一次函数中分段函数的分析

合集下载

一次函数的应用—分段函数课件全文

一次函数的应用—分段函数课件全文
【解析】y=
2、由于持续高温和连日无雨,某水库的蓄水量随着 时间的增加而减少.干旱持续时间t(天)与蓄水量V(万 米3 )的关系如图所示,回答下列问题:
V/万米
3 1200
A
1000
(1)干旱持续10天,蓄水量为 多少?连续干旱23天呢?
800
600
400
200
B
0 10 20 30 40 50 60 70 t/天
间之间的关系?
当t=0时,s=0,所以L1表示B到海岸的距离
与追赶时间之间的关系.
(2)A、B哪个速度快?B的速度快
s (海里) L1 L2
12
(3)15分内B能否追上A?不能
10
P
(4)如果一直追下去,那么B能否追上A?能 5
(5)当A逃到离海岸12海里的公海时,B 将无法对其进行检查。照此速度,B能否在
y与x的函数表达式也可以合起来表示为
0.6x (0≤x≤160), y=
0.7x-16 (x>160).
(2) 该函数的图象如图4-16.
该函数图象由两个 一次函数的图象拼接在 一起.
图4-16
(3)当x = 150时, y = 0.6×150=90, 即3月份的 电费为90元.
当x = 200时,y = 0.7×200-16=124, 即4月份的电费为124元.
10 5
O 5 10 15 t
1

O1

2 3t
(3)当t=300时,
A方案: y = 25+0.36t=25+0.36×300=133(元);
B方案: y = 0.5t=0.5×300=150(元).
所以此时采用A方案比较合算.

一次函数应用——分段问题

一次函数应用——分段问题

某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药2后血液中的含药量最高,达每升6,接着逐步衰减,10后血液中的含药量为每升3,每升血液中的含药量随时间的变化情况如图所示.当成人按规定剂量服药后:(1)分别求出≤2和≥2时,与之间的函数关系式;(2)如果每升血液中的含药量为4或4以上时,治疗疾病是有效的,那么这个有效时间是多长?【思路点拨】(1)根据题意由待定系数法求函数的解析式.(2)令≥4,分别求出的取值范围,便可得出这个药的有效时间. 【答案与解析】解:(1)由图知,≤2时是正比例函数,≥2时是一次函数.设≤2时,,把(2,6)代入,解得=3, ∴ 当0≤≤2时,.设≥2时,,把(2,6),(10,3)代入中,得,解得,即.当=0时,有,. ∴ 当2≤≤18时,.(2)由于≥4时在治疗疾病是有效的,∴ ,解得. 即服药后得到为治病的有效时间, 这段时间为.【总结升华】分段函数中,自变量在不同的取值范围内函数的解析式也不相同,因此注意根据自变量或函数的取值确定某段函数来解决问题.h mg h mg y mg x h x x y x mg mg y x x x x y kx =y kx =k x 3y x =x y k x b '=+y k x b '=+26103k b k b '+=⎧⎨'+=⎩38274k b ⎧'=-⎪⎪⎨⎪=⎪⎩32784y x =-+y 327084x =-+18x =x 32784y x =-+y 34327484x x ≥⎧⎪⎨-+≥⎪⎩42233x ≤≤43h 223h 224186()333h -==24.(2013•荆州)如图,某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)直接写出y与x之间的函数关系式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?考点:一次函数的应用分析:(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额;(3)日销售量不低于24千克,即y≥24.先解不等式2x≥24,得x≥12,再解不等式﹣6x+120≥24,得x≤16,则求出“最佳销售期”共有5天;然后根据p=﹣x+12(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.解答:解:(1)分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2,∴y=2x(0≤x≤15);②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,∵点(15,30),(20,0)在y=k2x+b的图象上,∴,解得:,∴y=﹣6x+120(15<x≤20);综上,可知y与x之间的函数关系式为:y=;(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,∵点(10,10),(20,8)在z=mx+n的图象上,∴,解得:,∴p=﹣x+12(10≤x≤20),当x=10时,p=10,y=2×10=20,销售金额为:10×20=200(元),当x=15时,p=﹣×15+12=9,y=30,销售金额为:9×30=270(元).故第10天和第15天的销售金额分别为200元,270元;(3)若日销售量不低于24千克,则y≥24.当0≤x≤15时,y=2x,解不等式2x≥24,得x≥12;当15<x≤20时,y=﹣6x+120,解不等式﹣6x+120≥24,得x≤16,∴12≤x≤16,∴“最佳销售期”共有:16﹣12+1=5(天);∵p=﹣x+12(10≤x≤20),﹣<0,∴p随x的增大而减小,∴当12≤x≤16时,x取12时,p有最大值,此时p=﹣×12+12=9.6(元/千克).故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元.点评:此题考查了一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.23.(本小题满分8分)某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)⑴请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式.⑵小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?⑶有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体数据阐明你的看法.23.(8分)解:(1)1o当2≤x≤8时,每平方米的售价应为:3000-(8-x)×20=20x+2840 (元/平方米)2O当9≤x≤23时,每平方米的售价应为:3000+(x-8)·40=40x+2680(元/平方米) ∴{8)x (22840,20x 23)x (92680,40x ≤≤+≤≤+=y , x 为正整数 ………………………2分(2)由(1)知:1o 当2≤x ≤8时,小张首付款为 (20x +2840)·120·30%=36(20x +2840)≤36(20·8+2840)=108000元<120000元∴2~8层可任选 …………………………1分 2o当9≤x ≤23时,小张首付款为(40x +2680)·120·30%=36(40x +2680)元36(40x +2680)≤120000,解得:x ≤3116349= ∵x 为正整数,∴9≤x ≤16 …………………………1分综上得:小张用方案一可以购买二至十六层的任何一层。

