杂化轨道与分子的空间构型基本要点
高二化学选修3第二章第二节分子的立体构型 杂化轨道理论

为了解决这一矛盾,鲍林提出了杂化轨道理论,
三、杂化轨道理论
1、理论要点
① 同一原子中能量相近的不同种原子轨道在成 键过程中重新组合,形成一系列能量相等的新轨 道的过程叫杂化。形成的新轨道叫杂化轨道,用 于形成σ键或容纳孤对电子 ② 杂化轨道数目等于各参与杂化的原子轨道数目 之和 ③ 杂化轨道成键能力强,有利于成键 ④ 杂化轨道成键时,满足化学键间最小排斥原 理,不同的杂化方式,键角大小不同 ⑤ 杂化轨道又分为等性杂化和不等性杂化两种
④ 其它杂化方式
dsp2杂化、sp3d杂化、sp3d2杂化、d2sp3杂化
例如:sp3d2杂化:SF6 构型:四棱双锥 正八面体
此类杂化一般是金属作为中心原子 用于形成配位化合物
小结:杂化轨道的类型与分子的空间构型 • 杂化轨道类型 sp
参加杂化的轨道 s+p 杂化轨道数 2
sp2
s+(2)p 3
+
构型 120° 正三角型
BF3的空间构型 为平面三角形
F
2p
F
激发 2s
B
B: 2s22p1
2s
2p
F
sp2杂化
sp2
③ sp3杂化
2p
2s
以C原子为例
2s 2p
激发
C
杂化
C
sp 杂 化
3
基态 激发态
1个s轨道和3个p轨道杂化形成4个sp3杂化轨道
构型 109°28′ 正四面体型 4个sp3杂化轨道可形成4个σ键 价层电子对数为4的中心原子 采用sp3杂化方式
CH4的空间构型为正四面体
C:2s22p2
2s
2p
激发 2s
2p
sp 杂化
轨道杂化和分子空间构型的确定教案

[小结]
杂化理论的基本要点:
1.在形成分子时,由于原子间的相互作用,若干不同类型、能量相近的原子轨道混合起来,重新组成一组新的轨道,这种重新组合的过程叫杂化。所形成的新轨道称为杂化轨道。
2.杂化轨道的数目与组成杂化轨道的各原子轨道的数目相等。
3.杂化轨道成键时,要满足化学键间最小排斥原理。
4.杂化轨道可分为等性杂化和不等性杂化。
[典型例题]
1.CH3+是重要的有机反应中间本,已知:CH3+中四个原子共平面,三个键角相等,则CH3+的键角应是;它的电子式是;中心碳原子的杂化类型为。
2.如何杂化理论来解释乙炔、乙烯的结构。
[课后练习]
教学过程
教学内容
教法与学法
[导入]
观察下表,谈谈你的看法:
分子
CO2
CH4
H2O
NH3
键角
180°
109.5°
104.5°
107.3°
[知识梳理]
一、轨道杂化知识
1.杂化:杂化是指原子在相互结合成键过程中,原来能量接近的原子轨道要重新混合,形成新的原子轨道。这种轨道重新组合的过程叫做杂化。所形成的新的轨道叫杂化轨道。
其中中心原子的价电子数等于中心原子的最外层电子数,配位原子中卤原子、氢原子提供1个价电子,氧原子和硫原子按不提供价电子计算。
分子
BeCl2
BF3
CH4
价电子对数
几何构型
说明:如果分子中存在孤对电子对,由于孤对电子对比成键电子对更靠近原子核,它对相邻成键电子对的排斥作用较大,因而使相应的键角变小。
[知识拓展]——等电子原理
分子杂化理论要点

