一只会下金蛋的鸡——费马大定理

一只会下金蛋的鸡——费马大定理
一只会下金蛋的鸡——费马大定理

一只会下金蛋的鸡

——费马大定理

学了勾股定理,我们都知道直角三角形的三边满足关系式

a2+b2=c2,

同时还知道,有无数组正整数满足这个关系式。如果a、b、c的次数不是2,而是大于2的正整数,能不能找到正整数满足这个关系式呢?

十七世纪,法国的一位法官、著名的业余数学大师费马,在阅读古希腊数学家丢番图的《算术》第2卷第8个命题:“将一个平方数分解为两个平方数之和”时,在书的空白处写下了一段引人注目的文字:“要想把一个立方数分成两个立方数,把一个四次幂分成两个四次幂,一般地说,把任何高于二次的幂分成两个同次幂,都是不可能的。关于此,我确信已发现一种美妙的证法。可惜这里空白的地方太小,无法写下。”费马去世后,人们在整理他的遗物时发现了这段话,却没有找到证明,这更引起了数学界的兴趣。这就是说,费马自称证明了定理:

x n+y n=z n,(n≥3)

无正整数解。人称费马大定理,也称费马最后定理。为什么叫这个名称呢?因为费马提出了数论方面许多引人注目的、富有洞察力的结论,这些结论一直到他去世后很久才被人证明大多是正确的,只有一个是错的。到1840年左右,其中只剩下上述这一个结论还没有被证明,因此称为费马的最后定理。把该定理称为费马大定理,是用以区别费马小定理。费马小定理是费马在1640年10月18日给他朋友的一封信中传出去的,这定理说,若p是一个素数而a与p互素,则a p-a能被p整除。

费马真的证明了自己的定理吗?人们普遍持怀疑的态度。费马逝世后,他的后人翻箱倒柜,也只找到了n=4的证明。他是用直角三角形三边长为整数,面积决不是平方数这一事实来证明的。后来,有人经过详实的考证,认为费马不可能完全证明了自己的定理。

三百多年来,上百名最优秀的数学家为了证明它付出了巨大的精力,其中有欧拉、勒让德、高斯、阿贝尔、狄利赫勒、拉梅、柯西、库默等。问题表述的简单和证明的困难,吸引了更多的人投入证明工作,有些数学家,如库默和近代的范迪维尔,为此献出了毕生的精力。林德曼在1882年证明了π是超越数后,也终身研究费马定理,而未获结果。

布鲁塞尔和巴黎科学院曾设奖金悬赏数次,但也未得到解决。1908年,数学家佛尔夫斯克尔在哥廷根皇家科学会又悬赏十万马克,征求正确的证明。一大批业余爱好者也进行了尝试,并寄去了自己的解答。据说,著名的数论专家朗道请人印了许多明信片,上面写道:“亲爱的先生或女士:你对费马大定理的证明已经收到,现予退回。第一个错误出现在第 页,第 行”。朗道将这些明信片分发给他的学生们,吩咐他们将相应的数字填上去。

最初的证明是从n=3开始一个数一个数的进行的。后来,库默经过终生的努力,“成

批地”证明了定理的成立,人们视之为费马大定理证明的一次重大突破。1857年,他获得巴黎科学院的金质奖章。

前人直接证明费马大定理的努力取得了许多成果,并促进了一些数学分支的发展,但离定理的证明,无疑还有遥远的距离。怎么办呢?按数学家解决问题的传统,就是要作变换——把问题转化为已知的或易于解决的领域的“新”问题。种种转化的方法既推进了所转化的领域的发展,也使费马大定理的证明得到进展。每一次对费马大定理证明的重大突破,都对许多数学分支产生重要的影响。有好多结论已十分接近费马大定理了,但它们毕竟不是原定理的证明,离原定理的证明尚有并非容易跨越的“一小步”。

三个世纪的历史表明,费马最后定理是有巨大价值的数学问题。要想预先正确判断一个问题的价值是困难的,并且常常是不可能的。因为最终的判断取决于科学从该问题得到的收益。希尔伯特在一次演讲中谈到费马大定理的价值时说:“证明这种不可能性的尝试,提供了一个明显的例子,说明这样一个非常特殊、似乎不十分重要的问题会对科学产生怎样令人鼓舞的影响。受费马问题的启发,库默引进了理想数,并发现了把一个循环域的数分解为理想素因子的唯一分解定理,这一定理今天已被狄德金和克朗奈克推广到任意代数域,在近代数论中占着中心地位,而且其意义已远远超出数论的范围而深入到代数的函数论的领域。”希尔伯特还评价说,“费马猜想(即费马大定理)是一只会下金蛋的鸡”。

【附录】

一、【费马简介】

彼埃尔 · 德 · 费马(1601年~1665年)法国数学家、物理学家。物理学中的费马最小时间原理是几何光学的基本定理。费马在数学中的贡献是多方面的。在数论中以他的名字命名的有费马小定理、费马大定理、费马数、费马二平方差定理等,几何学中有费马螺线和费马点,微积分学中有关于极值的费马定理。此外,费马还首创了无限下推法,他分别是概率论与解析几何的首创者之一。