八年级数学下册知识点复习专题讲练一次函数中的分段函数含解析202207051160

八年级数学下册知识点复习专题讲练一次函数中的分段函数含解析202207051160

一次函数中的分段函数分段函数的根本模型1. 分段记费问题〔如收取水费、电费、通信费等类型〕:我国是世界上严重缺水的国家之一。

为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费方法收费,即一月用水10吨以内〔包括10吨〕的用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的局部,按每吨b 元〔b >a 〕收费。

设一户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如下图。

求出a 和b 值。

解析:根据图中的相关数据利用解析式分析求值,解题关键是弄清函数图象的意义。

答案: 1.5a =,b =2。

2. 行程中的分段计算问题:由速度或时间的不同而产生的不同计算。

如图是小明从学校到家里行进的路程s 〔米〕与时间t 〔分〕的函数图象,观察图象,从图中能得到什么信息呢?〔结合背景对图象含义进行理解〕解析:考查函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论。

答案:小明行进总路程为1000米,行进时间为20分钟,前10分钟的行进速度比后10分钟的行进速度慢。

3. 与几何图形有关的分段函数:由图形的运动变化所产生的线段、面积等的不同产生的分段计算。

如图1,在矩形ABCD 中,AB =3,BC =4,动点P 从点A 开始按A →B→C→D 的方向运动到D 。

如图2,设动点P 所经过的路程为x ,△APD 的面积为y 。

〔当点P 与A 或D 重合时,y =0〕,写出y 与x 的函数关系式并画出图象。

解析:利用点运动到不同位置产生对应值解决问题。

图象如图。

203637220710x x y x x x ≤≤⎧⎪=<<⎨⎪-+≤≤⎩。

4. 商品销售中的分段计算:根据数量将商品进行分段销售。

如:某书定价25元,如果一次购置20本以上,超过20本的局部打八折,试写出付款金额y 〔单位:元〕与购书数量x 〔单位:本〕之间的函数关系。

一次函数的应用(分段函数)

一次函数的应用(分段函数)
价格,从而做出更明智的投资决策。
交通流量的分段函数模型
总结词
交通流量的分段函数模型能够根据交通流量的变化规 律,优化交通管理,提高道路通行效率。
详细描述
交通流量在不同时间段和不同路段的分布是不均匀的。 分段函数可以根据交通流量的变化规律,将流量数据划 分为几个不同的区间,每个区间用一次函数表示。这种 模型可以帮助交通管理部门更好地了解交通流量的分布 情况,预测未来的交通流量,从而制定合理的交通管理 措施,缓解交通拥堵,提高道路通行效率。同时,分段 函数模型还可以用于交通信号灯的控制、停车场的泊位 分配等方面,提高整个交通系统的运行效率。
分段函数与极限的结合
01
02
03
极限的定义
分段函数在某点的极限是 指当自变量趋近于该点时, 函数值的趋近值。
极限的性质
分段函数在某点的极限存 在,则该点的左右极限相 等且等于该点的函数值。
极限的计算
通过求分段函数在某点的 左右极限,可以确定该点 的极限值。
分段函数与导数的结合
导数的定义
分段函数在某点的导数表 示该点附近函数值的切线 斜率。
总结词
分段函数在计算机科学中常被用于实现一些特定的算法和数据结构。
详细描述
例如,在一些排序算法中,分段函数可以用来实现快速查找和定位数据元素的功能。此外,在一些数据压缩算法 中,分段函数也被用来实现高效的数据压缩和解压缩。同时,在一些人工智能算法中,分段函数也被用来实现分 类和预测等功能。
04 分段函数与其他数学知识 的结合
03 分段函数在生活中的应用
经济学中的分段函数应用
总结词
分段函数在经济学中有着广泛的应用,主要用于描述和分析各种经济现象和规 律。
详细描述

