华南理工大学2012概率论试题

合集下载

概率论课后答案华南理工大学

概率论课后答案华南理工大学

设事件 A {取出的两个球都是白球} ,则事件 A 包含的样本点总数为 k C52 , 故
P( A)
k C52 0.357 n C82
例 4 一批产品工 200 个,其中有 6 个废品,求: (1)这批产品的废品率; (2) 任取 3 个恰有 1 个废品的概率; (3)任取 3 个全是废品的概率. 解
一个事件的概率为 0, 这个事件未必是不可能事件; 因此 C 项正确.反例如
下 : 随 机 地 向 [0,1] 区 间 内 投 点 , 令 x 表 示 点 的 坐 标 , 设
A { 0 x 1 / 2 B} , { 1 x /, 2则 A B 1{ }x 1 / 2, } 由 几 何 概 率可 知 ,
1 2k 2 1 2k 2 2k 2 Cn Cn 1 (C2 ) n22 k 2 Cn 1 2k 2k C2 n C2 n
率总是在区间(0,1)上的一个确定的常数 p 附近波动,并且稳定于 p ,则称 p 为 事件 A 的概率,记为 P( A) .即
P( A) p
14.古典概率定义 古典概率定义 在古典概型中,如果基本事件的总数 所包含的样本点个数为 r ( r n ) ,则定义事件 A 的概率 P( A) 为 r / n .即
第一种情况:不放回抽样
1 1 样 本 空 间 的 基 本 事 件 总 数 为 n C6 C5 30 . 事 件 A 的 基 本 事 件 数 为 1 1 1 1 k A C4 C3 4 3 12 .事件 B 基本事件数为 k B C2 C1 2 1 2 .
(1) (2)由于 P( B)
例 6 从 n 双不同型号的鞋子中任取 2k (2k n) 只,试求下列事件的概率: (1) (2) B ={恰有一对鞋子} . A ={没有成对的鞋子}; 解

华南理工大学《概率论与数理统计》试卷A卷参考试卷

华南理工大学《概率论与数理统计》试卷A卷参考试卷

,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷A 卷1. 考前请将密封线内各项信息填写清楚; 可使用计算器,解答就答在试卷上; .考试形式:闭卷;本试卷共八大题,满分100分。

考试时间120分钟。

5. 本试卷的七、八大题,有不同学分的要求,请小心阅题。

标准正态分布的分布函数值:99.0)33.2(=Φ(10分)甲、乙两人掷均匀硬币,其中甲掷n+1次,乙掷n 次。

求“甲掷出正面的次数大于乙掷出正面的次数”这一事件的概率。

(14分)两台机床加工同样的零件,第一台出现废品的概率为0.05,第二台出现废品的概率为0.02,加工的零件混放在一起,若第一台车床与第二台车床加工的零件数为5:4。

三、(试求:(1) a ;(2) P (X+Y<1);(3) E(XY)四、(15分)设的概率密度为⎩⎨⎧≤≤≤≤+=其他020,10)(),(y x y x A y x f求:(1) A ;(2) E(X), cov(X,Y),X 和Y 的相关系数;(3)(X,Y)落入区域},10{2x y x D ≥≤≤=的概率。

五、(12分)某学院有1000名学生,每人有80%的概率去大礼堂听讲座,问礼堂至少要有多少座位才能以99%的概率保证去听讲座的同学有座位?六、(10分)设随机变量ξ与η独立,并有相同的分布),(2σa N 。

试证:()[]πσηξ+=a E ,max七1、(2学分做)(12分)设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧>=⎩⎨⎧≤≤=-.,0)(.0,101)(其他其他y e y f x x f yY X已知X,Y 的函数⎩⎨⎧>≤==.0,1),(Y X Y X Y X g Z试求EZ ,DZ 。

八1、(2学分做)(12分)设随机变量),(ηξ在单位园(){}1|,22≤+=y x y x D 上服从均匀分布,求:⑴ ),(ηξ的联合概率密度),(y x ϕ; ⑵ 边际密度函数)(x ξϕ,)(y ηϕ; ⑶ ξ与η是否相关,是否独立?。