费马1601年8月20日出生于法国南部土鲁斯附近的波蒙,1665年1月12日卒于土鲁斯(或卡斯特)。他出生于商人家庭,青年时期在土鲁斯攻读法律,后来成为著名的律师,曾任土鲁斯议会议员。他不但法律知识渊博,而且以严格的清廉为人称颂。

费马不是一位职业数学家,他近30岁才认真注意数学,只能利用公务之余通过自学研究。他在研究几何的过程中发现了解析几何的原理;他是微积分学的杰出先驱者;他和帕斯卡一起奠定了古典概率论的基础;他振兴了数论的研究。因此,被称为“业余数学家之王”、“近代数论之父”。

费马谦逊、好静。生前只发表过很少的著作。他对数学的研究成果,主要是写在他阅读过的数学书的边缘和空白处或写在给朋友的信件中,也有一些是散放在旧纸堆里。他去世后,人们(包括他的儿子)才把这些资料汇编成书,共两卷,先后于1670年和1679年

在土鲁斯出版。

二、【证明费马大定理的小故事】

在数学史上,曾流传着这样一个掌故。据说,希尔伯特的一个学生,有一次写了一篇关于费马大定理的论文,一天晚上,他对希尔伯特说:“我已经证明了费马大定理,请老师看一看我的论文。”希尔伯特回答说:“哦!你可能太疲倦了,需要好好休息一下,明天再来找我吧。”第二天,这个学生又去找希尔伯特,他说:“我已经发觉昨天的证明是错误的。”

三、【费马大定理的最终证明】

1993年6月23日,星期三。英国剑桥大学新落成的牛顿数学研究所的大厅里正在进行例行的学术报告会。报告从上午8点整开始,报告人维尔斯用了两个半小时就他关于“模形式、椭圆曲线和伽罗华表示”的研究结果作了一个冗长的发言。10点30分,在他的报告结束时,他平静地宣布:“因此,我证明了费马大定理。”这一句话象一声惊雷,把许多只要作例行鼓掌的手“定”在了空中,大厅里鸦雀无声。半分钟后,雷呜般的掌声似乎要掀翻大厅的屋顶,英国学者们顾不得他们优雅的绅士风度,忘情地欢呼起来。很快,这一消息轰动了全世界,许多一流的大众传播媒体迅速地报道了这一消息,并一致称之为“世纪性的科学成就”。

维尔斯证明的实际上是另一个猜想:谷山—志村—韦伊猜想。为此,他写了200多页的证明,在1993年6月23日报告。但好事多磨,维尔斯长达200多页的论文送交审查时,却被发现其证明有漏洞。许多传媒又迅速地报道了这一“爆炸性”新闻。

数学界普遍认为,在数学命题证明中出现漏洞然后再加以补正,是不足为怪的,在数学发展的历史中时有发生。一些审阅过维尔斯论文的专家还指出,即使维尔斯没能证明出费马大定理,他的论文也已经包含有一项表现为重大突破的数学成就。

维尔斯在挫折面前没有止步,从1993年7月起,他就一直在修改论文,这是一项十分困难的工作,以致于他应邀在1994年8月在瑞士苏黎世召开的国际数学家大会上作报告时,对费马大定理只字未提。

1994年9月,维尔斯终于解决了困难,重新写出了一篇108页的论文,于1994年10月14日寄往美国《数学年刊》,论文顺利通过审查,1995年5月,《数学年刊》的41卷第3期只登载了他的这一篇论文!这一被认为是“二十世纪最重大的数学成就”使得维尔斯获得1995/1996年度的沃尔夫数学奖,并于1998年破格获得菲尔兹奖。

费马猜想之证明.

费马猜想之证明 景光庭 引言:20世纪60年代初,笔者首次接触“费马猜想”。在以后的岁月中,笔者断断续续地研究它。直至1992年,才有机会在《潜科学》上相继发表过三篇论文,这次是最终的证明。 虽然美国数学家怀尔斯因发表论证“费马猜想”的文章,并于1997年荣膺国际上的沃尔夫斯克尔数学大奖,但并没有推开蒙在世界数学家心头上的阴云。笔者曾通过《美国教育交流中心》向怀尔斯寄去了总长仅一页的论文复印件,并明确指出,他在证明中将“费马方程”转化为椭圆曲线,而笔者转化为抛物线,这是不能共存的。何况笔者的转化过程,浅显得连中学生都能读懂,无懈可击,百分之百的正确。怀尔斯巨著难道不是沙滩上的一座摩天大厦?我也向德国马克斯普朗克研究所的学者法尔廷斯寄去了论文复印件,亦表述了上述观点,因为他是少数几个通读怀尔斯论文,并唯一肯定和帮助怀尔斯将论文从二百多页化减到一百三十页的学者 。遗憾的是至今未复。 如果怀尔斯不屑回答一个业余数学爱好者提出的疑问,对他就是一个绝妙的讽刺,因为他以毕生精力研究攻克和使他一举成名的“费马猜想”提出者费马是律师,而不是法兰西学院的院士。恰恰相反,数学只是他的业余爱好。他与人交流数学心得,往往是在通信中进行的,并不象今天这样只有在学术界认可的刊物上发表的文章才能被专家认可。如果当年的学术界也对费马这样苛求,那么今天根本不存在什么“费马猜想”这个问题了。 定理:2>p P P P Z Y X =+ (1) 中,p 为奇素数,X ,Y ,Z 无正整数解。 证:假设X ,Y ,Z 均有正整数解。 令 X=x ,Z = x +a (a 为正整数), Y = y 0+a (y 0为正整数),约定(x ,y 0,a )=1 ,则有: p p p a x a y x )()0+=++( (2) 即: 0 (1) 12221101120221010=----++++--------x a c x a c ax c y a c y a c ay c y p p p p p p p p p p p p p p p (3) 不失一般性,可设1),(0≥=d y x 1),(,,11101===y x dy y dx x ,以d 除 (3)式, 并令:10-=p d b ,,2 1 1-=p p ad c b ……,1 11---=p p p p a c b , 于是:0 (11212111111) 1 110=----+++-----x b x b x b y b y b y b p p p p p p 11 1 123122111 1 211110............s y b x b x b x b x b y b y b p p p p p p p =++++= +++------- 11221111011.......----=----p p p p b y b y b y b x s 11231221111.......----=----p p p p b x b x b x b y s

