2016年初二数学下册期末试题(附答案)
【数学】2016年四川省成都市八年级(下)数学期末试卷带答案PDF版

2015-2016学年四川省成都市八年级(下)期末数学试卷一、选择题(本题共16小题,每小题3分,共48分.)1.(3分)若分式的值为0,则x的值为()A.x=0 B.x=1 C.x=﹣2 D.x=﹣12.(3分)将分式中分子与分母的各项系数都化成整数,正确的是()A.B.C.D.3.(3分)某种流感病毒的直径是0.00000008m,这个数据用科学记数法表示为()A.8×10﹣6m B.8×10﹣5m C.8×10﹣8m D.8×10﹣4m4.(3分)函数y=﹣中的自变量x的取值范围是()A.x≥0 B.x<0且x≠1 C.x<0 D.x≥0且x≠15.(3分)一次函数y=﹣2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)如图,AD⊥BC,D是BC的中点,那么下列结论错误的是()A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形7.(3分)若点(﹣3,y1),(﹣2,y2),(﹣1,y3)在反比例函数y=﹣图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y18.(3分)如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A.33 B.36 C.39 D.429.(3分)下列命题中,逆命题是假命题的是()A.全等三角形的对应角相等B.直角三角形两锐角互余C.全等三角形的对应边相等D.两直线平行,同位角相等10.(3分)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是()A.SAS B.ASA C.AAS D.SSS11.(3分)某校八年级1班一个学习小组的7名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据的众数和中位数分别是()A.93、89 B.93、93 C.85、93 D.89、9312.(3分)将一张矩形纸对折再对折,然后沿着如图中的虚线剪下,打开,这个图形一定是一个(A.三角形B.矩形C.菱形D.正方形13.(3分)等腰梯形两底的差是4,两腰的长也是4,则这个等腰梯形的两锐角都是()A.75°B.60°C.45°D.30°14.(3分)如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是(A.△ABE≌△DCFB.△ABE和△DCF都是等腰直角三角形C.四边形BCFE是等腰梯形D.E、F是AD的三等分点15.(3分)一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A.B.C.D.16.(3分)如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E 和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用H•L证明Rt△AEP≌Rt△AFPC.AP平分∠BADD.点P一定是菱形ABCD的两条对角线的交点二、填空题(每小题4分,32共分)17.(4分)计算:(a﹣3)2(ab2)﹣3=(结果化为只含正整数指数幂的形式)18.(4分)把命题“平行四边形的两组对边分别相等”改写成“如果…,那么…”的形式是.19.(4分)点P(﹣4,5)关于x轴对称的点P′的坐标是.20.(4分)到三角形各顶点距离相等的点是三角形的交点.21.(4分)四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)22.(4分)小青在八年级上学期的数学成绩如下表所示.如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是分.23.(4分)如果关于x的方程=无解,则m=.24.(4分)如图,双曲线与直线y=mx+n在第一象限内交于点A(1,5)和B(5,1),根据图象,在第一象限内,反比例函数值大于一次函数值时x 的取值范围是.三、解答题(第25题18分,其余每题8分,共50分)25.(18分)(1)计算:(﹣2)3+(﹣)﹣2•(1﹣)0(2)先化简,再求值:÷﹣,其中x=(3)解方程:=+2.26.(8分)2013年4月20,我省雅安市芦山县发生了里氏7.0级强烈地震.为支援灾区,某中学八年级师生发起了自愿捐款活动.已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?27.(8分)已知:如图,在△ABC中,AB=AC,∠B=36°.(1)尺规作图:作AB的垂直平分线交BC于点D,垂足为F,连接AD;(保留作图痕迹,不写作法)(2)求证:△ACD是等腰三角形.28.(8分)如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.29.(8分)经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A、B两种种植技术进行试验,现从这两种技术种植的西瓜中各随机抽取10颗,记录它们的质量如下(单位:kg):A:5.5 4.8 5.0 5.2 4.9 5.2 4.5 4.8 5.1 5.0B:4.7 5.0 4.5 4.9 5.1 5.3 4.6 4.9 5.1 4.9(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成如表:(2)请分别从优质品数量、平均数与方差三方面对A、B两种技术作出评价;从市场销售的角度看,你认为推广哪种种植技术较好.四、能力展示题(每小题10分,共20分)30.(10分)某超市准备购进A、B两种品牌的饮料共100件,两种饮料每件利润分别是15元和13元.设购进A种饮料x件,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y与x的函数关系式;(2)根据两种饮料历次销量记载:A种饮料至少购进30件,B种饮料购进数量不少于A种饮料件数的2倍.问:A、B两种饮料进货方案有几种?哪一种方案能使超市所获利润最高?最高利润是多少?31.(10分)如图,在△ABC中∠ACB>90°,D是AC的中点,过点A的直线l∥BC,将直线AC绕点D逆时针旋转(旋转角α<∠ACB),分别交直线l于点F与BC的延长线交于点E,连接AE、CF.(1)求证:△CDE≌△ADF;(2)求证:四边形AFCE是平行四边形;(3)当∠B=22.5°,AC=BC时,请探索:是否存在这样的α能使四边形AFCE成为正方形?请说明理由;若能,求出这时的旋转角α的度数和BC与CE的数量关系.2015-2016学年四川省成都市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共16小题,每小题3分,共48分.)1.(3分)若分式的值为0,则x的值为()A.x=0 B.x=1 C.x=﹣2 D.x=﹣1【解答】解:∵x﹣1=0且x+2≠0,∴x=1.故选:B.2.(3分)将分式中分子与分母的各项系数都化成整数,正确的是()A.B.C.D.【解答】解:分式中分子与分母的各项系数都化成整数,正确的是,故选:A.3.(3分)某种流感病毒的直径是0.00000008m,这个数据用科学记数法表示为()A.8×10﹣6m B.8×10﹣5m C.8×10﹣8m D.8×10﹣4m【解答】解:0.000 000 08=8×10﹣8.故选:C.4.(3分)函数y=﹣中的自变量x的取值范围是()A.x≥0 B.x<0且x≠1 C.x<0 D.x≥0且x≠1【解答】解:根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x≥0;分母不等于0,可知:x﹣1≠0,即x≠1.所以自变量x的取值范围是x≥0且x≠1.故选:D.5.(3分)一次函数y=﹣2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:对于一次函数y=﹣2x﹣1,∵k=﹣2<0,∴图象经过第二、四象限;又∵b=﹣1<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,∴一次函数y=﹣2x﹣1的图象不经过第一象限.故选:A.6.(3分)如图,AD⊥BC,D是BC的中点,那么下列结论错误的是()A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵D是BC的中点,∴BD=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴∠B=∠C,AB=AC,故A、B、C选项结论都正确,只有AB=BC时,△ABC是等边三角形,故D选项结论错误.故选:D.7.(3分)若点(﹣3,y1),(﹣2,y2),(﹣1,y3)在反比例函数y=﹣图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【解答】解:根据题意得﹣3•y1=﹣1,﹣2•y2=﹣1,﹣1•y3=﹣1,解得y1=,y2=,y3=1,所以y1<y2<y3.故选:D.8.(3分)如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A.33 B.36 C.39 D.42【解答】解:根据题意得:300×(1﹣33%﹣26%﹣28%)=39(名).答:选择短跑的学生有39名.故选:C.9.(3分)下列命题中,逆命题是假命题的是()A.