杂化轨道理论要点杂化轨道理论(hybrid orbital theory)是1931年由Pauling L等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。
杂化轨道理论的要点:1.在成键过程中,由于原子间的相互影响,同一原子中几个能量相近的不同类型的原子轨道(即波函数),可以进行线性组合,重新分配能量和确定空间方向,组成数目相等的新的原子轨道,这种轨道重新组合的过程称为杂化(hybridization),杂化后形成的新轨道称为杂化轨道(hybrid orbital)。
2.杂化轨道的角度波函数在某个方向的值比杂化前的大得多,更有利于原子轨道间最大程度地重叠,因而杂化轨道比原来轨道的成键能力强。
3.杂化轨道之间力图在空间取最大夹角分布,使相互间的排斥能最小,故形成的键较稳定。
不同类型的杂化轨道之间的夹角不同,成键后所形成的分子就具有不同的空间构型。
轨道杂化类型及实例按参加杂化的原子轨道种类,轨道的杂化有sp和spd两种主要类型。
按杂化后形成的几个杂化轨道的能量是否相同,轨道的杂化可分为等性杂化和不等性杂化。
sp型和spd型杂化1. sp型杂化能量相近的n s轨道和n p轨道之间的杂化称为sp型杂化。
按参加杂化的s轨道、p轨道数目的不同,sp型杂化又可分为sp、sp2、sp3三种杂化。
(1)sp杂化由1个s轨道和1个p轨道组合成2个sp杂化轨道的过程称为sp杂化,所形成的轨道称为sp杂化轨道。
每个sp杂化轨道均含有1/2的s轨道成分和1/2的p轨道成分。
为使相互间的排斥能最小,轨道间的夹角为180°。
当2个sp杂化轨道与其他原子轨道重叠成键后就形成直线型分子。
图9-1 sp杂化过程及sp杂化轨道的形状(2)sp2杂化由1个s轨道与2个p轨道组合成3个sp2杂化轨道的过程称为sp2杂化。
每个sp2杂化轨道含有1/3的s轨道成分和2/3的p轨道成分,为使轨道间的排斥能最小,3个sp2杂化轨道呈正三角形分布,夹角为120°[图9-2]。
分子构型与物质的性质

HNH 107 18'
ο
2p
2s
sp3杂化
H 2O
HOH 104 30
ο
'
2p 2s
sp 杂化
3
sp
3
s-p 型杂化轨道和分子的空间构型
杂化类型 sp sp2
四
sp3
面 体 2 角 形 H2O
杂化轨道排布 直线形 三角形
杂化轨道中孤 0 0 0 1 对电子数 分子空间构型 直线形 三角形 正四面体 三角锥形
分子或离子的空间构型。
二、价层电子对互斥理论的应用实例
(一) CH4 的空间构型
在CH4 中,C 有4个电子,4个H 提供4个电
子,C 的价层电子总数为8个,价层电子对为4
对 。C 的价层电子对的排布为正四面体,由于 价层电子对全部是成键电子对,因此 CH4 的空 间构型为正四面体。
(二) ClO3
四方锥形
IF5
4
2
AB4
平面正方 形
ICl 4
分子的 极性
概念辨析
在任何一个分子中都可以找到一个 正电 荷重心和一个负电荷重心, 根据正负电荷重 心是否重合, 可以把分子分为极性分子和非 极性分子. 如果分子中正电荷的重心与负电荷的重 心相重合, 那就是非极性分子. 如果正负电荷重心不相重合, 则分 子就 因显正负两极而叫做极性分子.