费马大定理证明

【法1】 等轴双曲线方程的通解与费尔玛大定理的证明 滕锡和 (河南鲁山 江河中学 邮编:467337) 摘 要: 由等轴双曲线方程与费尔玛方程的内在联系,寻找到一种费尔玛方程是否有正整数解 的充要条件,再由对此条件的否定,证明了费尔玛大定理,并且把费尔玛大定理与勾股定理有机地统一起来。 关键词: 完全+ Q 解;可导出+ Q 解;连环解 中图法分类号: 文献标识码:A 文章编号: 1 R +通解 本文所用数集:N ---自然数集,Q ---有理数集,R ---实数集。本文讨论不超出+R 的范围。 本文中方程n n n z y x =+及同类方程中的指数n ∈N ,以后不再说明。 引理1 方程 n n n z y x =+ (n ≥2) (1) 有N 解的充要条件是它有+ Q 解。 引理2 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是它有既约N 解。 这样,在以后的讨论中只需讨论+ Q 解及既约N 解的情形,可使过程简化。 引理3 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是方程 -1n n X Y = (n ≥2) (2) 有+ Q 解。 证明 充分性 如果方程(2)-1n n X Y =(n ≥2)有+ Q 解,设(v u v w ,)()u v w N ∈两两互素,,为其+ Q 解,则( v w )n -(v u )n =1,n n n w v u =+ 。于是方程(1)n n n z y x =+(n ≥2)有N 解()w v u ,,。 必要性 如果方程(1)n n n z y x =+(n ≥2)有N 解,设()w v u ,,() u v w N ∈两两互素,,

鸡和蛋的故事

鸡和蛋:不得不说的故事(来自我的老师,一个经济学博士———丁从明) 丁哥人很瘦,知识却相当渊博。丁哥很幽默,他的课堂总是充满‘争论’。他总说他不愤青而奋青。总是希望从经济学的角度来分析社会百态。其中这个老母鸡的故事讲的甚是‘炉火纯青’故而拿出跟各位博友分享。 鸡和蛋:不得不说的故事 丁从明(重庆大学贸易于行政学院经济学博士) 【人类一思考,上帝就发笑】 【如果有人劝你吃了你的鸡,你会变得更富裕,那人一定是凯恩斯】 【要是有人说:只要是鸡,都可以生蛋,那人一定是格林斯潘】 为什么要吃老母鸡? 每次回家,父母看我单薄的身材总是叹息一番,读书太累,回家一定要好好补一下。怎么补呢?杀一只老母鸡吧。在我幼小的心灵里我知道老母鸡是可以补身子的,但是为什么我确从来不知道,曾经试图问过父母,为什么要吃老母鸡,听到的回答总是老母鸡营养价值高,为什么高,我也不知道,应该确实高吧。留给营养学家回答吧,老人的话应该不会错吧。 换个视角呢?如果老母鸡营养价值和其它鸡(小母鸡,小公鸡,老公鸡)营养价值一样高的话,我们会吃什么鸡呢?答案是:还是老母鸡,为什么又是“我”啊!因为你不下蛋! 残忍吧,是的。 没有人会去吃一只下蛋的鸡,更没有人会去吃一个下金蛋的鸡。有人兴许会问,老公鸡也不下蛋,小公鸡也不下蛋,为什么不吃小公鸡。谁说不吃?都吃完了,这个世界最早遭殃的就是小公鸡,记得小时候在家的时候六月半有吃小公鸡的习俗,七月半有吃小公鸡的习俗,还有多的,卖掉!买给餐馆里吃,但是一般不会全卖,要留一到两只,干嘛用,打鸣啊。所以能够成功的从小公鸡变成老公鸡的“鸡们”是很少很幸运的。为什么不吃老公鸡是因为剩余本已不多,留下还有功用。

世界数学难题——费马大定理

世界数学难题——费马大定理 费马大定理简介: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 [编辑本段] 理论发展 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