全等三角形的对应角相等B.直角三角形两锐角互余C.全等三角形的对应边相等D.两直线平行,同位角相等【解答】解:A、全等三角形的对应角相等的逆命题是对应角相等的三角形全等,是假命题;B、直角三角形两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;C、全等三角形的对应边相等的逆命题是对应边相等的三角形全等,是真命题;D、两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;故选:A.10.(3分)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是()A.SAS B.ASA C.AAS D.SSS【解答】解:∵以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△OCP和△ODP中,,∴△OCP≌△ODP(SSS).故选:D.11.(3分)某校八年级1班一个学习小组的7名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据的众数和中位数分别是()A.93、89 B.93、93 C.85、93 D.89、93【解答】解:∵85,93,62,99,56,93,89中,93出现了2次,出现的次数最多,∴这七个数据的众数是93,把85,93,62,99,56,93,89从小到大排列为:56,62,85,89,93,93,99,最中的数是89,则中位数是89;故选:A.12.(3分)将一张矩形纸对折再对折,然后沿着如图中的虚线剪下,打开,这个图形一定是一个(A.三角形B.矩形C.菱形D.正方形【解答】解:根据折叠方法可知:所得到图形的4条边都是所剪直角三角形的斜边,并且相等,根据四条边相等的四边形是菱形可得这个图形是菱形,故选:C.13.(3分)等腰梯形两底的差是4,两腰的长也是4,则这个等腰梯形的两锐角都是()A.75°B.60°C.45°D.30°【解答】解:如图所示:梯形ABCD是等腰梯形,且AD∥BC,过点A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=CD,AD=EC,∵BE=BC﹣CE=BC﹣AD=AB=CD=4,∴∠B=60°.∴这个等腰梯形的锐角为60°.故选:B.14.(3分)如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是(A.△ABE≌△DCFB.△ABE和△DCF都是等腰直角三角形C.四边形BCFE是等腰梯形D.E、F是AD的三等分点【解答】解:如图,∵四边形ABCD是矩形ABCD,∴∠A=∠D=∠DCB=∠ABC=90°.又BE、CF分别平分∠ABC和∠DCB,∴∠ABE=∠DCF=45°,∴∠AEB=∠ABE=45°,∠DFC=∠DCF=45°,∴AB=AE,DF=DC,∴△ABE和△DCF都是等腰直角三角形.故B正确;在△ABE与△DCF中,.则△ABE≌△DCF(AAS),故A正确;∵△ABE≌△DCF,∴BE=CF.又BE与FC不平行,且EF∥BC,EF≠BC,∴四边形BCFE是等腰梯形.故C正确;∵△ABE≌△DCF,∴AE=DF.但是不能确定AE=EF=FD成立.即点E、F不一定是AD的三等分点.故D错误.故选:D.15.(3分)一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A.B.C.D.【解答】解:因为蚊香剩余长度y随所经过时间x的增加而减少,又中间熄灭了2h.故选:C.16.(3分)如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E 和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用H•L证明Rt△AEP≌Rt△AFPC.AP平分∠BADD.点P一定是菱形ABCD的两条对角线的交点【解答】解:∵PE⊥AB,PF⊥AD,PE=PF,∴AP平分∠BAD,∵四边形ABCD是菱形,∴对角线AC平分∠BAD,故A、C选项结论正确;可以利用“HL”证明Rt△AEP≌Rt△AFP,故B选项正确;点P在AC上,但不一定在BD上,所以,点P一定是菱形ABCD的两条对角线的交点不一定正确.故选:D.二、填空题(每小题4分,32共分)17.(4分)计算:(a﹣3)2(ab2)﹣3=(结果化为只含正整数指数幂的形式)【解答】解:(a﹣3)2(ab2)﹣3=()2(=•=;故答案为:.18.(4分)把命题“平行四边形的两组对边分别相等”改写成“如果…,那么…”的形式是如果一个四边形是平行四边形,那么它两组对边分别相等.【解答】解:原命题的条件是:四边形是平行四边形,结论是两组对边分别相等;改写成“如果…,那么…”的形式是:如果一个四边形是平行四边形,那么它两组对边分别相等,故答案为:如果一个四边形是平行四边形,那么它两组对边分别相等.19.(4分)点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5).【解答】解:点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5),故答案为:(﹣4,﹣5).20.(4分)到三角形各顶点距离相等的点是三角形三条边的垂直平分线的交点.【解答】解:∵到三角形的一边的两个端点距离相等的点应该在这边的垂直平分线,到三角形的另一边的两个端点距离相等的点应该在这边的垂直平分线,二垂直平分线有一个交点,由等量代换可知到三角形各顶点距离相等的点是三角形三条边的垂直平分线的交点.故填空答案:三条边的垂直平分线.21.(4分)四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).22.(4分)小青在八年级上学期的数学成绩如下表所示.如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是84.2分.【解答】解:总评成绩为:86×10%+90×30%+81×60%=84.2(分).故答案为84.2.23.(4分)如果关于x的方程=无解,则m=﹣5.【解答】解:去分母得:x﹣3=m,解得:x=m+3,∵原方程无解,∴最简公分母:x+2=0,解得:x=﹣2,即可得:m=﹣5.故答案为﹣5.24.(4分)如图,双曲线与直线y=mx+n在第一象限内交于点A(1,5)和B(5,1),根据图象,在第一象限内,反比例函数值大于一次函数值时x 的取值范围是0<x<1或x>5.【解答】解:从图象可知反比例函数图象在一次函数图象上方时,即反比例函数的值大于一次函数的值,所以x的取值范围是0<x<1或x>5.故答案为:0<x<1或x>5.三、解答题(第25题18分,其余每题8分,共50分)25.(18分)(1)计算:(﹣2)3+(﹣)﹣2•(1﹣)0(2)先化简,再求值:÷﹣,其中x=(3)解方程:=+2.【解答】解:(1)原式=﹣8+9×1=﹣8+9=1;(2)原式=•﹣=﹣=,当x=时,原式==﹣3;(3)去分母得:2x(x+1)=1+2x2﹣2,去括号得:2x2+2x=2x2﹣1,解得:x=﹣,经检验x=﹣是分式方程的解.26.(8分)2013年4月20,我省雅安市芦山县发生了里氏7.0级强烈地震.为支援灾区,某中学八年级师生发起了自愿捐款活动.已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?【解答】解:设第一天捐款的人数为x人,第二天捐款的人数为(x+50)人,由题意得,=,解得:x=200,经检验,x=200是原分式方程的解,且符合题意.则两天共参加的捐款人数为:2×200+50=450(人).答:两天共参加捐款的人数是450人.27.(8分)已知:如图,在△ABC中,AB=AC,∠B=36°.(1)尺规作图:作AB的垂直平分线交BC于点D,垂足为F,连接AD;(保留作图痕迹,不写作法)(2)求证:△ACD是等腰三角形.【解答】解:(1)如图所示:DF是AB的垂直平分线.(2)∵AB=AC,∴∠C=∠B=36°,∴∠BAC=180°﹣∠C﹣∠B=108°,∵DF是AB的垂直平分线,∴AD=BD,∴∠1=∠B=36°,∴∠DAC=∠BAC﹣∠1=108°﹣36°=72°,∴∠ADC=∠B+∠1=36°+36°=72°,∴∠DAC=∠ADC,∴△ACD是等腰三角形.28.(8分)如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.【解答】解:(1)∵点A(﹣2,4)在反比例函数图象上∴4=∴k′=﹣8,(1分)∴反比例函数解析式为y=;(2分)(2)∵B点的横坐标为﹣4,∴y=﹣,∴y=2,∴B(﹣4,2)(3分)∵点A(﹣2,4)、点B(﹣4,2)在直线y=kx+b上∴4=﹣2k+b2=﹣4k+b解得k=1b=6∴直线AB为y=x+6(4分)与x轴的交点坐标C(﹣6,0)∴S△AOC =CO•y A=×6×4=12.(6分)29.(8分)经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A、B两种种植技术进行试验,现从这两种技术种植的西瓜中各随机抽取10颗,记录它们的质量如下(单位:kg):A:5.5 4.8 5.0 5.2 4.9 5.2 4.5 4.8 5.1 5.0B:4.7 5.0 4.5 4.9 5.1 5.3 4.6 4.9 5.1 4.9(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成如表:(2)请分别从优质品数量、平均数与方差三方面对A、B两种技术作出评价;从市场销售的角度看,你认为推广哪种种植技术较好.