⎣⎦2=2=.【点睛】本题考查了二次根式的混合运算,正确对二次根式进行化简是关键,灵活运用乘法公式使计算更加简便.13.(1)0.1;(2);(3)3;(4)【解析】【分析】(1)利用算术平方根的定义计算;(2)先把二次根式化为最简二次根式,再计算二次根式的加减法即可;(3)先把二次根式化为最简二次根式,再计算二次根式的乘法,最后计算二次根式的加法即可;(4)先把二次根式化为最简二次根式、实数的乘方,再计算二次根式的除法即可.【详解】(1)原式 1.2 1.1=-0.1=;(2)原式==(3)原式3=+=+=(4)原式1=+1=51=6=.【点睛】本题考查了二次根式的四则混合运算,掌握理解运算法则是解题关键.14.(1)8-;(2)0.【解析】【分析】(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【详解】解:(1)原式=6212⎛-- ⎝⎭8=-8=-(2)原式2211223⎛⎫=+-⋅ ⎪ ⎪⎝⎭ 11=-0=.【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.15.(1)0;(2)18-【解析】【分析】(1并约分,再开方进行加减运算即可;(2)运用完全平方差公式及平方差公式展开并加减运算即可.【详解】(1)原式=2+3-5=0(2)原式=(222221+1--⨯+=182-3-+=18-【点睛】本题考查了二次根式的混合运算、完全平方差公式和平方差公式,灵活运用分母有理化及整式乘法是解题关键.16.12﹣【解析】【分析】先利用乘法公式进行计算,再计算加减即可.【详解】解:())2122+1211=--12=-【点睛】本题考查的是二次根式的混合运算,能够准确的按照计算顺序计算是解题的关键.17.【解析】【分析】利用平方差公式和完全平方公式计算即可.【详解】2(31)+-22=3)--=95(3---=951--【点睛】本题考查公式法计算二次根式,关键在于牢记乘法公式.18.(1(2)2-【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并同类二次根式即可;(2)利用完全平方公式和平方差公式计算即可.【详解】解:(1)原式==(2)原式15512=-++-=-【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.x 2-4xy ;1-.【解析】【分析】先化简(x−2y)(x+2y)−4y(x−y),然后把1x =,1y =带入计算即可; 【详解】解:原式=x 2-4y 2-4xy+4y 2=x 2-4xy ,当11x y ==,时,原式=21)1)-=34+=1;【点睛】本题主要考查了整式的混合运算-化简求值,掌握整式的混合运算-化简求值是解题的关键.20.(1)(2)0.【解析】【分析】(1)先根据二次根式的乘除法进行运算,再进行加减法运算即可;(2)先把各二次根式化为最简二次根式,再进行计算即可;【详解】解:(1)原式=2⨯==(2)原式=5-3-2=0;【点睛】本题主要考查了二次根式的混合运算,掌握二次根式的混合运算是解题的关键.21.(1)+;(2).【解析】【分析】(1)利用二次根式的乘除法则运算;(2)利用完全平方公式计算得到5++2−(2),再进行二次根式的加减运算.【详解】(1+;(2)原式=5+2−(+2)=.【点睛】本题考查二次根式的混合运算、完全平方公式,解题的关键是知道先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.22.(1);(2)3-【解析】【分析】(1)先把各二次根式化为最简二次根式,然后合并同类二次根即可;(2) 根据负整数指数幂的意义和平方差公式计算.【详解】(1)原式+;(2)原式=5+1-)2-=6-3--【点睛】此题考查负整数指数幂,二次根式的混合运算,解题关键在于掌握运算法则.23.(1)(2)1(3)0.【解析】【分析】(1)先化简二次根式,然后合并同类项,即可得到答案;(2)先计算二次根式的乘法和化简二次根式,然后合并同类项,即可得到答案; (3)先计算二次根式的乘法和化简二次根式,然后合并同类项,即可得到答案;【详解】解:(1)原式=-=;(2)原式=1;(3)111)()2-=3﹣1﹣4+2=0.【点睛】本题考查了二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.24.(1)143;(2)0. 【解析】【分析】(1)先化简各个二次根式,再计算括号里面的,然后计算除法即可得出结果;(2)先化简各个二次根式,再去括号,然后进行二次根式的加减运算即可得出结果.【详解】解:(1)原式=143⎛+÷ ⎝;(2)原式=(2.【点睛】本题主要考查二次根式的混合运算,掌握基本运算法则是解题的关键.25.-1.【解析】【分析】先计算二次根式的乘除法,再计算二次根式的加减法即可.【详解】+(22)22=-+2=-+34=-.1【点睛】本题考查了二次根式的乘除法、加减法,熟记运算法则是解题关键.26.(1)4--(2)【解析】【分析】(1)利用平方差公式和完全平方公式计算;(2)先把原式进行变形化简,然后利用平方差公式和完全平方公式计算.【详解】(1)原式=7﹣3﹣()=4﹣8﹣=﹣4﹣;(2)原式+1)﹣1)]=2﹣1)2=3﹣(2﹣+1)=3﹣.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.27.6.