安德鲁怀尔斯的证明比我复杂一百倍

安德鲁怀尔斯的证明比我复杂一百倍 安德鲁怀尔斯的证明用了130页,并利用了连费马都没接触的理论来证明,充分说明他的证明并没有揭开费马所说的美妙证明的历史真相。真正理解费马原始思想的人是我。我只用了一页的版面通俗地透彻地严格地证明了这一结论。是真金还是铜大家可以验证。 揭开费马大定理真相 当整数n大于2时X n +Y n=Z n 没有正整数解。显然X、Y、Z都不会是零。 证明方法: 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。又由于当n=ab时X1 +X2n+X3n =0可写成(X1a)b+(X2a)b+(X3a)b=0; 因此只要证明当整数n为大于2的质数X1n+X2n+X3n =0没有非零的整数解,可类推X n +Y n=Z n 没有正整数解,而n=4没有整数解早已被人证明。现在我们需要证明当当n为大于2质数时X1n+X2n+X3n =0没有非零的整数解。 假设存在有整数解,会不会出现冲突呢,会的。 如果X1n+X2n+X3n =0存在有整数解,而n为大于2质数,因此必存: X1X2+X2X3+X3X1=d (d为整数更是有理数);X1X2X3=c(c为整数更是有理数)也就是说必存在这样的方程组; X1n+X2n+X3n =0 (1) X1X2+X2X3+X3X1=d (d为整数更是有理数) (2) X1X2X3=c(c为整数更是有理数) (3) 由方程组必可合成关于X的一元n次方程,又由于若X1=X2或X1=X3或X2=X3均不存在整数解,原因是2X1n+X3n=0没有非零整数解,因此倘若有非零整数解也只能是X1、X2、X3 互不相等。由于作为底的仅有X1、X2、X3且均要同时有理地合成为【f(X)】n 的形式现在的问其题在于,关于X的一元n次方程(n为质数)既要把未知数都配方成n次方内,又要表示出三个解的不相等。而d、b均为有理数,能做得到吗?做不到的,我们知道,当n 为质数时若将方程有理化成【f(X)】n =P;只能反映有一个实数解,其他是虚数解。说明X1、X2、X3取有理数解是不相容的。更谈不上整数解。也就是说要符合费马所规定条件的方程是不存在,因此我的假设是不成立的。 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。 当n为合数时,n可分解成质因素,可将一个质因数写成括号外的方次来证明,如果n 只含质因素2,n必可写成4m的形式,可当成4次方程来证明。而n=4时,费马本人已证明。至此费马定理证明完毕。

部编版小学语文二年级下册第七单元练习题

小学语文二年级下册第七单元练习题 一、看拼音、写词语 lǎ bā líng ling huā gǒu zāo gāo ()()()() zǐ xì lóu tī kěn dìng pā zài jīng yà()()()()()tán tiān qì pài yǐn lù liè níng mì fēng ()()()()()qiāo mén mò sī kē diū xià bái fèi cóng cǐ()()()()()Shǒu zhū dài tù yà miáo zhù zhǎng huī sè xìng kuī()()()()jié bīng dàn ké yā zi lí ba tiān é chì bǎng ()()()()()()tǎo yàn jiāo jí nǎo jīn bā wàng shù zhuāng ()()()()() Zǒng suàn féi liào xī wàng qī fù huī xīn ()()()()() fù jìn lóu tī liè kāi duān xiáng chú tou ()()()()()二、组词 庄()兔()喘()钻()

桩()免()端()站()讨()拎()鸭()欺()过()铃()鹅()期()傍()此()丢()肥()膀()比()去()把()呀()谈()峰()锋()讶()淡()蜂()缝()列()进()引()令()例()近()张()岭()拎()铃()狗()沟()玲()领()够()勾()梯()脑()遭()楼()涕()恼()糟()搂() 三、找出每组中不是同一类的词语画“——”。 1、妈妈爸爸奶奶老师姑姑 2、春节过节元旦端午节中秋节 3、上午下午夕阳傍晚深夜 4、碧绿雪白粉红颜色乌黑 四、连一连 1、满意地观察 2、愉快的话语 仔细地奔跑灵巧的双手 兴奋地端详亲切的节日

数学史与学前教育超星尔雅满分答案

数学史与学前教育超星尔雅满分答案

————————————————————————————————作者:————————————————————————————————日期:

数学史与数学教育绪言(一) 1 第一部数学史著作是()写的《数学史》。 A、阿基米德 B、蒙蒂克拉 C、华里司 D、祖冲之 正确答案:B 2 数学史成为一个独立的学科的标志是()问世。 A、《算术史》 B、《几何史》 C、《数学史讲义》 D、《新数学年刊》 正确答案:C 3 数学史中最有影响的数学史著作是() A、《算术史》 B、《数学史讲义》 C、《几何原本》 D、《新数学年刊》 正确答案:B

1855年法国戴尔卡《新数学年刊》后增设()成为历史上最早的数学史专业刊物,数学史开始为数学教育服务。 A、《算术史》 B、《数学史讲义》 C、《几何原本》 D、《数学历史、传记与文献通报》 正确答案:D 5 历史的相似性的提出者是()。 A、阿基米德 B、蒙蒂克拉 C、华里司 D、德摩根 正确答案:D 6 数学史和数学教育可以为以后的数学教学提供许多教学资源。() 正确答案:√ 7 公元前5世纪的《数学史》中有很多关于趣味数学的故事。() 正确答案:×