【解答】解:(1)∵质量为(5±0.25)kg的为优等品,∴质量为优等品的范围是:4.75~5.25之间,∴种植技术为A的有8颗,种植技术为B的有6颗;种植技术为A的平均数是:(5.5+4.8+5.0+5.2+4.9+5.2+4.5+4.8+5.1+5.0)÷10=5(kg);种植技术为B的方差为:[(4.7﹣4.9)2+(5.0﹣4.9)2+(4.5﹣4.9)2+3(4.9﹣4.9)2+(5.1﹣4.9)2+(5.3﹣4.9)2+(4.6﹣4.9)2+(5.1﹣4.9)2]=0.054;(2)从优等品数量的角度看,因A技术种植的西瓜优等品数量较多,所以A技术较好;从平均数的角度看,因A技术种植的西瓜质量的平均数更接近5kg,所以A技术较好;从方差的角度看,因B技术种植的西瓜质量的方差更小,所以B技术种植的西瓜质量更为稳定;从市场销售角度看,因优等品更畅销,A技术种植的西瓜优等品数量更多,且平均质量更接近5kg,因而更适合推广A种技术.四、能力展示题(每小题10分,共20分)30.(10分)某超市准备购进A、B两种品牌的饮料共100件,两种饮料每件利润分别是15元和13元.设购进A种饮料x件,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y与x的函数关系式;(2)根据两种饮料历次销量记载:A种饮料至少购进30件,B种饮料购进数量不少于A种饮料件数的2倍.问:A、B两种饮料进货方案有几种?哪一种方案能使超市所获利润最高?最高利润是多少?【解答】解:(1)y与x函数关系式是:y=15x+13(100﹣x)=2x+1300,即y=2x+1300.(2)由题意,得,解得30≤x≤33,它的整数解为x=30,31,32,33.∴A、B两种饮料进货方案有4种,∵y随着x的增大而增大,∴当x=33时,y取得最大值y=2×33+1300=1366即分别购进a种饮料33件,B种饮料67件,超市所获利润最高,最高利润是1366元.31.(10分)如图,在△ABC中∠ACB>90°,D是AC的中点,过点A的直线l∥BC,将直线AC绕点D逆时针旋转(旋转角α<∠ACB),分别交直线l于点F与BC的延长线交于点E,连接AE、CF.(1)求证:△CDE≌△ADF;(2)求证:四边形AFCE是平行四边形;(3)当∠B=22.5°,AC=BC时,请探索:是否存在这样的α能使四边形AFCE成为正方形?请说明理由;若能,求出这时的旋转角α的度数和BC与CE的数量关系.【解答】(1)证明:∵AF∥BC,∴∠1=∠2,在△AFD和△CED中,∴△AFD≌CED(AAS);(2)证明:∵△AFD≌CED,∴DE=DF,∵AD=CD,∴四边形AFCE是平行四边形;(3)当旋转角α=90°时,四边形AFCE是正方形,这时BC=CE,理由如下:∵由(2)知,四边形AFCE是平行四边形,∴当α=90°时,平行四边形AFCE是菱形,又∵AC=BC,∴∠BAC=∠B=22.5°,∴∠ACE=∠BAC+∠B=22.5°+22.5°=45°,∴△CED是等腰直角三角形,则CD=ED,∵四边形AFCE是平行四边形,∴AC=2CD,EF=2ED,∴AC=EF,∴菱形AFCE是正方形,∴AE=CE,在Rt△ACE中由勾股定理:AC==,∵AC=BC,∴BC=.。
2016-2017学年八年级下册数学期末考试试卷(解析版)

2016-2017学年八年级下册数学期末考试试卷〔解析版〕一、选择题1.以下式子没有意义的是〔〕A. B. C. D.2.以下计算中,正确的选项是〔〕A. ÷ =B. 〔4 〕2=8C. =2D. 2 ×2 =23.刻画一组数据波动大小的统计量是〔〕A. 平均数B. 方差C. 众数D. 中位数4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是〔〕A. 方差B. 平均数C. 中位数D. 众数5.关于正比例函数y=﹣2x,以下结论中正确的选项是〔〕A. 函数图象经过点〔﹣2,1〕B. y随x的增大而减小C. 函数图象经过第一、三象限D. 不管x取何值,总有y<06.以以下各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是〔〕A. 2,3,4B. ,,C. 1,,2D. 7,8,97.假设一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为〔〕cm.A. 10B. 11C. 12D. 138.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是〔〕A. 24B. 26C. 30D. 489.在以下命题中,是假命题的是〔〕A. 有一个角是直角的平行四边形是矩形B. 一组邻边相等的矩形是正方形C. 一组对边平行且相等的四边形是平行四边形D. 有两组邻边相等的四边形是菱形10.已知平面上四点A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,直线y=mx﹣3m+6将四边形ABCD 分成面积相等的两部分,则m的值为〔〕A. B. ﹣1 C. 2 D.二、填空题11.已知a= +2,b= ﹣2,则ab=________.12.一次函数y=kx+b〔k≠0〕中,x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y ﹣6 ﹣4 ﹣2 0 2那么,一元一次方程kx+b=0的解是x=________.13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是________.14.一组数据:2017、2017、2017、2017、2017,它的方差是________.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角________个单位.16.如下图,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于以下结论:①∠GFI=90°;②GH=GI;③GI= 〔BC﹣DE〕;④四边形FGHI 是正方形.其中正确的选项是________〔请写出所有正确结论的序号〕.三、解答题17.计算:〔+ ﹣〕× .18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .〔1〕求AD的长.〔2〕求△ABC的周长.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF 为平行四边形.20.下表是某校八年级〔1〕班43名学生右眼视力的检查结果.视力人数 1 2 5 4 3 5 1 1 5 10 6〔1〕该班学生右眼视力的平均数是________〔结果保留1位小数〕.〔2〕该班学生右眼视力的中位数是________.〔3〕该班小鸣同学右眼视力是,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.〔1〕求OF的长.〔2〕求CF的长.22.如图,在平面直角坐标系中,直线y=kx+b经过点A〔﹣30,0〕和点B〔0,15〕,直线y=x+5与直线y=kx+b 相交于点P,与y轴交于点C.〔1〕求直线y=kx+b的解析式.〔2〕求△PBC的面积.年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价元/半小时,骑行单价最低可降至元/半小时〔比方,某用户邀请了3位好友,则骑行单价为元/半小时〕.B品牌共享单车计费方式为:元/半小时,不足半小时按半小时计算.〔1〕某用户准备选择A品牌共享单车使用,设该用户邀请好友x名〔x为整数,x≥0〕,该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.〔2〕假设有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图〔1〕的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图〔2〕,把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图〔3〕中所示的AD处,折痕为AQ.根据以上的操作过程,完成以下问题:〔1〕求CD的长.〔2〕请判断四边形ABQD的形状,并说明你的理由.25.如图,正方形ABCD中,AB=4,P是CD边上的动点〔P点不与C、D重合〕,过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE 的面积为S2.〔1〕求证:BP⊥DE.〔2〕求S1﹣S2关于x的函数解析式,并写出x的取值范围.〔3〕分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.答案解析部分一、<b >选择题</b>1.【答案】B【考点】二次根式有意义的条件【解析】【解答】A、有意义,A不合题意;B、没有意义,B符合题意;C、有意义,C不合题意;D、有意义,D不合题意;故答案为:B.【分析】依据二次根式被开放数为非负数求解即可.2.【答案】C【考点】二次根式的性质与化简,二次根式的乘除法【解析】【解答】解:A、原式= = =3,A不符合题意;B、原式=32,B不符合题意;C、原式=|﹣2|=2,C符合题意;D、原式=4 ,D不符合题意;故答案为:C.【分析】依据二次根式的除法法则可对A作出判断;依据二次根式的性质可对B、C作出判断,依据二次根式的乘法法则可对D作出判断.3.