60 ° 107 °18’ 120 °
极性
非极性 极性 极性
极性
非极性 极3 BF3 、 SO3
AB4
AB3C AB2C2 AB5 AB6
正四面体
四面体 四面体 正六面体 正八面体
109 ° 28’
≠109 °28’ ≠109 °28’
分子的立体构型之杂化轨道理论

杂化轨道理论为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林和斯莱脱(Slater)在电子配对理论的基础上,提出了杂化轨道理论(hybrid orbital theory),丰富和发展了现代价键理论。
1、杂化轨道理论的基本要点原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型(s、p、d…)的几个原子轨道可以相互叠加进行重新组合,形成能量、形状和方向与原轨道不同的新的原子轨道。
这种原子轨道重新组合的过程称为原子轨道的杂化,所形成的新的原子轨道称为杂化轨道。
注意:①、只有在形成分子的过程中,中心原子能量相近的原子轨道才能进行杂化,孤立的原子不可能发生杂化。
②、只有能量相近的轨道才能互相杂化。
常见的有:ns、np 、nd;(n-1)d 、ns、np;③、杂化前后,总能量不变。
但杂化轨道在成键时更有利于轨道间的重叠,即杂化轨道的成键能力比未杂化的原子轨道的成键能力增强,形成的化学键的键能大。
这是由于杂化后轨道的形状发生了变化,电子云分布集中在某一方向上,成键时轨道重叠程度增大,成键能力增强。
④、杂化所形成的杂化轨道的数目等于参加杂化的原子轨道的数目,亦即杂化前后,原子轨道的总数不变。
⑤、杂化轨道的空间构型取决于中心原子的杂化类型。
不同类型的杂化,杂化轨道的空间取向不同,即一定数目和一定类型的原子轨道间杂化所得到的杂化轨道具有确定的空间几何构型,由此形成的共价键和共价分子相应地具有确定的几何构型。
☆什么叫杂化?同一原子的能量相近的原有的原子轨道“混杂”起来,重新组合形成新轨道的过程,叫做杂化。
☆什么叫杂化轨道?新组合的原子轨道叫做杂化轨道。
☆为什么要杂化?杂化轨道形成的化学键的强度更大,体系的能量更低。
☆杂化的动力:受周围原子的影响。
☆为什么杂化后成键,体系的能量降低?杂化轨道在一个方向上更集中,便于轨道最大重叠。
☆杂化轨道的构型决定了分子的几何构型:杂化轨道有利于形成σ键,但不能形成π键。
杂化理论

对于共价分子(或离子)以通式AXmEn表示
首先先确定中心原子A的价层电子对数VP
VP = BP + LP = m + n
负 A的价电子总数-m个配位原子的未成对电子数 离子电荷数 正 n 2 若n不为整数,则进为整数。如:NO2
n=(5-2×2)/2=1/2, 应取n=1
18
2. 分子形状的确定方法
3
Configuration of N in ground state
Hybrid orbital
Valence bond pictures of NH3
HNH 107 18'
Formation of the covalent bonds in NH3
B:H2O中O原子采取 sp3 不等性杂化
A+B→AB
Ψ I CaΨ A CbΨ B
ΨⅡ C aΨ A-C bΨ B
' '
(结构化学内容!)
成键三原 ▲ 能量相近原理 则: ▲ 最大重叠原理
▲ 对称性匹配
处理分子轨道的方法
决定成键的效率
决定是否能成键
首先弄清分子轨道的数目和能级; 再由原子算出可用
来填充这些轨道的电子数; 最后, 按一定规则将电子填入分
BF3
CH4
2 1 VP= (3+3)=3 2 1 VP= (4+4)=4 2 1 2
LP = 0 LP = 0
LP = 0
PC15 VP= (5+5)=5 SF6
1 VP= (6+6)=6 2
LP = 0 LP = 0
21
LP≠0分子的空间构型
≠电子对的空间构型使价层电子对斥力最小
高中化学竞赛之杂化轨道理论

2.苯分子的空间结构
碳原子的p轨道
杂化轨道理论解释苯分子的结构:
C为SP2杂化 C-C (sp2-sp2 ) ; C-H (sp2-s )
所有原子(12个)处于同一平面
分子中6个碳原子未杂化的2P轨道 上的未成对电子重叠结果形成了
一个闭合的、环状的大π键
形成的π电子云像两个连续的面包圈,一个位于平面上面, 一个位于平面下面,经能量计算,这是一个很稳定的体系。
sp型的三种杂化
杂化类型 参与杂化 的原子轨 道 杂化轨道 数 sp 1个s + 1个p 2个sp杂化轨 道 180o 直线 sp2 1个s + 2个p sp3 1个s + 3个p
3个sp2杂化轨 4个sp3杂化轨 道 道 120o 正三角形 BF3, BCl3 109.5o 正四面体
杂化轨道 间夹角 空间构型 实例
c)处理离子时,要加减与离子价数相当的电子,如 PO4 3- :5+0 4+3=8 , NH4+ : 5+1 4 -1= 8 。