华南理工大学概率论与数理统计考试试卷及答案

华南理工大学概率论与数理统计考试试卷及答案

二、(12分)在某种牌赛中,5张牌为一组,其大小与出现的概率有关。

一付52张的牌(四种花色:黑桃、红心、方块、梅花各13张,即2-10、J=11、Q=12、K=13、A=14),求(1)同花顺(5张同一花色连续数字构成)的概率;(2)3张带一对(3张数字相同、2张数字相同构成)的概率;(3)3张带2散牌(3张数字相同、2张数字不同构成)的概率。

三、(10分)某安检系统检查时,非危险人物过安检被误认为是危险人物的概率是0.02;而危险人物又被误认为非危险人物的概率是0.05。

假设过关人中有96%是非危险人物。

问:(1)在被检查后认为是非危险人物而确实是非危险人物的概率?(2)如果要求对危险人物的检出率超过0.999概率,至少需安设多少道这样的检查关卡?四、(8分)随机变量X 服从),(2σμN ,求)0( >=a a Y X 的密度函数五、(12分)设随机变量X、Y的联合分布律为:已知E(X+Y)=0,求:(1)a,b;(2)X的概率分布函数;(3)E(XY)。

六、(10分)某学校北区食堂为提高服务质量,要先对就餐率p进行调查。

决定在某天中午,随机地对用过午餐的同学进行抽样调查。

设调查了n个同学,其中在北区食堂用过餐的学生数为m,若要求以大于95%的概率保证调查所得的就餐频率与p之间的误差上下在10% 以内,问n应取多大?七、(10分)设二维随机变量(X,Y)在区域:{}b y a x <<<<0,0上服从均匀分布。

(1)求(X,Y)的联合概率密度及边缘概率密度;(2)已知36,12==DY DX ,求参数a 、b ;(3)判断随机变量X 与Y 是否相互独立?八、(8分)证明:对连续型随机变量ξ,如果c E =3||ξ存在,则0>∀t ,3)|(|t ct P ≤>ξ。

九、(12分)设(X ,Y )的密度函数为⎩⎨⎧<<<<=其他010,10,),(y x Axy y x f 求(1)常数A ;(2)P(X<0.4,Y<1.3);(3)sY tX Ee +;(4)EX ,DX ,Cov(X ,Y)。

华理概率论习题5答案-2012

华理概率论习题5答案-2012


ac cov( X , Y ) ac DX DY
XY
4. 设两个随机变量 , , E 2, E 4, D 4, D 9, 0.5 ,求
E (3 2 2 2 3) 。

E (3 2 2 2 3) 3E ( 2 ) 2 E ( ) E ( 2 ) 3 =3 D ( E ) 2 2cov( , ) EE D ( E ) 2 3 68
=max( , ) 的分布函数 F ( z ) 等于
A. max{F ( z ), F ( z )} B. F ( z ) F ( z )
( B )
1 C. [ F ( z ) F ( z )] 2 二. 填空:
已知 ~ N (0 ,1) ,
1 3
D. F ( z ) F ( z ) F ( z ) F ( z )
B. 独立的充分条件,但不是必要条件 D. 不相关的充分条件,但不是必要条件 )
3.
对于任意两个随机变量 X 和 Y ,若 E ( XY ) E ( X ) E (Y ) ,则 (B A) D( XY ) D( X ) D(Y ) C) X 和 Y 独立
B) D( X Y ) D( X ) D(Y ) D) X 和 Y 不独立0.25 0.15
0.15 0.2 0.15
1.05 E 0 .5 E 0.25 E max( , ) _______, 1.2 E ______, ____, sin ( ) _______, 2
0.36 Dmax( , ) _______ 。
三. 计算题: 1. 已知二维随机变量 ( , ) 的联合概率分布为

华南理工大学2012概率论试题

华南理工大学2012概率论试题

诚信应考,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷A 卷(2学分用)注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 可使用计算器,解答就答在试卷上; 3.考试形式:闭卷;4. 本试卷共 十 大题,满分100分。