【答案】B【考点】统计量的选择【解析】【解答】由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故答案为:B.【分析】方差是反应一组数据波动大小的量.4.【答案】D【考点】统计量的选择【解析】【解答】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故答案为:D.【分析】决定最终的线路应改由多数人员的意见决定,故此可得到问题的答案.5.【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:A、当x=﹣2时,y=﹣2×〔﹣2〕=4,即图象经过点〔﹣2,4〕,不经过点〔﹣2,1〕,故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不管x为何值,总有y<0错误,故本选项错误.故答案为:B.【分析】依据正比例函数的图像和性质可对B、C、D作出判断,将x=-2代入函数解析式可求得y的值,从而可对A作出判断.6.【答案】C【考点】勾股定理的逆定理【解析】【解答】A、22+32≠42,故不是直角三角形,A不符合题意;B、〔〕2+〔〕2≠〔〕2,故不是直角三角形,B不符合题意;C、12+〔〕2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故答案为:C.【分析】依据勾股定理的逆定理进行判断即可.7.【答案】D【考点】勾股定理【解析】【解答】设斜边长为xcm,则另一条直角边为〔x﹣1〕cm,由勾股定理得,x2=52+〔x﹣1〕2,解得,x=13,则斜边长为13cm,故答案为:D.【分析】设斜边长为xcm,则另一条直角边为〔x-1〕cm,然后依据勾股定理列方程求解即可.8.【答案】A【考点】菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB= ,= ,=4,∴BD=2OB=8,∴S菱形ABCD= ×AC×BD= ×6×8=24.故答案为:A.【分析】根据菱形的对角线互相垂直且互相平分可得到AC⊥BD,且AO=OC=3,然后依据勾股定理可求得BO的长,从而可得到BD的长,最后依据菱形的面积等于对角线乘积的一半求解即可.9.【答案】D【考点】命题与定理【解析】【解答】A、有一个角是直角的平行四边形是矩形,正确,A不符合题意;B、一组邻边相等的矩形是正方形,正确,B不符合题意;;C、一组对边平行且相等的四边形是平行四边形,正确,C不符合题意;D、有两组邻边相等且平行的四边形是菱形,错误,D不符合题意.故答案为:D.【分析】首先依据矩形的定义、正方形的判定定理、平行四边形的判定定理、菱形的判定定理判定命题的对错,从而可做出判断.10.【答案】B【考点】待定系数法求一次函数解析式【解析】【解答】解:如图,∵A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是〔6,3〕,∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故答案为:B.【分析】首先依据各点的坐标可确定出四边形ABCD为平行四边形,然后可求得两对角线交点的坐标,然后由直线平分线四边形的面积可知直线经过点〔6,3〕,最后将点〔6,3〕代入直线解析式求解即可.二、<b >填空题</b>11.【答案】1【考点】分母有理化【解析】【解答】解:∵a= +2,b= ﹣2,∴ab=〔+2〕〔﹣2〕=5﹣4=1,故答案为:1【分析】依据平方差公式和二次根式的性质进行计算即可.12.【答案】1【考点】一次函数与一元一次方程【解析】【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.【分析】依据表格找出当y=0时,对应的x的取值即可.13.【答案】x>0【考点】一次函数与一元一次不等式【解析】【解答】解:由题意,可知一次函数y=mx+n的图象经过点〔0,2〕,且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为:x>0.【分析】不等式的解集为当y>2时,函数自变量的取值范围.14.【答案】0【考点】方差【解析】【解答】解:该组数据一样,没有波动,方差为0,故答案为:0.【分析】方差的意义或利用方差公式进行解答即可.15.【答案】18【考点】勾股定理的应用【解析】【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC= = =18,∴下端离开墙角18个单位.故答案为:18.【分析】根据题意可得到PC=AB=30,AC=24,然后在Rt△ABC中利用勾股定理求出CB的长即可.16.【答案】①③【考点】中点四边形【解析】【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG= BD,GF∥AB,同理IF∥AC,HI= BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI= BHN= 〔BC﹣DE〕,故③正确,故答案为①③.【分析】对于①,延长IF交AB于K,然后根据两直线平行同位角相等进行解答即可;对于②和④.只要证明四边形FGHI是矩形即可判断;对于③,先延长EI交BC于N,然后再证明△DEI≌△CNI,依据全等三角形的性质可得到DE=CN,EJ=JN,然后再结合中点的定义可推出GI=HN=〔BC-DE〕.三、<b >解答题</b>17.【答案】解:原式=〔6 + ﹣3 〕×= ×=7.【考点】二次根式的混合运算【解析】【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式,最后,在依据二次根式的乘法法则进行计算即可.18.【答案】〔1〕解:在Rt△ABD中,AD= =3〔2〕解:在Rt△ACD中,AC= =2 ,则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3【考点】勾股定理【解析】【分析】〔1〕在Rt△ABD中,依据勾股定理可求得AD的长;〔2〕在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD〔AAS〕,∴AE=CF,∴四边形AECF是平行四边形.【考点】平行四边形的判定与性质【解析】【分析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS 证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.20.【答案】〔1〕〔2〕〔3〕解:不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.【考点】中位数、众数【解析】【解答】解:〔1〕该班学生右眼视力的平均数是×〔4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6〕,故答案为:;〔2〕由于共有43个数据,其中位数为第22个数据,即中位数为,〔3〕不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.故答案为:〔1〕;〔2〕;〔3〕不能.【分析】〔1〕根据加权平均数公式求解即可;〔2〕首先将这组数据按照从小到大的顺序排列,中位数为第22个数据;〔3〕根据小鸣同学右眼视力是,小于中位数,故此可得到问题的答案.21.【答案】〔1〕解:∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF= BE=7.〔2〕解:在Rt△DCE中,DE= = =10,∵DF=FE,∴CF= DE=5.【考点】正方形的性质【解析】【分析】〔1〕由正方形的性质可知O为BD的中点,故此OF是△DBE的中位线,然后依据三角形中位线的性质解答即可;〔2〕在Rt△DCE中,利用勾股定理求出DE,再利用直角三角形斜边上中线等于斜边的一半求解即可. 22.【答案】〔1〕解:将点A〔﹣30,0〕、B〔0,15〕代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y= x+15.〔2〕解:联立两直线解析式成方程组,,解得:,∴点P的坐标为〔20,25〕.当x=0时,y=x+5=5,∴点C的坐标为〔0,5〕,∴BC=15﹣5=10,∴S△PBC= BC•x P= ×10×20=100.【考点】两条直线相交或平行问题【解析】【分析】〔1〕将点A和点B的坐标代入直线的解析式得到关于k、b的方程组,从而可求得k、b 的值,于是可得到直线AB的解析式;〔2〕联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,最后利用三角形的面积公式求解即可.23.【答案】〔1〕解:由题意可得,当0≤x≤9且x为正整数时,y=1﹣,当x≥10且x为正整数时,,即y关于x的函数解析式是y=〔2〕解:由题意可得,当0≤x≤9时,1﹣>,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣<,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,<,故答案为:项A品牌的共享单车.【考点】二元一次方程组的应用,一次函数的应用【解析】【分析】〔1〕可分为0≤x≤9且x为正整数或x≥10且x为正整数两种情况列出y与x的函数关系式;〔2〕分为0≤x≤9;0≤x≤9;0≤x≤9;当x≥10四种情况列出关于x的方程或不等式,然后再进行求解即可.24.