代表物 杂化轨道数 CO2
(4+0)÷2=2
杂化轨道 类型
SP SP2 SP3 SP2
分子结构
直线形 平面三角形 正四面体形 V形 三角锥形
CH2O (4+2+0)÷2=3
BeCl2,C2H2
CH4,CCl4
sp2 杂 化 轨 道
乙烯中的C在轨道杂化时,有一个P轨 道未参与杂化,只是C的2s与两个2p轨 道发生杂化,形成三个相同的sp2杂化轨道, 三个sp2杂化轨道分别指向平面三角形的三 个顶点。未杂化p轨道垂直于sp2杂化轨道所 在平面。杂化轨道间夹角为120°。
共价键与分子的空间构型
杂化轨道

通过以上的学习,以CH4为例,谈谈 你对“杂化”及“杂化轨道”的理解。
思考:
( 1)杂化前后轨道的数目有何变化
(2)杂化前后轨道的形状和伸展方向有何变化 (3)每个新轨道是否完全相同
一、杂化及特点
杂化:能级相近的价电子轨道混合,形成新的 价电子轨道的过程。——杂化轨道。
特点: (1)杂化轨道数目——不变。
杂 化 轨 道与分子结构
教学要点
杂化轨道的概念
杂化轨道的特点 杂化轨道的不同类型与分子的 空间构型
教学重点、难点
杂化轨道的特点 杂化轨道的类型与分子空间构型
的关系
S轨道和P轨道
杂化轨道理论简介
分析思考:
1、写出C原子电子排布的轨道表示式,并由此推 测:CH4分子的C原子有没有可能形成四个共价 键?怎样才能形成四个共价键? 2、如果C原子就以1个2S轨道和3个2P轨道 上的单电子,分别与四个H原子的1S轨道上的 单电子重叠成键,所形成的四个共价键能否完全 相同?这与CH4分子的实际情况是否吻合?
2p
杂化
2s
C的基态
sp杂化轨道
p p
两个碳原子的sp杂化轨道沿各自对称轴形成C—C 键,另两个sp杂化轨道分别与两个氢原子的1s轨道重 叠形成两个C—H 键,两个py轨道和两个pz轨道分别 从侧面相互重叠,形成两个相互垂直的C—C 键,形 成乙炔分子。
C-C 、C=C、 C≡C 的比较
理论分析:B原子的三个SP2杂化轨道分别与3个F 原子含有单电子的2p轨道重叠,形成3个sp2-p的 σ 键。故BF3 分子的空间构型是平面三角形。 实验测定:BF3分子中有3个完全等同的B-F键,键 角为1200 ,分子的空间构型为平面三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 2 3 4
正四面体 直线
平面三角形
0
正四面体
SP3
0
0
直线
SP
平面三角形 SP2
正四面体
正四面体
1
2
三角锥
V形
SP3
SP3
4
3
平面三角形
1
V形
SP2
NH3
PCl3
2 2 3 4 4 4 4 4
直线形 sp 直线形 180° sp 直线形 180° 直线形 sp2 平面三角形 120°平面三 角形 3 sp 正四
180° 180°
面体
120° 正四 109.5° 面体 109.5° 109.5° V形 104.5°
三角 107.3° 锥形 107.3°
思考、讨论
3、下列分子中哪一个分子的空间构型为正 四面体( D ) A、CHCl3 B、CH3Cl C、BBr3 D、SnCl4 4、下列分子和离子中,中心原子的价电子 对几何构型为四面体,且分子(离子)空间 构型为V形的是( A、NH4+
D)
D、OF2
B、SO2 C、H3O+
课堂小结
杂化类型 杂化轨道间 夹角 空间构型 SP
N:2s22p3 2p 2s
sp3杂化
H 2O
HOH = 104 30
ο
'
O:2s22p4
2p 2s
sp 杂化
3
sp
3
课堂练习
分
子 SiCl4 CS2 BF3 PCl3 OF2 SO2
中心原 子的价 电子对 数
电子对的空 间排布
中心原 子的孤 对电子 对
分子的空 间构型
中心原子 的杂化轨 道类型
对于ABm型分子或离子,其中心原子A的杂化轨道 数恰好与A的价电子对数相等。
A的价电子对数 A的杂化轨道数 杂化类型 2 2 sp 3 3 sp2 4 4 sp3
A的价电子空间构型 直线型
平面三角形 正四面体
价电子对数可依如下公式算得:
对于 ABm型分子或离子,其中心原子A的
2、ABm型分子的价电子对数n的确定
1. SP型的三种杂化
SP2 120° 正三角形 SP3
180° 直线形
109.5°
正四面体 CH4 CCl4 4
BeCl2 C2H2 BF3 C3 价电子对数n 2 2H4
ABm型分子的价电子对数n的确定
实 例
中心原子A的价电子数+配位原子B提供的价电子数×m n= 2
不等性sp3杂化
NH3 HNH = 107ο 18'
思考、讨论
1、NH3、H2O分子中键角分别为107°18′、104.5° 与109°28′相差不大,由此可推测,N、O原子的原 子轨道可能采取何种类型杂化?原子轨道间夹角小 于109°28′,可能说明了什么问题?