考试时间120分钟。

题 号 一 二 三 四 五 六 七 八 九 十 总分 得 分 评卷人一、(本题满分10分)两台机床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,已知第一台加工的零件比第二台加工的零件多一倍,加工出来的零件放在一起,求:任意取出的零件是合格品(A)的概率.二、(本题满分12分)甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%。

三、(本题满分13分)设随机变量X 的密度函数为()xf x A e -= ()x -∞<<+∞,求 (1)系数A, (2) {01}P x ≤≤ (3) 分布函数)(x F 。

四、(本题满分13分)某厂生产某产品1000件,其价格为2000P =元/件,其使用寿命X (单位:天)的分布密度为120000(365)120000365()0365x e x f x x --⎧≥⎪=⎨<⎪⎩现由某保险公司为其质量进行保险:厂方向保险公司交保费0P 元/件,若每件产品若寿命小于1095天(3年),则由保险公司按原价赔偿2000元/件. 试利用中心极限定理计算 (1) 若保费0100P =元/件, 保险公司亏本的概率? (2) 试确定保费0P ,使保险公司亏本的概率不超过1%._____________ ________姓名 学号学院 专业 座位号( 密 封 线 内 不 答 题 )………………………………………………密………………………………………………封………………………………………线………………………………)99.0)33.2(,946.0)61.1(,926.0)45.1(,96.0(0365.0=Φ=Φ=Φ≈-e五、(本题满分14分)箱中共有6个,其中红球、白球、黑球的个数分别为1、2、3,现从箱中随机地取出两个球,记X 为取出的红球个数,Y 为取出的白球个数, (Ⅰ)求二维随机变量(X,Y)的概率分布. (Ⅱ)求Cov(X,Y).六、(本题满分15分)设二维随机变量(ξ,η)的联合密度函数为()⎩⎨⎧<<<<--=其它,040,20,6),(y x y x k y x f求:(1)常数k ;(2)()1,3P ξη<<; (3) ()1.5P ξ<; (4) ()4P ξη+≤.七、(本题满分13分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Yy f y ≤≤⎧=⎨⎩其它,记Z X Y =+ (1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭; (2)求Z 的概率密度.八、(本题满分10分)证明题:设随即变量X 的参数为2的指数分布,证明21X Y e -=-在区间(0,1)上服从均匀分布。