一次函数(分段函数)

一次函数(分段函数)

月份 3
4
用水量(m3) 水费(元)
5
7.5
Hale Waihona Puke 927课堂练习
该市某户今年3、4月份的用水量和水费如下表所示:
月份 3
4
用水量(m3) 水费(元)
5
7.5
9
27
设某户每月用水量为x(立方米),应交水费为y(元)。 求:(1)a、c的值
(2)并写出用水不超过6立方米和超过6立方米时,y与x 之间的函数关系式;
小明全家当天17:00到家。
(3)本题答案不唯一,只要合理即可,但需注意合理性, 主要体现在:
①9:30前必须加一次油;
②若8:30前将油箱加满,则当天在油用完前的适当时 间必须第二次加油;
③全程可多次加油,但加油总量至少为25升。
试一试:近几年来,由于经济和社会发展迅速,用电矛盾 越来越突出。为缓解用电紧张,某电力公司特制定了新的 用电收费标准,每月用电量x(度)与应付电费y(元)的关 系如图所示。
y= 300 (5≤x≤15)
上述函数,称为分段函数。
{ 20x+200 (0≤x<5)
y= 300 (5≤x≤15)
议一议
• 我们周围的还存在哪 些分段函数的实例。
如:出租车计费问题, 阶梯水费、电费, 个人所得税, 邮资等等
分段函数的解析式
例 2:从广州市向北京市打长途电话,按时间收费, 3 分钟内收费 2.4 元,每加 1 分钟收费 0.5 元, 求时间 t(分)与电话费 y(元)之间的函数解析式, 并画出函数的图象.
y/千米
2 1.1
1.小明从家里出发去菜地浇水, 又去玉米地锄草,然后回家,其 中x表示时间,y表示小明离他家 的距离。

19.2.2八年级一次函数(分段函数)经典典例

19.2.2八年级一次函数(分段函数)经典典例

识别分段函数,解决收费问题(学案)定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在k1x+b1 x≤a1y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分段函数。

K3x+b3 a2≤x≤a3…………应该指出: 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1, k2x+b2……是函数Y的几种不同的表达式.。

所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。

一次函数的分段函数是简单的分段函数。

分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。

在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。

收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图(1) 分别写出当0≤x ≤15和x ≥15时,y 与x 的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?谈谈中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。

例析一次函数中的分段函数题

例析一次函数中的分段函数题

例析一次函数中的分段函数题
一次函数 (线性函数) 是一种特殊的函数,它关于原点对称,并且它的图像是一条直线。

一次函数可以表示为 y = ax + b 的形式,其中 a 和 b 是常数,x 是自变量,y 是因变量。

在一次函数中,分段函数是指当自变量 x 的取值发生变化时,因变量的取值也随之变化的函数。

分段函数的分段点一般是一个表达式的终点,也是下一个表达式的起点。

它会反映在函数表达式或函数图像上。

分段函数的定义域是每个分段函数定义域的并集,值域也是每个分段函数值域的并集。

在判断分段函数的奇偶性时,需要先查看定义域是否关于原点对称,然后分别代入各段函数式计算 f(x) 和 f(-x) 的值,若有 f(x) - f(-x),当 x0 有定义时 f(0) 0,则 f(x) 是奇函数;若有 f(x) f(-x),则 f(x) 是偶函数。

在求解一次函数中的分段函数时,需要先确定分段点,然后根据分段点周围的数学表达式来确定分段函数的表达式。

同时,需要查看分段函数的定义域和值域,并判断其奇偶性。

(word完整版)八年级一次函数分段函数经典讲解

(word完整版)八年级一次函数分段函数经典讲解

认清分段函数,解决收费问题定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在k1x+b1 x≤a1y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分段函数。

K3x+b3 a2≤x≤a3…………应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1,k2x+b2……是函数Y的几种不同的表达式.。