2、下列分子或离子中,空间构型为V型的 是( B ) A、CS2 B、H2Se C、HCN D、ICl
③.杂化后轨道伸展方向,形状发生改变。
1.sp3杂化 CH4的空间构型为正四面体 C:2s22p2
2s
2p
C:2s22p2
2s
2p
激发
2s
sp3
2p
sp3杂化
CH 4的形成
2.sp2杂化
BF3的空间构型为平面三角形
F F
B
120°
F
B: 2s22p1
2s
2p
B:2s22p1
2s
2p
激发
2s
sp2
乙炔中碳以sp杂 化,C=C中一个 σ和两个π
例2:试用杂化轨理论解释石墨、苯的结构
H C H C C H C H C H H
C
石墨晶体
苯的结构
sp2杂化sp2杂化4.小结杂化类型 SP
SP型的三种杂化
SP2 SP3
参与杂化的 1 个 S 1 个 P 1 个 S 2 个 P 1个S 3个P 原子轨道 杂化轨道数 2个SP 3个SP2 4个SP3 杂化轨道间 夹角 空间构型 实 例 180° 120° 109.5° 正四面体 CH4 CCl4
NH4
+
+ n = 5 1× 4 1 = 4 : 2
SO4
2-
6+0+2 n = =4 : 2
课堂练习
例3:计算下列分子或离子中的价电子对数,并根据已学填写下表 物质 价电 子对 数 中心原 子杂化 轨道类型 杂化轨道/ 电子对空 间构型 轨道 夹角 分子空 间构型 键角
气态 BeCl2
CO2 BF3 CH4 NH4+ H2 O
直线形
正三角形
BeCl2 C2H2 BF3 C2H4
二、确定分子空间构型的简易方法:
价层电子对互斥理论
共价分子的几何外形取决于分 子价层电子对数目和类型。分子的 价电子对(包括成键电子对和孤电 子对)由于相互排斥作用,而趋向尽 可能远离以减小斥力而采取对称的 空间构型。
1、推断分子空间构型的具体步骤:
分子的空间构型
1.为什么甲烷是正四面体结构,乙 烯是平面结构,乙炔是直线形呢?
2、为什么H2O分子是“V”型、键角是 104.5°,而不是“直线型”或键角是 “90°”?
一、杂化轨道与分子的空间构型 基本要点:
①.成键时能级相近的价电子轨道混合杂化, 形成新的价电子轨道—杂化轨道。 ②.杂化前后轨道数目不变。
中心原子A的价电子数+配位原子B提供的价电子数×m n= 2
(1)对于主族元素,中心原子价电子数=最外层电子数,配 位原子中氢或卤素原子提供价电子数为1; 5 + 1× 3 =4 如:PCl3 中 n = ; 2 (2)O、S作为配位原子时按不提供价电子计算,作中心原 子时价电子数为6; (3)离子的价电子对数计算
2p
sp2杂化
BF3 的形成
3.sp杂化
180°
BeCl2的空间构型为直线形 Cl Be Cl
Be:2s2
2s
2p
Be:2s2
2s
2p
激发 2s
sp杂化
2p
sp
Be采用sp杂化生成BeCl2
【例题选讲】
例1:根据乙烯、乙炔分子的结构,试用杂化轨道 理论分析乙烯和乙炔分子的成键情况。
乙烯中碳以sp2 杂化,C=C中一 个σ和一个π