2012年考研数学概率论真题与答案--WORD版

2012年考研数学概率论真题与答案--WORD版

2012年概率论考研真题与答案1. (2012年数学一)设随机变量X 与Y 相互独立,且分别服从参数为1与4的指数分布,则{}P X Y <=_________. 【A 】A .15 B. 13 C. 25 D. 45解:X 与Y 的概率密度函数分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩, 44,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 因为X 与Y 相互独立,所以X 与Y 的联合密度函数为44,0,0(,)()()0,x y X Y e x y f x y f x f y --⎧>>=⋅=⎨⎩其他 {}40(,)4x y xx yP X Y f x y dxdy dx e dy +∞+∞--<∴<==⎰⎰⎰⎰450145xyx xe dx edy e dx +∞+∞+∞---===⎰⎰⎰2. (2012年数学一)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为______.A .1 B.12 C. 12- D. 1- 答案:D.解:设两段长度分别为X 和Y ,显然满足1X Y +=,即1Y X =-+,故两者是线性关系,且是负相关,所以相关系数为1-.3. (2012年数学三)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,{}221P X Y +≤=_________. 【D 】A .14 B. 12 C. 8π D. 4π解:X 与Y 的概率密度函数分别为:1,01()0,X x f x <<⎧=⎨⎩其他, 1,01()0,Y y f y <<⎧=⎨⎩其他又X 与Y 相互独立,所以X 与Y 的联合密度函数为1,0,1(,)()()0,X Y x y f x y f x f y <<⎧=⋅=⎨⎩其他, 从而 {}222211(,)4D x y P X Y f x y dxdy S π+≤+≤===⎰⎰.4. (2012年数学三)设1234,,,X X X X 为来自总体2(1,)(0)N σσ>的简单随机样本,则统计量12342X X X X -+- 的分布为_________. 【B 】A. (0,1)NB. (1)tC.2(1)χ D. (1,1)F解:因为2(1,)i X N σ ,所以212(0,2)X X N σ-(0,1)N 234(2,2)X X N σ+(0,1)N ,22342(2)(1)2X X χσ+- . 因为1234,,,X X X X2342(2)2X X σ+-也相互独立, 从而1234(1)2X X t X X -=+-5. (2012年数学一、三)设,,A B C 是随机事件,A 与C 互不相容,11(),()23P AB P C ==,则()____P AB C =. 【34】解:由于A 与C 互不相容,所以AC φ=,则ABC φ=,从而()0P ABC =;10()()()32()14()()13P ABC P AB P ABC P AB C P C P C --====-6. (2012年数学一、三)设二维离散型随机变量(,)X Y 的概率分布为(1)求{}2P X Y =;(2)求(,)Cov X Y Y -.解:(1){}{}{}120,02,14P X Y P X Y P X Y ====+===.(2) 由(,)X Y 的概率分布可得,,X Y XY 的概率分布分别为,,所以 23EX =,1EY =,2522,,()333EY DY E XY ===(,)()0Cov X Y E XY EX EY =-⋅=故: 2(,)(,)3Cov X Y Y Cov X Y DY -=-=-7. (2012年数学一)设随机变量X 和Y 相互独立且分别服从正态分布2(,)N μσ和2(,2)N μσ,其中σ是未知参数且0σ>. 设Z X Y =-. (1)求Z 的概率密度2(,)f z σ;(2)设12,,,n Z Z Z 是来自总体Z 的简单随机样本,求2σ的最大似然估计量2σ;(3)证明 2σ是2σ的无偏估计量. 解:(1) 因为2(,)X N μσ ,2(,2)Y N μσ ,且X 和Y 相互独立,故2(0,3)Z X Y N σ=-2226(;),z f z z R σσ-∴=∈(2)似然函数为 2116221()(;)ni i nz i i L f z σσσ=-=∑==∏两边取对数,得222211l n ()l n 26nii nL n zσσσ==--∑关于2σ求导,得2222221ln ()1+26()nii d L n z d σσσσ=-=∑ 令22ln ()0,d L d σσ= 解得λ的最大似然估计值 22113n i i z n σ==∑ 因此,λ的最大似然估计量 22113n i i Z n σ==∑(3) 2221111()()()33n n i i i i E E Z E Z n n σ====∑∑2221111[()()]333n n i i i i E Z D Z n n σσ===+==∑∑ 故 2σ是2σ的无偏估计量. 8. (2012年数学三)设随机变量X 与Y 相互独立,且都服从参数为1的指数分布. 记{}max ,U X Y =,{}min ,V X Y =,则(1)求V 的概率密度()V f v ;(2)求()E U V +. 解:(1) X 与Y 的分布函数均为1,0()0,0x e x F x x -⎧-≥=⎨<⎩{}min ,V X Y =的分布函数为{}{}{}{}()min ,1min ,V F v P X Y v P X Y v =≤=-> {}21,1(1())P X v Y v F v =->>=--21,00,0v e v v -⎧-≥=⎨<⎩故V 的概率密度为22,0()()0,0v V V e v f v F v v -⎧>'==⎨≤⎩(2) min(,)max(,)U V X Y X Y X Y +=+=+()()()()2E U V E X Y E X E Y ∴+=+=+=.。