【解析】试题分析:先将原式化简,在由x y 、的值先求出x y xy +、两个式子的值,再将两个式子的值代入原式化简后的式子中计算即可.试题解析:原式=2222()2()2x y x y xy x y xy xy xy++-+==-,∵11x y ==,,∴1x y xy +==,∴原式=8-2=6. 点睛:解答本题时,先将x y y x+根据分式的加法法则结合“完全平方公式”化简变形为2()2x y xy+-,再代值计算可使运算简便一些.28.(1)3;(2)1+【解析】【分析】(1)根据零指数幂和负指数幂、绝对值、三次根式的运算法则计算即可.(2)根据二次根式的运算法则计算即可.【详解】(1) 011|3(2019)()3π---+-3413+--3(2)=(58+-=(58+-2012=(58++-=54+=1+【点睛】本题考查二次根式、三次根式的计算,关键在于熟练掌握基础运算方法.29.(1);(2)【解析】【分析】(1)先根据绝对值的性质去绝对值符号,再进行二次根式的加减运算;(2)先将二次根式化为最简二次根式,再进行减法运算.【详解】解:(1)原式==; (2)原式112122=+--= 【点睛】本题考查的知识点是二次根式的混合运算,掌握二次根式的混合运算的运算顺序以及运算法则是解此题的关键.30.(1)4;(2)2x x -;(3)889b c;(4)【解析】【分析】(1)根据零指数幂01(0)a a =≠及负指数幂1(0)p paa a -=≠的计算公式求解即可; (2)先将分式22144x x x --+的分子和分母因式分解,再约分计算即可;(3)先算乘方,再根据单项式除以单项式法则计算即可;(4)根据二次根式的乘除法法则计算最后再化简合并即可.【详解】(1)原式21111()2=-+ 1014=+4=(2)原式22(1)(1)11(2)2x x x x x x -+-=⋅---- 112x x +-=- 2x x =- (3)原式22462423a b c a b c -----=÷08819a b c -= 889b c= (4)原式=【点睛】本题综合考查了实数运算、分式的混合运算、整式的除法及二次根式的混合运算,熟练的掌握相应的运算法则是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故选:B. 【点睛】 本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差 公式进行解题.
12.下列各式成立的是( )
A. 2 3 3 2
C.
2 3
2
2 3
【答案】D
B. 6 3 =3 D. (3)2 =3
【解析】 分析:各项分别计算得到结果,即可做出判断.
【分析】
根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.
【详解】
根据题意得,3a-8=17-2a,
移项合并,得 5a=25,
系数化为 1,得 a=5.
故选:D.
【点睛】 本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.
10.式子 1 a 有意义,则实数 a 的取值范围是( ) a2
15.已知 a 1 ,b 1 2 ,则 a, b 的关系是( ) 1 2
A. a b
【答案】D
B. ab 1
C. a 1 b
【解析】
【分析】
根据 a 和 b 的值去计算各式是否正确即可.
【详解】
D. a b
A. a b 1 1 2 11 2 2 2 2 ,错误;
1 2
1 2
∵二次根式 x 2 在实数范围内有意义,
∴被开方数 x+2 为非负数, ∴x+2≥0, 解得:x≥-2. 故答案选 D. 【点睛】 本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.
20.如图,数轴上的点可近似表示(4 6 30 ) 6 的值是( )
A.点 A 【答案】A 【解析】 【分析】
故选 D.
18.如果 m2+m
2
0,那么代数式(
2m 1 m2
1)
m 1 m3
的值是(

A. 2
B.2 2
C. 2 + 1
D. 2 + 2
【答案】A
【解析】
【分析】
先进行分式化简,再把 m2+m 2 代入即可.
【详解】
解:(
2m m
2
1
1)
m m3
1
2m 1 m2
m2
m 1 m3
(m 1)2 m3
一、选择题
1.如果
重庆市初中数学二次根式专项训练答案
,则 a 的取值范围是( )
A.
B.
C.
D.
【答案】B
【解析】
试题分析:根据二次根式的性质 1 可知:
,即

答案为 B. . 考点:二次根式的性质.
2.已知 x 3 5 x 2,则化简 1 x2 5 x2 的结果是( )
A.4 【答案】A 【解析】
B.点 B
C.点 C
D.点 D
先化简原式得 4 5 ,再对 5 进行估算,确定 5 在哪两个相邻的整数之间,继而确定
4 5 在哪两个相邻的整数之间即可.
【详解】
原式=4 5 ,
由于 2< 5< 3,
∴1<4 5<2.
故选:A. 【点睛】
本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.
1 2
B. ab 1 2 1,错误; 1 2
C. ab 1 2 1,错误; 1 2
D. a b 1 1 2 11 2 2 2 0 ,正确;
1 2
1 2
故答案为:D.
【点睛】
本题考查了实数的运算问题,掌握实数运算法则是解题的关键.