数学史与数学教育绪言(二) 1 美国第一位数学史家是()。 A、蒙蒂克拉 B、史密斯 C、卡约黎 D、德摩根 正确答案:C 2 我国古代()开始引入〇的符号 A、唐代 B、宋代 C、汉代 D、元代 正确答案:B 3 “数学史是比面包和黄油更可口的蜂蜜。”是()对数学史重要性的评价。 A、阿基米德

C、华里司 D、卡约黎 正确答案:B 4 人们可以做出一个角的三等分角。() 正确答案:× 5 倍立方体问题是现在数学界无法解决的三大难题之一。()正确答案:√ 数学史与数学教育绪言(三) 1 ()年美国开始开设数学史课程。 A、1894 B、1893 C、1892 D、1891

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

《下金蛋的母鸡》读后感

《下金蛋的母鸡》读后感 《下金蛋的母鸡》读后感1 故事是这样的:从前,有一对老爷爷和老奶奶,他们家养了一只很奇怪的母鸡。每次老爷爷和老奶奶没有钱可以用的时候,那只母鸡就会帮他们下一个金蛋。 金蛋很值钱,所以老爷爷和老奶奶的生活过的很富裕。 但是,他们卖了金蛋,就什么事也不做,只顾着玩乐,所以钱很快就花光了。最穷的时候,他们饿得连面包都没得吃。 有一次,他们的钱又花光了,而母鸡却没有下金蛋。老爷爷提议:“干脆,我们把母鸡给杀了吧,它的肚子里,一定有很多鸡蛋!”老爷爷和老奶奶商量了一下,就把那只下金蛋的母鸡给宰了。 割开肚皮,里面却什么也没有。老奶奶尖叫:“哎呀,怎么没有金蛋?” 老爷爷和老奶奶脸对脸,两人都很后悔,但是已经来不及了。 从那天起,他们又变成穷光蛋咯。 《下金蛋的母鸡》读后感2 今天我把作业做完了,我就从书包里拿了一本名叫《感动小学生的100篇寓言》来看。

我翻开目录,看见有一篇名叫《下金蛋的母鸡》这篇寓言,我按着目录的页码翻开了那则寓言。内容是:在一个美丽的村庄里,住着一户人家。他们家有一只母鸡每天下一个金蛋,使这一家人的日子过得很富裕。可是女人是个很贪心的人,他觉得每天才下一个金蛋,挣钱太慢了,要是能一下子变成个大富翁多好。女人心想:母鸡的肚子里肯定有很多金蛋,要不然它怎么能每天下一个金蛋呢?如果我把母鸡肚子里的金蛋取出来,就可能成为世界上最富有的`人。于是,贪心的女人就将母鸡抓住,剖开了母鸡的肚子。当她把母鸡的肚子剖开后,却发现里面一个金蛋都没有,而且跟普通的鸡没什么两样。贪心的女人放声大哭起来,可是母鸡已经死了,仅蛋不会在有了,她的好日子也就结束了。 我的感受:我觉得贪心的人是没有好结果的,不要只想一下子就发大财,发财是要经过自己不段努力才会发大财,做大富翁。这个语言里的女人就是没有经过自己的努力就想发大财所以就结束了她的好日子。