华南理工大学概率论

华南理工大学概率论

第九章9-1 ①提出假设010:32.05H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.05α=,查表得0.025 1.96u =;对给定的0.01α=,查表 得0.005 2.575u =.④求观察值.31.13, 2.05X u ==-.⑤作出判断.当0.05α=时, 2.05 1.96u =>,所以拒绝0H ;当0.01α=时, u2.05 2.275=<,所以接受0H .9-2 ①提出假设00:5H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.01α=,查表得0.005 2.575u =. ④求观察值. 5.32, 3.2X u ==.⑤作出判断.当0.01α=时, 3.2 2.275u =>,所以拒绝0H . 9-3 (1)①提出假设00:50H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.05α=,查表得0.025 1.96u =. ④求观察值. 2.25u =.⑤作出判断.当0.05α=时, 2.25 1.96u =>,所以拒绝0H . (2)①提出假设00:50H μμ==. ②找统计量.()~1X t t n =-.③求临界值.对给定的0.05α=,查表得()0.0258 2.31t =. ④求观察值.48.5, 2.5, 1.8X S t ===-.⑤作出判断.当0.05α=时, 1.8 2.31t =<,所以接受0H .9-4 ①提出假设00: 2.7H μμ==.②找统计量.()~1X t t n =-.③求临界值.对给定的0.05α=,查表得()0.02529 2.04t =. ④求观察值.°0.18,301 2.05/29n S S t n ==-⨯. ⑤作出判断.当0.05α=时, 2.04t <,所以接受0H . 9-5 ①提出假设00:H μμ=.②找统计量.()~0,1X u N =.③求临界值.对给定的0.01α=,查表得0.005 2.575u =. ④求观察值. 1.5u =.⑤作出判断.当0.01α=, 1.5 2.575u =<,所以拒绝0H . 9-6 (1)①提出假设00:100H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.05α=,查表得0.025 1.96u =. ④求观察值.99.9,0.25X u ==.⑤作出判断.当0.05α=时,0.25 1.96u =<,所以接受0H .(2)①提出假设22200: 1.2H σσ==.②找统计量. ()92222101()~ii Xn χμχσ==-∑.③求临界值.对给定的0.05α=,查表得()()220.0250.975919.0,9 2.7χχ==.④求观察值. 28.2χ=.⑤作出判断. 当0.05α=时,22.719.0χ<<,所以接受0H .9-7 ①提出假设2200:0.04H σσ==.②找统计量. ()2222101()~1nii XX n χχσ==--∑.③求临界值. 对给定的0.05α=,查表得()()220.0250.9751426.1,14 5.63χχ==. ④求观察值. 21.84χ=.⑤作出判断. 当0.05α=时,25.63χ<,所以拒绝0H ,有显著差异. 9-8 ①提出假设00:9H σσ==.②找统计量. ()2222101()~1nii XX n χχσ==--∑.③求临界值. 对给定的0.05α=,查表得()()220.0250.975919.0,9χχ==2.7.④求观察值. 2221162.9,(62.9)9nii X Xχ===-∑.⑤作出判断. 当0.05α=时, 22.719χ<<,所以接受0H ,即可认为溶化时间 的标准差为9.9-9 (1)①提出假设00:500H μμ==.②找统计量. ()~0,1X u N =.③求临界值. 对给定的0.05α=,查表得0.025 1.96u =. ④求观察值. 501.3,0.82X u ==.⑤作出判断. 当0.05α=时, 0.82 1.96u =<,所以接受0H ,即包装机工作 正常.(2)①提出假设00: 2.7H μμ==.②找统计量. ()~1X t t n =-.③求临界值. 对给定的0.05α=,查表得()0.0259 2.26t =. ④求观察值. 2501.3,31.57,0.73X S t ===. ⑤作出判断. 当0.05α=时, 2.26t <,所以接受0H .9-10 (1)①提出假设2200:25H σσ==.②找统计量. ()2222101()~ni i X X n χχσ==-∑. ③求临界值.对给定的0.05α=,查表得()()220.0250.9751020.5,10 3.25χχ==.④求观察值. 212χ=.⑤作出判断. 当0.05α=时, 23.2520.5χ<<,所以接受0H . (2)①提出假设00:5H σσ==. ②找统计量. ()2222101()~1nii XX n χχσ==--∑.③求临界值. 对给定的0.05α=,查表得()()220.0250.975919.0,9χχ==2.7. ④求观察值. 