16.如图,矩形内三个相邻的正方形面积分别为 4,3 和 2,则图中阴影部分的面积为 ()
D. x (x<0)
14.计算 ( 3 2)2017 ( 3 2)2019 的结果是( )
A. 2+ 3
【答案】C 【解析】 【分析】
B. 3 2
C. 4 3 7
D. 7 4 3
先利用积的乘方得到原式= [( 3 2) ( 3 2)]2017 ( 3 2)2 ,然后根据平方差公式和完
【答案】C
【解析】
【分析】
根据二次根式的定义逐一判断即可.
C. 2
【详解】
A、 3 8 的根指数为 3,不是二次根式;
B、 1 的被开方数﹣1<0,无意义;
C、 2 的根指数为 2,且被开方数 2>0,是二次根式;
D、 x 的被开方数 x<0,无意义;
故选:C. 【点睛】
本题考查了二次根式的定义:形如 a (a≥0)叫二次根式.
此题主要考查了二次根式的性质和绝对值的性质,关键是掌握 a2 =|a|.
8.化简 (-2)2 的结果是
A.-2
B.2
【答案】B
【解析】
(2)2 2 2
故选:B
C.-4
D.4
9.如果最简二次根式 3a 8 与 17 2a 能够合并,那么 a 的值为( )
A.2
B.3
C.4
D.5
【答案】D
【解析】
则阴影面积= 2 2 2 3 2 3
=2 2 22 33 =2 32 2 5
故选:D 【点睛】 本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结 合的思想解答.
17.下列运算正确的是( )
A. a2 a3 a5
B. (2a2 )3 ( 1 a)2 16a4 2
A. 2a
【答案】A 【解析】 【分析】
B.2a
C.2b
D. 2b
根据二次根式的性质可得 a2 =|a|,再结合绝对值的性质去绝对值符号,再合并同类项即
可. 【详解】 解:由数轴知 b<0<a,且|a|<|b|, 则 a+b<0,b-a<0, ∴原式=-(a+b)+(b-a) =-a-b+b-a =-2a, 故选 A. 【点睛】
A.2
C. 2 3 6 2 2 3
【答案】D
B. 6 D. 2 3 2 2 5
【解析】 【分析】 将面积为 2 和 3 的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的 图形的长和宽,计算可得答案. 【详解】 将面积为 2 和 3 的正方形向下平移至下方边长和长方形的长边重合,如下图所示:
6.如果 x • x 6 x(x 6) ,那么( )
A. x 0
【答案】B 【解析】
B. x 6
C. 0 x 6
∵ x ? x 6 xx 6 ,
∴x≥0,x-6≥0,
∴x 6.
故选 B.
D.x 为一切实数
7.已知实数 a、b 在数轴上的位置如图所示,化简|a+b|- (b a)2 ,其结果是( )
A.a≥-1
B.a≤1 且 a≠-2
C.a≥1 且 a≠2
【答案】B
【解析】
【分析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
D.a>2
式子 1 a 有意义,则 1-a≥0 且 a+2≠0, a2
解得:a≤1 且 a≠-2. 故选:B. 【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
详解:A.原式= 3 ,不符合题意;
B.原式不能合并,不符合题意;
C.原式= 2 ,不符合题意; 3
D.原式=|﹣3|=3,符合题意. 故选 D. 点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是 解答本题的关键.
13.下列各式中是二次根式的是( )
A. 3 8
B. 1
C. 3a1 1 3a
【答案】D
D. (2 3a2 3a)2 3a2 4a2 4a 1
【解析】
试题分析:A. a2 a3 ,无法计算,故此选项错误;
B.
2a2
3
1 2
a
2
8a6
1 4
a2
=
32a4
,故此选项错误;
C. 3a1 3 ,故此选项错误; a
D. 2 3a2 3a 2 3a2 4a2 4a 1 ,正确.
【详解】
(3)2 =|-3|=3,
故选:C. 【点睛】 此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
5.若代数式 x 3 在实数范围内有意义,则实数 x 的取值范围是( ) x 1
A. x 1
B. x>-3 且 x 1 C. x 3
D. x ≥-3 且 x 1
【答案】D
【解析】
【分析】
11.若 x+y=3+2 2 ,x﹣y=3﹣2 2 ,则 x2 y2 的值为( )
A.4 2
B.1
【答案】B
【解析】
【分析】
根据二次根式的性质解答.
【详解】
C.6
D.3﹣2 2
解:∵x+y=3+2 2 ,x﹣y=3﹣2 2 ,
∴ x2 y2 (x y)(x y) (3 2 2)(3 2 2) =1.
【详解】
解: 45n 95n 3 5n ,
∵n 是正整数, 45n 也是一个正整数,
∴n 的最小值为 5.
故选:B.
【点睛】
此题考查二次根式的定义,掌握二次根式的定义是解题的关键.
D.45
4.计算 (3)2 的结果为( )
A.±3
B.-3
C.3
D.9
【答案】C 【解析】 【分析】
根据 a2 =|a|进行计算即可.
B. 6 2x
C. 4
D. 2x 6
x 3 0
由 x 3 5 x 2可得{
,∴3≤x≤5,∴
5 x 0
1 x2
5 x2 =x-1+5-x=4,故选
A.
相关文档
最新文档