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

《想生金蛋的母鸡》读后感

拥有梦想的天空才灿烂《想生金蛋的母鸡》读后感言 《想生金蛋的母鸡》是本质量上佳的绘本,硬质厚皮很有质感,封面的那颗金蛋让我想到央视《非常六加一》栏目里金花四溅的大金蛋了。瑞士人约翰森女士著的童话故事很有教育意义。作者文采颇高,经历丰富,获奖无数,还是德语世界家喻户晓的儿童文学家。读这本书不能不提绘图的凯蒂班德先生,插图真的非比寻常,一只只鸡在他笔下被描摹得动感传神,体态优雅,丰满鲜活。 一句亲手救回来的绝版故事书(汪培珽),说明这本绘本肯定有其不寻常之处。上网百度一下汪培珽先生,原来汪培珽其人是台湾著名亲子书作家。他对这本书是这样评价的全书插图以写实略带夸张的基调,细致的黑线精绘,每一页都像似有看不完的细节,表现三千多只母鸡同中有异的趣点。而页码编排,也是一大特色,绘者将母鸡们一只只编上页码,让她们跃上页眉,表演各式各样的动作,红色印刷的编码母鸡们,演出居然不下于黑调为主的插图,搭配创造了新鲜的视野。蝴蝶页低彩度的插画,母鸡们在林野间的自由舒适,更鲜活了书中所描述的情节。约翰森女士幽默的文字,配以瑞士国宝级插画家细密的黑线精绘,创造出一个引人入胜又鲜活可触的童话世界。行家的评价果然非同一般啊,真的很到位。 书里这只稚气未脱还不具备生蛋功能的小母鸡,和其他3333只鸡没有多大区别,黑暗的鸡舍鸡毛乱舞,大多鸡沾染上咳嗽的毛病,只有这只鸡乐观的生活着,她居然说话与众不同,她的梦想对于其它母鸡来说真是遥不可及,人家都觉得它是痴人说梦,它就有这样的宏大理想,她不愿拘泥于潮湿昏暗还充满臭气熏天鸡粪的促狭地带,她想学唱歌、学游泳、学飞翔,她还想生金蛋呢。别人对她幼稚的想法冷嘲热讽,但她全然不顾人家如何嚼舌头,抱着试试看的想法开始日夜练习,刻苦攻关,艰难跋涉,墙角的破洞让她突发奇想,她第一个走出狭小的鸡舍走向开阔的田野,梦想正在岁月流逝中慢慢向她靠近,她还煞有介事的制造了一点混乱,没有料到奇迹会随之而来。鸡舍主人第一次费了很大劲儿才把这么多鸡全部抓回鸡舍,但当小母鸡再次冲破牢笼飞向更开阔的天地,其他鸡也纷纷效仿,鸡舍主人无计可施了,最后主人给他们扩大了鸡舍面积,让她们也可以自由呼吸,每天生活在阳光下,效果立竿见影,没有一只母鸡再咳嗽了,生活环境有了翻天覆地的变化,小母鸡一天天长大了,她要下蛋了,众鸡都无比期待,看她究竟能不能生下自己的第一个蛋,而且是不是她朝思暮想的金蛋,原来生下的是一颗滑溜溜圆乎乎亮堂堂的棕色鸡蛋,其他母鸡质疑声不断,小母鸡的回答却是不同凡响,你们真的以为母鸡可以生金蛋吗?真的是意味深长的回答,其实生活的快乐就孕育在过程中,结果是啥样就不必太在意了。 本书寓意深远,就是教育孩子要鼓足勇气,敢于挑战未知领域,敢于勇闯难关,才能激发出身体的潜能,如果墨守成规,只能像前辈那样平庸的生活,生活的色彩也就单调无趣,这也是这本书充满生命力的地方所在。

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

《费马大定理》读后感800字

《费马大定理》读后感800字 费马大定理是17世纪法国数学家费马留给后世的一个不解之谜。即:当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n.无正整数解。 为证明这个命题,无数的大数学家们都在不懈努力,孜孜不倦的力求攻克。该问题的提出还在于毕达哥拉斯定理(在一个直角三角形中,斜边的平方等于两直角边的平方之和)的存在。而后欧拉用他的方式证明了x^3+y^3=z^3无正整数解。同理3的倍数也无解。费马也证明了n为4时成立。这样使得待证明的个数大大减少。终于在“谷山——志村猜想” 之后,被安德鲁·怀尔斯完全证明。 看过该书以后,一方面是对于费马大定理的证明过程的惊叹。这是一个如此艰辛的过程。阿瑟·爱丁顿爵士曾说,证明是一个偶像,数学家在这个偶像面前折磨自己。值得解决的问题会以反击来证明他的价

值。费马大定理的成功证明的实现在是它被提出后的300多年。经典数学的证明办法是从一系列公理、陈述出发,然后通过逻辑论证,一步接着一步,最后就可能得到某个结论。数学证明依靠这个逻辑过程,一经证明就永远是对的。数学证明是绝对的。也是一环扣一环的,没有索菲·热尔曼,柯西,欧拉等人在之前的研究,该定理并非能在个人的一次研究中就能得到证明。对于数学的研究是永无止境的。另一方面,我也认识到寻找一个数学证明就是寻找一种认识,这种认识比别的训练所积累的认识都更不容置疑。最近两千五百年以来,驱使着数学家们的正是这种以证明的方法发现最终真理的欲望。数学家有着不安分的想象与极具耐心的执拗。虽说当今计算机已经发展到一定地步了,它的计算速度再快,但是无法改变数学证明的需要。数学证明不仅回答了问题,还使得人们对为什么答案应该如此有所了解。 学数学能干什么?曾经也有学生这样问过欧拉,欧拉给他一些钱以后就让学生走了。培根也说过,数学使人周密。数学的证明最能培养严谨的态度。

数学史与数学教育尔雅答案修订无错版

*********************************************************** 数学史与数学教育绪言(一) 1 第一部数学史著作是()写的《数学史》。 A、阿基米德 B、蒙蒂克拉 C、华里司 D、祖冲之 正确答案:B 2 数学史成为一个独立的学科的标志是()问世。 A、《算术史》 B、《几何史》 C、《数学史讲义》 D、《新数学年刊》 正确答案:C 3 数学史中最有影响的数学史著作是() A、《算术史》 B、《数学史讲义》 C、《几何原本》 D、《新数学年刊》

4 1855 年法国戴尔卡《新数学年刊》后增设()成为历史上最早的数学史专业刊 物,数学史开始为数学教育服务。 A、《算术史》 B、《数学史讲义》 C、《几何原本》 D、《数学历史、传记与文献通报》 正确答案:D 5 历史的相似性的提出者是()。 A、阿基米德 B、蒙蒂克拉 C、华里司 D、德摩根 正确答案:D 6 数学史和数学教育可以为以后的数学教学提供许多教学资源。() 正确答案:√ 7 公元前 5 世纪的《数学史》中有很多关于趣味数学的故事。()