22501.3,31.57,11.37X S χ===. ⑤作出判断. 当0.05α=时, 22.719χ<<,所以接受0H .9-11 ①提出假设02:0H μμ-=.②找统计量.()~0,1X Y u N μμ---=.③求临界值. 对给定的0.05α=,查表得0.025 1.96u =. ④求观察值. u =. ⑤作出判断. 当0.05α=时, 1.96u >,所以拒绝0H .9-12 (1)①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑.③求临界值.对给定的0.05α=,查表得()()0.0250.9755,57.15,5,50.14F F ==④求观察值. 222112221139.33,269,0.14655S S S F S =⨯=⨯==.⑤作出判断. 当0.05α=时, 0.147.15F <<,所以接受0H . (2)①提出假设012:0H μμ-=. ②找统计量.()12~2X Y t t n n μμ---=+-.③求临界值. 对给定的0.05α=,查表得()0.02510 2.23t =. ④求观察值. 0.14067,0.13883,0.57X Y t ===. ⑤作出判断. 当0.05α=时,0.57 2.23t =<,所以接受0H .9-13 (1)①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑.③求临界值.对给定的0.01α=,查表得()()0.0050.9958,9 6.69,8,9F F ==17.34. ④求观察值. 2221122264,226,0.28S S S F S ====.⑤作出判断.当0.01α=时,16.697.34F <<,所以接受0H . (2)①提出假设02:0H μμ-=.②找统计量.()12~2X Y t t n n μμ---=+-.③求临界值. 对给定的0.01α=,查表得()0.00517 2.9t =. ④求观察值. 533,562,X Y t ===.⑤作出判断. 当0.01α=时, 2.9t >,所以拒绝0H .9-14 ①提出假设012:0H μμ-=.②找统计量.()12~2X Y t t n n ---=+-.③求临界值. 对给定的0.05α=,查表得()0.02511 2.20t =. ④求观察值. 17.681,17.630,X Y t ===⑤作出判断. 当0.05α=时, 2.2t <,所以接受0H .9-15 (1)①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑.③求临界值.对给定的0.10α=,查表得()()0.050.9518,5 4.82,8,5 3.69F F ==. ④求观察值. 22211222113.69,19.2,0.1285S S S F S =⨯=⨯==.⑤作出判断. 当0.10α=时,13.69F <,所以拒绝0H . (2)①提出假设21022:1H σσ=.②找统计量. ()1221111222121()~,1()n i i n i i X n F F n n Y n μμ==-=-∑∑. ③求临界值.对给定的0.10α=,查表得()()0.050.9519,6 4.06,9,6 3.37F F == ④求观察值. 0.128F =. ⑤作出判断.当0.10α=时,13.37F <,所以拒绝0H . 9-16 ①提出假设02:0H μμ-=.②找统计量.()12~2X Y t t n n μμ---=+-.③求临界值.对给定的0.05α=,查表得()0.02513 2.16t =. ④求观察值. t =.⑤作出判断. 当0.05α=时, 2.16t <,所以接受0H .9-17 ①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑. ③求临界值.对给定的0.05α=,查表得()()0.0250.97516,751.2,6,7 5.7F F ==. ④求观察值. 222112220.1048,0.0272, 3.85S S S F S ====.⑤作出判断.当0.10α=时,15.125.7F <<,所以接受0H . 9-18 根据题目要求,考虑假设检验()()()()0010:,:H F x F x H F x F x =≠.其中0F 服从泊松分布,其分布律为{}() 0,1,2,!kP X k e k k λλ-===Lλ的极大似然估计为样本均值X ,其观察值为()106544940.61200X =++++= 则统计量为()25210.7853i i i in np np χ=-==∑其中200n =,i p 是按0.61λ=的泊松分布律计算出的X 的取值为0,1,2,3,4 这五种情况的概率.查表得()220.0549.49χχ=>,故接受0H .9-19 根据题目要求,考虑假设检验()()00:H F x F x =,其中0F 服从等概率分布,其 分布律为{}()11,2,,66P X k e k λ-===L由观测数据得120,20i n np ==,则统计量为()()26211936102525 4.820i i i in np np χ=-==+++++=∑其中120n =.查表得()220.05511.1χχ=>,故接受0H .。