【答案】〔1〕解:∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC= NC=1,Rt△ACB中,由勾股定理得:AB= = ,∴AD=AB= ,∴CD=AD﹣AC= ﹣1;〔2〕解:四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.【考点】正方形的判定与性质【解析】【分析】〔1〕首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;〔2〕根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.25.【答案】〔1〕解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.〔2〕解:由题意S1﹣S2= 〔4+x〕•x﹣•〔4﹣x〕•x=x2〔0<x<4〕.〔3〕解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= ,∴S1﹣S2=x2= .②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= x,∴x+x=4,∴x=4 ﹣4,∴S1﹣S2=〔4 ﹣4〕2=48﹣32 .【考点】正方形的性质【解析】【分析】〔1〕首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;〔2〕根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;〔3〕分当∠PBF=30°和∠PBF=45°两种情形分别求出PC的长,最后再利用〔2〕中结论进行计算即可.。
八年级(下)期末数学参考答案2016.6

2015~2016学年度第二学期期末考试八年级数学参考答案二、填空题15. 5 16. (3,﹣1)17. 8 18. 七三、解答题19.解:原式=----------------3分=﹣----------------5分=.----------------6分20. 解:由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为s=kt,则,3k=60,解得,k=20,s=20t ----------------------4分设DE的解析式为s=mt+n,则,解得,s=45t﹣45 -----------------------8分由题意得,解得,所以,B出发小时后两人相遇.------------------------13分21. 解:(1)设购进乙种台灯y盏,由题意得:,-------------2分解得:.即甲、乙两种台灯均购进10盏.------------------4分(2)设获得的总利润为w元,根据题意,得:w=(60﹣40)x+(100﹣60)(20﹣x)=﹣20x+800.-------------7分又∵购进两种台灯的总费用不超过1100元,∴40x+60(20﹣x)≤1100,解得x≥5.-------------10分∵在函数w=﹣20x+800中,w随x的增大而减小,∴当x=5时,w取最大值,最大值为700.故当甲种台灯购进5盏,乙种台灯购进15盏时,超市获得的利润最大,最大利润为700元.------------------------13分22.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠Q BO,-------------2分在△POD和△Q OB中,,∴△POD≌△Q OB∴OP=O Q;又∵OB=OD ,∴四边形PB Q D为平行四边形;-------------6分(2)能-------------7分理由如下:t秒后AP=t,PD=8﹣t,若四边形PB Q D是菱形,PD=BP=8﹣t,-------------9分∵四边形ABCD是矩形,∴在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8﹣t)2,解得:t=.即点P运动时间为秒时,四边形PB Q D是菱形.-------------13分23.(1)PB=P Q(或相等)------------------2分证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,------------------5分∴PF=PE,∴四边形PECF为正方形,------------------8分∵∠BPE+∠Q PE=90°,∠Q PE+∠Q PF=90°,∴∠BPE=∠Q PF∴Rt△P Q F≌Rt△PBE,∴PB=P Q;------------------11分(2)成立------------------13分。
2016-2017学年河北省八年级(下)期末数学试卷含答案

2016-2017学年河北省八年级(下)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=52.(3分)由下列条件不能判定△ABC为直角三角形的是()A.(b+c)(b﹣c)=a2B.a=3+k,b=4+k,c=5+k(k>0)C.∠A+∠B=∠C D.∠A:∠B:∠C=1:3:23.(3分)在▱ABCD中,如果∠A+∠C=160°,那么∠B等于()A.20°B.100°C.60°D.80°4.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE的长是()A.4 B.5 C.6 D.75.(3分)如图,在▱ABCD中,AD=8,AB=6,DE平分∠ADC交BC于点E,则BE 的长是()A.2 B.3 C.4 D.56.(3分)已知一次函数y=kx﹣1,若y随x的增大而增大,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>38.(3分)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)要使分式有意义,x的取值范围为.10.(3分)在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为.11.(3分)在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为.12.(3分)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积是.13.(3分)如图,在平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC 的中点,若EF=7,则四边形EACF的周长是.14.(3分)已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为.15.(3分)已知一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),那么此一次函数的解析式为.三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0﹣.17.(6分)一次函数图象经过(3,5)和(﹣4,﹣9)两点,求这个一次函数的解析式.18.(9分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=4,求BD的长.19.(10分)如图,在▱ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:△ABE≌△DCF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.20.(10分)如图,已知,直线y=2x+3与直线y=﹣2x﹣1,求△ABC的面积.21.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)614322.(10分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.2016-2017学年河北省八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2010•南宁)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=5【分析】按照二次根式的运算法则进行计算即可.【解答】解:A、和不是同类二次根式,不能合并,故A错误;B、3﹣=(3﹣1)=2,故B错误;C、×==,故C正确;D、,故D错误.故选:C.【点评】此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.2.(3分)(2017春•河北期末)由下列条件不能判定△ABC为直角三角形的是()A.(b+c)(b﹣c)=a2B.a=3+k,b=4+k,c=5+k(k>0)C.∠A+∠B=∠C D.∠A:∠B:∠C=1:3:2【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,正确B、∵(3+k)2+(4+k)2≠(5+k)2,故不能判定是直角三角形C、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;D、∵∠A:∠B:∠C=1:3:2,∴∠B=×180°=90°,故是直角三角形,正确;故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.(3分)(2017春•河北期末)在▱ABCD中,如果∠A+∠C=160°,那么∠B等于()A.20°B.100°C.60°D.80°【分析】直接利用平行四边形的对角相等,邻角互补即可得出答案.