数学史与数学教育绪言(二) 1 美国第一位数学史家是()。 A、蒙蒂克拉 B、史密斯 C、卡约黎 D、德摩根 正确答案:C 2 我国古代()开始引入〇的符号 A、唐代 B、宋代 C、汉代 D、元代 正确答案:B 3 “数学史是比面包和黄油更可口的蜂蜜。”是()对数学史重要性的评价。 A、阿基米德 B、德摩根 C、华里司

D、卡约黎 正确答案:B 4 人们可以做出一个角的三等分角。() 正确答案:× 5 倍立方体问题是现在数学界无法解决的三大难题之一。() 正确答案:√ 数学史与数学教育绪言(三) 1 ()年美国开始开设数学史课程。 A、1894 B、1893 C、1892 D、1891 正确答案:D 2 ()提出了生物发生定律,运用到数学教学即历史发生原理。 A、卡约黎 B、E·haeckel C、华里司 D、德摩根

一只会下金蛋的鸡——费马大定理

一只会下金蛋的鸡 ——费马大定理 学了勾股定理,我们都知道直角三角形的三边满足关系式 a2+b2=c2, 同时还知道,有无数组正整数满足这个关系式。如果a、b、c的次数不是2,而是大于2的正整数,能不能找到正整数满足这个关系式呢? 十七世纪,法国的一位法官、著名的业余数学大师费马,在阅读古希腊数学家丢番图的《算术》第2卷第8个命题:“将一个平方数分解为两个平方数之和”时,在书的空白处写下了一段引人注目的文字:“要想把一个立方数分成两个立方数,把一个四次幂分成两个四次幂,一般地说,把任何高于二次的幂分成两个同次幂,都是不可能的。关于此,我确信已发现一种美妙的证法。可惜这里空白的地方太小,无法写下。”费马去世后,人们在整理他的遗物时发现了这段话,却没有找到证明,这更引起了数学界的兴趣。这就是说,费马自称证明了定理: x n+y n=z n,(n≥3) 无正整数解。人称费马大定理,也称费马最后定理。为什么叫这个名称呢?因为费马提出了数论方面许多引人注目的、富有洞察力的结论,这些结论一直到他去世后很久才被人证明大多是正确的,只有一个是错的。到1840年左右,其中只剩下上述这一个结论还没有被证明,因此称为费马的最后定理。把该定理称为费马大定理,是用以区别费马小定理。费马小定理是费马在1640年10月18日给他朋友的一封信中传出去的,这定理说,若p是一个素数而a与p互素,则a p-a能被p整除。 费马真的证明了自己的定理吗?人们普遍持怀疑的态度。费马逝世后,他的后人翻箱倒柜,也只找到了n=4的证明。他是用直角三角形三边长为整数,面积决不是平方数这一事实来证明的。后来,有人经过详实的考证,认为费马不可能完全证明了自己的定理。 三百多年来,上百名最优秀的数学家为了证明它付出了巨大的精力,其中有欧拉、勒让德、高斯、阿贝尔、狄利赫勒、拉梅、柯西、库默等。问题表述的简单和证明的困难,吸引了更多的人投入证明工作,有些数学家,如库默和近代的范迪维尔,为此献出了毕生的精力。林德曼在1882年证明了π是超越数后,也终身研究费马定理,而未获结果。 布鲁塞尔和巴黎科学院曾设奖金悬赏数次,但也未得到解决。1908年,数学家佛尔夫斯克尔在哥廷根皇家科学会又悬赏十万马克,征求正确的证明。一大批业余爱好者也进行了尝试,并寄去了自己的解答。据说,著名的数论专家朗道请人印了许多明信片,上面写道:“亲爱的先生或女士:你对费马大定理的证明已经收到,现予退回。第一个错误出现在第 页,第 行”。朗道将这些明信片分发给他的学生们,吩咐他们将相应的数字填上去。 最初的证明是从n=3开始一个数一个数的进行的。后来,库默经过终生的努力,“成