所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。

(二),由于k1,k2,k3……b1,b2,b3是实数,所以函数Y在X的某个范围内的特殊函数,如正比例函数和常数函数。

(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。

(四), 一次函数的分段函数是简单的分段函数。

分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。

在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。

收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?图1分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)设y与x之间的函数关系式为y=kx+b由图上知:x=100时,y=40;x=200时,时,y=60则有4010060200k bk b=+⎧⎨=+⎩,解之得1520kb⎧=⎪⎨⎪=⎩所求函数关系式为1205y x=+..(3)把x=280代入关系式1205y x=+,得128020765y∴=⨯+=即月通话为280分钟时,应交话费76元.二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x 的正比例函数; x≥15时,y是x的一次函数.解: (1)当0≤x ≤15时,设y =kx ,把x =15,y =27代入,得27=15k ,所以k =591527=,所以y =59x ;当x ≥15时,设y =ax +b ,将x =15,y =27和x =20,y =39.5代入,得⎩⎨⎧=+=+5.3920,2715b a b a 解得a =2.5,b =-10.5所以y =2.5x -10.5 图2(2) 当该用户该月用21吨水时,三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?图3分析:从函数图象上看图象分为两段,当0≤x ≤100时,电费y 是电量x 的正比例函数,当x ≥100时,y 是x 的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.解: (1)设当0≤x ≤100时,函数关系式为y =kx ,将x =100,y =65代入,得k =0.65,所以y =0.65x ;设当x ≥100时,函数关系式为y =a x +b,将x =100,y =65和x =130,y =89代入,得⎩⎨⎧=+=+.89130,65100b a b a 解得a=0.8,b=-15.所以y =0.8x -15综上可得0.65(0100)0.815(100)x x y x x ⎧=⎨-⎩≤≤≥ (2)用户月用电量在0度到100度之间时,每度电的收费的标准是0.65元;超出100度时,每度电的收费标准是0.80元.(3)用户月用电62度时,用户应缴费40.3元,若用户月缴费105元时,该户该月用了150度电.谈谈中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数中分段函数的分析
在函数自变量不同的取值范围内所对应的函数关系也不相同,我们这样的函数称为分段函数。

学习一次函数中的分段函数,通常应注意以下几点:⑴要特别注意相应的自变量变化区间。

在解析式和图象上都要反映出自变量的相应取值范围。

⑵分段函数的图象是由几条线段(或射线)组成的折线。

其中每条线段(射线)代表某一个阶段的情况。

⑶分析分段函数的图象要结合实际问题背景对图象的意义进行认识和理解。

尤其要理解折线中横、纵坐标表示的实际意义。

一、分段计费问题
例1. 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按
每吨元收费,超过10吨的部分,按每吨元(b>a)收费.设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示.
(1)求的值;某户居民上月用水8吨,应收水费多少元?
(2)求的值,并写出当时,与之间的函数关系式;
(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?
解析:(1)当时,有.将代入,得.∴y=1.5x 当x=8时,y=8×1.5=12(元).
(2)当时,有将,代入,
得.∴.故当时,.
(3)因,∴甲、乙两家上月用水均超过10吨.设甲、乙两家上月用水分别为吨,吨,

解之,得
故居民甲上月用水16吨,居民乙上月用水12吨.
二、行程中的分段函数
例2。

一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之
间的函数关系.
根据图象进行以下探究:
信息读取
(1)甲、乙两地之间的距离为 km;
(2)请解释图中点的实际意义;
图象理解
(3)求慢车和快车的速度;
(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;
问题解决
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
解析:(1)900;
(2)图中点的实际意义是:当慢车行驶4h时,慢车和快车相遇.
(3)由图象可知,慢车12h行驶的路程为900km,
所以慢车的速度为;
当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为,所以快车的速度为150km/h.
(4)根据题意,快车行驶900km到达乙地,所以快车行驶到达乙地,
此时两车之间的距离为,所以点的坐标为.
设线段所表示的与之间的函数关系式为,把,代入得
解得
所以,线段所表示的与之间的函数关系式为.
自变量的取值范围是.
(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.
把代入,得.
此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是,即第二列快车比第一列快车晚
出发0.75h.
三、与几何图形有关的分段函数
例3。

在矩形ABCD中,AB=3,BC=4,动点P从点A开始按A —B—C—D的方向运动到D。

如图3—1。

设动点P所经过的路程为x,△APD的面积为y。

(当点P与A或D重合时,y=0)
⑴写出y与x的函数关系式;
⑵画出此函数的图象。

解析:⑴P在边AB、BC、CD上所对应的函数关系不相同。

应分段求出相应的函数式
①P在边AB上,0≤x<3时, y=×4x=2x
②P在边BC上,3≤x<7时,y=×4×3=6
③P在边CD上,7≤x≤10时,y=×4(10-x)=-2x+20。

相关文档
最新文档