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B=100°.故选:B.【点评】此题主要考查了平行四边形的性质,正确把握平行四边形各角之间的关系是解题关键.4.(3分)(2007•西藏)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE的长是()A.4 B.5 C.6 D.7【分析】直接利用三角形中位线定理可求DE.【解答】解:∵△ABC中,D、E分别是AB、AC的中点,∴DE为三角形ABC的中位线,∴DE=BC=×12=6.故选C.【点评】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边并等于第三边的一半.5.(3分)(2017春•河北期末)如图,在▱ABCD中,AD=8,AB=6,DE平分∠ADC 交BC于点E,则BE的长是()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,可得BC=AD=8,CD=AB=6,AD∥BC,得∠ADE=∠DEC,又由DE平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=6,所以求得BE=BC﹣EC=2.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,CD=AB=6,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=6,∴BE=BC﹣EC=2.故选A.【点评】此题考查了平行四边形的性质、角平分线的定义与等腰三角形的判定定理.注意当有平行线和角平分线出现时,会出现等腰三角形.6.(3分)(2017春•河北期末)已知一次函数y=kx﹣1,若y随x的增大而增大,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的性质得到k>0,然后根据一次函数与系数的关系判断图象经过的象限.【解答】解:∵y随x的增大而增大,∴k>0,∴一次函数经过第一、三象限,而b=﹣1,∴一次函数与y轴的交点在x轴下方,∴一次函数经过第一、三、四象限.∴一次函数不经过第二象限;故选B.【点评】本题考查了一次函数与系数的关系:对于一次函数y=kx+b,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b 的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.7.(3分)(2013•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3【分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.【点评】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.8.(3分)(2014•盘锦)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.【分析】根据题意求出2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,进而根据相遇前、相遇后两个阶段得出相应的分段函数,从而找出符合题意的图象.【解答】解:根据题意,两人同时相向出发,甲到达B地时间为:=6小时,乙到达A地:=3小时.根据题意,分成两个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地;相遇前,s=120﹣(20+40)t=120﹣60t(0≤t≤2),当两者相遇时,t=2,s=0,相遇后,当乙到达A地前,甲乙均在行驶,即s=(20+40)(t﹣2)=60t﹣120(2≤t≤3),当乙到达A地时,此时两者相距60千米;当乙到达A地后,剩下甲在行驶,即s=60+20(t﹣3)=20t(3≤t≤6),故:法二:本题可无需列出方程,只需弄清楚题意,分清楚s与t的变化可分为几个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地,故求出各个时间点便可.∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t 之间函数关系的是B.故选:B.【点评】此题主要考查了函数图象,根据题意得出关键转折点是解题关键.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)(2016•新县校级模拟)要使分式有意义,x的取值范围为x≥0.【分析】根据已知得出x≥0且x+5≠0,求出即可.【解答】解:要使分式有意义,必须x≥0且x+5≠0,解得:x≥0.故答案为:x≥0.【点评】本题考查了二次根式有意义的条件和分式有意义的条件的应用,能根据题意得出x≥0和x+5≠0是解此题的关键.10.(3分)(2017春•河北期末)在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为81,81.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中81是出现次数最多的,故众数是81;而将这组数据从小到大的顺序排列后,处于中间位置的那个数的是第5、6个数的平均数,则这组数据的中位数是=81.故答案为:81,81.【点评】本题考查了中位数和众数的概念.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;一组数据中出现次数最多的数据叫做众数.11.(3分)(2007•哈尔滨模拟)在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为.【分析】根据题意作出图形,设CD=x,在直角三角形ACD中,根据勾股定理表示出AC的长,再在直角三角形ABC中,根据勾股定理求出x的值,从而可得AC 的长.【解答】解:如图:设CD=x,在Rt△ACD中,AC2=22﹣x2;在Rt△ACB中,AC2+BC2=AB2,即22﹣x2+(2+x)2=(2)2,解得x=1.则AC==.故答案为.【点评】本题考查了解直角三角形,利用勾股定理是解题的关键,正确设出未知数方可解答.12.(3分)(2015•鼓楼区校级自主招生)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积是7.【分析】由∠ACB=90°,CD是斜边上的中线,求出AB=6,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=36推出AC•BC=14,根据S=AC•BC 即可求出答案.【解答】解:如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=6,∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=36,∴(AC+BC)2﹣2AC•BC=36,AC•BC=14,∴S=AC•BC=7.故答案为:7.【点评】本题主要考查对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解此题的关键.13.(3分)(2011•福州校级模拟)如图,在平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是29.【分析】首先根据平行四边形的性质可求出AD和CD,再由E、F分别是AD、DC的中点,可求出AE和CF,根据三角形中位线性质可求出AC,从而求出四边形EACF的周长.【解答】解:∵已知平行四边形ABCD,∴AD=BC=6,CD=AB=10,又E、F分别是AD、DC的中点,∴AC=2EF=14,AE=AD=3,CF=CD=5,所以四边形EACF的周长为:AE+EF+CF+AC=3+7+5+14=29.故答案为:29.【点评】此题考查的知识点是平行四边形的性质,解题的关键是运用平行四边形的性质和三角形中位线性质求解.14.(3分)(2017春•河北期末)已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为8或8.【分析】分两种情形①平行四边形是正方形,②这个平行四边形的四个角分别为45°,135°,45°,135°.【解答】解:①当平行四边形是正方形时,满足条件,∵一条对角线的长为8,∴另一条对角线长为:8.②当这个平行四边形的四个角分别为45°,135°,45°,135°.此时另外一条对角线的长度=2•=8.故另一条对角线长为8或8.【点评】此题主要考查了平行四边形的性质以及等腰直角三角形的性质,解题的关键是学会用分类讨论是思想思考问题,注意一题多解.15.(3分)(2017春•河北期末)已知一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),那么此一次函数的解析式为y=﹣x﹣1.【分析】根据两直线平行结合一次函数图象上点的坐标特征,即可得出关于k、b的二元一次方程组,解之即可得出结论.【解答】解:∵一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),∴,解得:,∴此一次函数的解析式为y=﹣x﹣1.故答案为:y=﹣x﹣1.【点评】本题考查了两条直线相交或平行问题以及一次函数图象上点的坐标特征,根据两直线平行结合一次函数图象上点的坐标特征,列出关于k、b的二元一次方程组是解题的关键.三、解答题(本大题共8小题,共75分)16.