费马大定理的3次、4次不可能的证明

A 试证:试证:x x 4+y 4=z 4在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 4-x 4=(z -x)(z 3+z 2x+z x 2+x 3)=(z -x)(z +x)(z 2+x 2)=y 4由x 、y 、z 都是大于0的正整数,所以有z >x 得:得:z z -x -x<<z +x +x< <z 2+x 2(其中若z +x +x≥≥z 2+x 2,则x(1-x)x(1-x)≥ ≥z (z -1)负数大于正数,不成立。)分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y=z +x y 2=z 2+x 2由前两式得x =0(不成立)②y 是合数,得:是合数,得:(z (z -x)a=y (z -x)b=y z 2+x 2=aby 2稍微变换一下就可以得到:((a a 2b 2-1-1) )z 2=(a 2b 2+1)x 2即:即:a a 2 b 2-1=k 12a 2b 2+1=k 22但是在整数里,但是在整数里,m m 2-n 2≠1。故这种情形不成立。∴x 4+y 4=z 4在xy xy≠ ≠0时无整数解。B 试证:试证:x x 3+y 3=z 3在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 3-x 3=(z -x)-x)( (z 2+xz +x 2)=y 3>0则有:则有:z z >x z 2+xz +x 2>z -x 分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y 2=z 2+xz +x 2即:即:z z 2+xz +x 2=y 2=(z -x)2整理得到:整理得到:xz xz =-2xz (不成立不成立) )②y 是合数,则有:是合数,则有:(z (z -x)a=y z 2+xz +x 2=ay 2整理得到:((a a 3-1-1) )z 2-(a 3+1)xz +(a 3-1)x 2=0若z 有解,需有解,需△≥△≥△≥00即:即:a a 3≤3由于a 是大于0的正整数,故a =1即:即:z z -x=y 回到第回到第① ①种情形,结果仍是不成立。 ∴x 3+y 3=z 3在xy xy≠ ≠0时无整数解。另外根据我的推到出勾股方程的满足条件或生成方法是: ((e 2-f 2)/2)2+(ef)2=((e 2+f 2)/2)2 其中e 、f 取大于0的同时为奇或偶的正整数(的同时为奇或偶的正整数(e e ≠ f )但是我在一本介绍数论的书上看到已经被人家找出来,只是形式和我的有点差异。故我通过上述方法找到了勾股方程成立的充足理由,及同样找到了其满足条件。乐哉!

【费马大定理】

【费马大定理】 彼埃尔.德.费马(1601-1665)是数学史上最伟大的业余数学家,他的名字频繁地与数论联系在一起,可是他在这一领域的工作超越了他所在的时代,所以他的同代人更多地了解他是从他的有关坐标几何(费马独立于笛卡尔发明了坐标几何),无穷小演算(牛顿和莱布尼茨使之硕果累累)和概率论(本质上是费马和帕斯卡共同创立的)的研究中得出的.费马并不是一位专业数学家,他的职业是律师兼土伦地方法院的法官. 费马登上法学职位后开始了业余数学研究;虽然他未受过正规的数学训练,但他很快对数学产生了浓厚的兴趣,可惜他未养成发表成果的习惯,事实上在其整个数学生涯中,他未发表过任何东西.另一方面,费马保持了跟同时代的最活跃和最权威的数学家之间的广泛的通信联系.在那个由数学巨人组成的世界里,有笛沙格,笛卡尔,帕斯卡,沃利斯和雅克.贝努里,而这位仅以数学为业余爱好的法国人能和他们中任何一位相媲美. 著名的费马大定理的生长道路即漫长又有趣.1453年,新崛起的奥斯曼土耳其帝国进攻东罗马帝国的都城-----君士坦丁堡陷落了.拜占庭的学者纷纷逃向西方,也带去了希腊学者的手稿,其中就有刁番都的<<算术>>.这本书一直流传到今天,但在1621年前几乎无人去读他.这一年,克罗德.巴舍按照希腊原文重新出版了这本书,并附有拉丁译文,注释和评论.这才使欧洲数学家注意到这本书,似乎费马就是读了这本书才对数论开始感兴趣的. 在读<<算术>>时,费马喜欢在页边空白处写一些简要的注记.在卷II刁番都问题8旁边的空白处,原问题是"给定一个平方数,将其写成其他两个平方数之和",费马写道:"另一方面,不可能将一个立方数写成两个立方数之和,或者将一个四次幂写成两个四次幂之和.一般地,对于任何一个数,其幂大于2,就不可能写成同次幂的另外两个数之和.对此命题我得到了一个真正奇妙的证明,可惜空白太小无法写下来." 用代数术语表达,刁番都问题是想求出方程: x2+y2=z2 的有理数解,这已经由古希腊数学家欧几里德得到:x=2mn,y=m2-n2,z=m2+n2 而费马在页边的注解断言,若n是大于2的自然数,则方程 x n+y n=z n 不存在有理数解.这就是我们今天称为费马大定理的由来. 尽管在普通人的心目中,相信费马真的找到了一个奇妙的证明,但他毕竟是一个动人的故事,17世纪的一位业余数学爱好者证明了一个结果,他使得其后350年间的数学家起来为之奋斗了,然而却劳而无功.他的问题是如此简明,因而这个故事更富有感染力.而且永远存在费马是正确的可能性. 从费马的另一处注解中,数学史家发现了费马唯一具体的对于n=4的情形做的证明,在这个证明中,费马发明了一种"无穷递降法",他利用了整数边直角三角形的面积不可能是平方数的结论,假设方程: x4+y4=z4 有一组有理解,令a=x4,b=2x2z2,c=z4+x4,d=y2xz.反复利用熟知的恒等式:(s+t)2=s2+2st+t2 得到:a2+b2=(z4-x4)2+4x4z4=z8-2x4z4+x8+4x4z4=(z4+x4)2=c2.并且有: ab/2=y42x2z2=(y2xz)2=d2 于是,a2+b2=c2,并且ab/2=d2.但是这已经证明是不可能的,因此假定n=4时有解是错误的. 对于n=3的情形,后来的欧拉在1753年用了一种有缺陷的方法证明了这个命题.他使用了一

相关文档
最新文档