大学专业试卷华南理工大学 理工科专业 《概率论与数理统计》试卷及参考解答

大学专业试卷华南理工大学 理工科专业 《概率论与数理统计》试卷及参考解答

件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求: (1)乙箱中次品件数X 的数学期望; (2)从乙箱中任取一件产品是次品的概率.解 (1)X 的可能值为0,1,2,3,所以X 的概率分布为()()333360,1,2,3k kC C P X k k C -=== 即 X 0 1 2 3P120 920 920 120因此199130123202020202EX =⨯+⨯+⨯+⨯= (2)设A ={从乙箱中任取一件产品是次品},根据全概率公式有(){}{}30191921310202062062064k P A P X k P A X k =====⨯+⨯+⨯+⨯=∑三、(12)某保险公司对一种电视机进行保险,现有9000个用户,各购得此种电视机一台,在保险期内,这种电视机的损坏率为0.001,参加保险的客户每户交付保险费5元,电视机损坏时可向保险公司领取2000元,求保险公司在投保期内:(1)亏本的概率;(2)获利不少于10000元的概率。

解 101,2,,9000i i i i ξ⎧⎨⎩=第台电视机坏设=第台电视机正常9000900011{1}0.001{0}0.9990.0010.00099999i i i i iii i P P E D E D ξξξξξξ=========≈∑∑保险公司亏,则电视机坏的台数: >9000*5/2000=22.5900090009000122.51(4.5)0i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫>=>=-Φ≈⎨⎬⎩⎭⎪⎭∑∑∑ 保险公司获利不少于10000元,则电视机坏的台数:<(9000*5-10000)/2000=17.5900090009000117.5(2.83)(3)(2)(2)(2.832)0.97720.021450.830.99532i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫<=<=Φ⎨⎬⎩⎭⎪⎭Φ-Φ=Φ+-=+⨯=-∑∑∑四、(15分)设二维随机变量(),X Y 的概率分布为 YX -1 0 1-1 a 0 0.2 0 0.1 b 0.21 0 0.1 c其中a 、b 、c 为常数,且X 的数学期望0.2EX =- ,{}000.5P Y X ≤≤= ,记Z X Y =+.求: (1) a 、b 、c 的值; (2)Z 的概率分布律; (3){}P X Z =.解 (1)由概率分布的性质可知, 0.61a b c +++=,即0.4a b c ++=. 由0.2EX =-,可得0.1a c -+=-.再由{}{}{}0,00.1000.500.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,解得0.3a b +=.解以上关于a 、b 、c 的三个方程可得, 0.2,0.1,0.1a b c ===. (2)Z 的所有可能取值为-2,-1,0,1,2.则{}{}21,10.2P Z P X Y =-==-=-={}{}{}11,00,10.1P Z P X Y P X Y =-==-=+==-={}{}{}{}01,11,10,00.3P Z P X Y P X Y P X Y ===-=+==-+==={}{}{}11,00,10.3P Z P X Y P X Y ====+=== {}{}21,10.1P Z P X Y =====所以Z 的概率分布为Z -2 -1 0 1 2 P 0.2 0.1 0.3 0.3 0.1(3) {}{}000.10.10.10.2P X Z P Y b ====++=+=.五、(15分)设随机变量X 的概率密度为()110210 2 40 X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩当当其他令2Y X =,(),F x y 为二维随机变量(),X Y 的分布函数.求:(1)Y 的密度函数()Y f y ; (2) ()cov ,X Y ; (3) 1,42F ⎛⎫- ⎪⎝⎭.解 (1)Y 的分布函数为(){}{}2Y F y P Y y P X y =≤=≤当0y ≤时, ()()0,0Y Y F y f y ==. 当01y <<时,(){{}{00Y F y P X P X P X =≤≤=≤<+≤≤=()Y f y =当14y ≤<时,(){}{11002Y F y P X P X =-≤<+≤≤=()Y f y =当4y ≥时,()()1,0Y Y F y f y ==. 所以Y 的概率密度为()01140 Y y f y y <<⎪=≤<⎪⎩当当其他(2) ()0210111244X EX xf x dx xdx xdx +∞-∞-==+=⎰⎰⎰()022211546X EY EX x f x dx x dx +∞-∞-====⎰⎰()023********248X EXY EX x f x dx x dx x dx +∞-∞-===+=⎰⎰⎰故 ()2cov ,3X Y EXY EX EY =-⋅=(3) 2111,4,4,4222F P X Y P X X ⎛⎫⎧⎫⎧⎫=≤-≤=≤-≤⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭1111,22212224P X X P X P X ⎧⎫⎧⎫⎧⎫=≤-≤≤=-≤≤-=-≤≤-=⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭六、(2学分) (10分) 设随机变量X 与Y 独立,其中X 的概率分布为12~0.30.7X ⎛⎫ ⎪⎝⎭而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .解 设()F y 是Y 的分布函数,则由全概率公式可知,U X Y =+的分布函数为(){}G u P X Y u =+≤{}{}0.310.72P X Y u X P X Y u X =+≤=++≤={}{}0.3110.722P Y u X P Y u X =≤-=+≤-=由于X 与Y 独立,得(){}{}()()0.310.720.310.72G u P Y u P Y u F u F u =≤-+≤-=-+-因此,U 的概率密度为()()()()()()0.310.720.310.72g u G u F u F u f u f u '''===-+-=-+-七、(2学分)(10分)已知男子中有5%是色盲患者,女子中有0.25%是色盲患者,若从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解 设A {{抽到一名男性};B {{抽到一名女性};C {{抽到一名色盲患者},由全概率公式得11()(|)()(|)()5%0.25% 2.625%22P C P C A P A P C B P B =+=⨯+⨯=1()()(|)5% 2.5%2P AC P A P C A ==⨯=由贝叶斯公式得()20(|)()21P AC P A C P C ==八、(2学分)(16分)(1)设()12,,, 2n X X X n ≥为独立同分布的随机变量,且均服从()0,1N ,记X =121n i i X n -=∑,() 1,2,,i i Y X X i n =-=. 求:{}10n P Y Y +≤.(2)袋中有a 只红球,b 只白球,c 只黑球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012 1
一、(本题满分10分)两台机床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,已知第一台加工的零件比第二台加工的零件多一倍,加工出来的零件放在一起,求:任意取出的零件是合格品(A)的概率.
二、(本题满分12分)甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%。