(6分)(2017春•河北期末)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0﹣.【分析】利用平方差公式、零指数幂和负整数指数的意义计算.【解答】解:原式=5﹣1﹣9+﹣1﹣1﹣=﹣7.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)(2017春•河北期末)一次函数图象经过(3,5)和(﹣4,﹣9)两点,求这个一次函数的解析式.【分析】根据点的坐标,利用待定系数法即可求出该一次函数解析式.【解答】解:设这个一次函数的解析式为y=kx+b(k≠0),将(3,5)、(﹣4,﹣9)代入y=kx+b,,解得:,∴该一次函数的解析式为y=2x﹣1.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的方法及步骤是解题的关键.18.(9分)(2017春•河北期末)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=4,求BD的长.【分析】设BD=x,根据勾股定理列出方程,解方程即可.【解答】解:设BD=x,则AD=2x,在Rt△ACD中,由勾股定理得,AC2﹣AD2=CD2,在Rt△BCD中,BC2﹣BD2=CD2,∴AC2﹣AD2=BC2﹣BD2,即62﹣(2x)2=42﹣x2,解得,x=,则BD=.【点评】本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.(10分)(2015•黄岛区校级模拟)如图,在▱ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:△ABE≌△DCF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.【分析】(1)根据平行四边形的对角相等可得∠BAC=∠D,对边相等可得AB=CD,AC=BD,再根据中点定义求出AE=DF,然后利用“边角边”证明即可;(2)∠P=90°时,四边形BECF是菱形.先判断出四边形ABCP是平行四边形,根据平行四边形的对角相等可得∠ABC=∠P,再根据直角三角形斜边上的中线等于斜边的一半可得BE=CE,利用一组对边平行且相等的四边形是平行四边形判断出四边形BECF是平行四边形,然后根据邻边相等的平行四边形是菱形证明.【解答】(1)证明:在▱ABDC中,∠BAC=∠D,AB=CD,AC=BD,∵E、F分别是AC、BD的中点,∴AE=DF,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS);(2)解:∠P=90°时,四边形BECF是菱形.理由如下:在▱ABCD中,AB∥CD,∵AP∥BC,∴四边形ABCP是平行四边形,∴∠ABC=∠P=90°,∵E是AC的中点,∴BE=CE=AC,∵E、F分别是AC、BD的中点,∴BF=CE,又∵AC∥BD,∴四边形BECF是平行四边形,∴四边形BECF是菱形(邻边相等的平行四边形是菱形).【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,菱形的判定,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质是解题的关键.20.(10分)(2017春•河北期末)如图,已知,直线y=2x+3与直线y=﹣2x﹣1,求△ABC的面积.【分析】将直线y=2x+3与直线y=﹣2x﹣1组成方程组,求出方程组的解即为C 点坐标,求出A、B的坐标,得到AB的长,再利用C点横坐标即可求出△ABC 的面积;【解答】解:将直线y=2x+3与直线y=﹣2x﹣1组成方程组得,,解得.即C点坐标为(﹣1,1),∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=﹣2x﹣1与y轴的交点坐标为(0,﹣1),∴AB=4,=×4×1=2.∴S△ABC【点评】本题考查了两条直线相交或平行的问题,熟悉函数图象上点的坐标特征是解题的关键.21.(12分)(2017春•河北期末)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)6143【分析】(1)根据购进果汁饮料和碳酸饮料共50箱即可求解;(2)根据总利润=每个的利润×数量就可以表示出w与x之间的关系式;(3)由题意得55x+36(50﹣x)≤2100,解得x的值,然后可求y值,根据一次函数的性质可以求出进货方案及最大利润.【解答】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(61﹣51)x+(43﹣36)(50﹣x)=3x+350;(3)由题意,得51x+36(50﹣x)≤2100,解得x≤20,∵y=3x+350,y随x的增大而增大,=3×20+350=410元,此时购进B品牌的饮料50﹣20=30箱,∴当x=20时,y最大值∴该商场购进A、B两种品牌的饮料分别为20箱、30箱时,能获得最大利润410元.【点评】本题考查了一次函数的实际运用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.22.(10分)(2014•扬州)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是乙队.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.(12分)(2017春•河北期末)如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.【分析】(1)根据点B、C的坐标求出BC的长度,再根据平行四边形的对边相等列式求出点D的横坐标,然后写出D点坐标即可;(2)设直线BD的解析式为y=kx+b,然后利用待定系数法求一次函数解析式解答;过点B作BE⊥AD于E,求出BE、DE的长,然后利用勾股定理列式计算即可得解;(3)根据向右平移横坐标加,向下平移纵坐标减求出A1、B1、C1、D1的坐标,然后求出重叠部分平行四边形的底边和高,再根据平行四边形的面积公式列式计算即可得解.【解答】解:(1)∵B(﹣2,4),C(5,4),∴BC=5﹣(﹣2)=5+2=7,∵A(﹣5,1),∴点D的横坐标为﹣5+7=2,∴点D的坐标为(2,1);(2)设直线BD的解析式为y=kx+b,将B(﹣2,4)、D(2,1)代入得:,解得,∴经过B、D两点的直线的解析式为y=﹣x+,过B点作AD的垂线,垂足为E,则BE=4﹣1=3,DE=2﹣(﹣2)=2+2=4,在Rt△BDE中,BD===5;(3)∵▱ABCD向右平移1个单位长度,再向下平移1个单位长度,∴A1(﹣4,0),B1(﹣1,3),C1(6,3)D1(3,0),∴重叠部分的底边长7﹣1﹣1=5,高为3﹣1=2,∴重叠部分的面积S=5×2=10.【点评】本题是一次函数综合题型,主要利用了平行四边形的性质,待定系数法求一次函数解析式,勾股定理的应用,难点在于(3)判断出重叠部分是平行四边形并且求出底边和高的长度.。
人教版2016年初中二年级(八年级)下学期期末数学试卷十一附参考答案与试题解析

人教版2016年初中二年级下学期期末数学试卷十一附参考答案与试题解析一、选择题(每小题3分,共30分)1.二次根式有意义的条件是( )A.x>2 B.x<2C.x≥2 D.x≤22.下列计算正确的是( )A.=±2 B.C.2﹣=2 D.3.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为( )A.2 B.C.D.4.为参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表,则这10双运动鞋的尺码的众数和中位数分别为( )A.25.5,25.5 B.25.5,26 C.26,25.5 D.26,265.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为( )cm2.A.12 B.18 C.20 D.367.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t 的变化而变化,变化规律为一折线,下列图象(草图)正确的是( )A.B.C.D.8.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为( )A.89 B.90 C.92 D.939.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( ) A.B.C.D.10.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是( )A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)二、填空题(本大题8个小题,每小题4分,共32分)在每小题中,请将正确答案直接填在题后的横线上.11.计算﹣=__________.12.函数y=的自变量x的取值范围是__________.13.已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC 的形状为__________.14.写出同时具备下列两个条件的一次函数(正比例函数除外)表达式__________(写出一个即可)(1)y随着x的增大而减小;(2)图象经过点(﹣1,2).15.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).16.