三、(本题满分13分)设随机变量X 的密度函数为
()x f x Ae -= ()x -∞<<+∞, 求 (1)系数A, (2) {01}P x ≤≤ (3) 分布函数)(x F 。

四、(本题满分13分)某厂生产某产品1000件,其价格为2000P
=元/件,其使用寿命X (单位:天)的分布密度为
120000(365)120000365()0365x e x f x x --⎧≥⎪=⎨<⎪⎩
现由某保险公司为其质量进行保险:厂方向保险公司交保费0P 元/件,若每件产品若寿命小于1095天(3年),则由保险公司按原价赔偿2000元/件. 试利用中心极限定理计算
(1) 若保费0100P =元/件, 保险公司亏本的概率?2试确定保费0P ,使保险公司亏本的概率不超过1%. )99.0)33.2(,946.0)61.1(,926.0)45.1(,96.0(0365.0=Φ=Φ=Φ≈-e
五、(本题满分14分)箱中共有6个,其中红球、白球、黑球的个数分别为1、2、3,现从箱中随机地取出两个球,记X 为取出的红球个数,Y 为取出的白球个数,
(Ⅰ)求二维随机变量(X,Y)的概率分布.
(Ⅱ)求Cov(X,Y).
六、(本题满分15分)设二维随机变量(ξ,η)的联合密度函数为
()⎩⎨⎧<<<<--=其它
,040,20,6),(y x y x k y x f 求:(1)常数k ;(2)()1,3P ξη<<; (3) ()1.5P ξ<; (4) ()4P ξη+≤.
七、(本题满分13分)设随机变量X 与Y 相互独立,X 的概率分布为{}()1
1,0,13P
X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它
,记Z X Y =+ (1)求102P Z X ⎧
⎫≤=⎨⎬⎩⎭
; (2)求Z 的概率密度. 八、(本题满分10分)证明题:设随即变量X 的参数为2的指数分布,证明21X Y
e -=-在区间(0,1)上服从均匀分布。

相关文档
最新文档