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=__________,菱形ABCD的面积S=__________.17.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是__________.18.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是__________升.三、解答题(本题共9题,共90分)19.计算:(1)+(π﹣1)0﹣4+(﹣1)(2)+﹣(﹣)(3)|2﹣3|﹣(﹣)﹣2+.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.21.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)22.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.23.如图,已知直线l:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标;(2)若直线y=mx经过线段AB的中点P,求m的值.24.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.25.某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工__________人,每人所创年利润的众数是__________,平均数是__________;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?26.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.27.(14分)如图,在平面直角坐标系中,直线分别与x轴、y轴交于点B、C,且与直线交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.二次根式有意义的条件是( )A.x>2 B.x<2 C.x≥2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0,解得x≥2.故选C.点评:本题考查的知识点为:二次根式的被开方数是非负数.2.下列计算正确的是( )A.=±2 B.C.2﹣=2 D.考点:二次根式的混合运算.专题:计算题.分析:根据算术平方根的定义对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.解答:解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选B.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.3.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为( )A.2 B.C.D.考点:勾股定理;实数与数轴.分析:首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.解答:解:AC===,则AM=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:C.点评:此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4.为参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表,则这10双运动鞋的尺码的众数和中位数分别为( )A.25.5,25.5 B.25.5,26 C.26,25.5 D.26,26考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:在这一组数据中26是出现次数最多的,故众数是26;处于这组数据中间位置的数是26、26,那么由中位数的定义可知,这组数据的中位数是(26+26)÷2=26;故选D.点评:本题为统计题,考查众数与中位数的意义,解题的关键是准确认识表格.5.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定考点:一次函数图象上点的坐标特征.分析:分别把各点代入一次函数y=﹣1.5x+3,求出y1,y2,y3的值,再比较出其大小即可.解答:解:∵点(﹣3,y1)、(﹣1,y2)、(2,y3)在一次函数y=﹣1.5x+3的图象上,∴y1=﹣1.5×(﹣3)+3=7.5;y2=﹣1.5×(﹣1)+3=1.5;y3=﹣1.5×2+3=0,∵7.5>1.5>0,∴y1>y2>y3.故选A.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为( )cm2.A.12 B.18 C.20 D.36考点:菱形的性质.分析:已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解答:解:根据对角线的长可以求得菱形的面积,根据S=ab=×4cm×9cm=18cm2,故选:B.点评:本题考查了根据对角线计算菱形的面积的方法,根据菱形对角线求得菱形的面积是解题的关键,难度一般.7.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t 的变化而变化,变化规律为一折线,下列图象(草图)正确的是( )A.B.C.D.考点:函数的图象.分析:由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.解答:解:最下面的容器较最粗,第二个容器较粗,那么每个阶段的函数图象水面高度h 随时间t的增大而增长缓陡,用时较短,故选C.点评:本题考查了函数的图象,解决本题的关键是根据三个容器的高度相同,粗细不同得到用时的不同.8.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为( )A.89 B.90 C.92 D.93考点:加权平均数.分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.点评:此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( ) A.B.C.D.考点:勾股定理;点到直线的距离;三角形的面积.专题:计算题.分析:根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.解答:解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A点评:此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.10.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是( )A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)考点:规律型:点的坐标.分析:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,所以可求出从A到A3的后变化的坐标,再求出A1、A2、A3、A4、A5,得出A8即可.解答:解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,∵从A到A3经过了3次变化,∵45°×3=135°,1×()3=2.∴点A3所在的正方形的边长为2,点A3位置在第四象限.∴点A3的坐标是(2,﹣2);可得出:A1点坐标为(1,1),A2点坐标为(0,2),A3点坐标为(2,﹣2),A4点坐标为(0,﹣4),A5点坐标为(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),故选:D.点评:本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,此题难度较大.二、填空题(本大题8个小题,每小题4分,共32分)在每小题中,请将正确答案直接填在题后的横线上.11.计算﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并.解答:解:原式=3﹣=.故答案为:.点评:本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.12.函数y=的自变量x的取值范围是x≤3且x≠﹣2.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,3﹣x≥0且x+2≠0,解得x≤3且x≠﹣2.故答案为:x≤3且x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC 的形状为等腰直角三角形.考点:勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:算术平方根;等腰直角三角形.专题:计算题;压轴题.分析:已知等式左边为两个非负数之和,根据两非负数之和为0,两非负数同时为0,可得出c2=a2+b2,且a=b,利用勾股定理的逆定理可得出∠C为直角,进而确定出三角形ABC 为等腰直角三角形.解答:解:∵+|a﹣b|=0,∴c2﹣a2﹣b2=0,且a﹣b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形点评:此题考查了勾股定理的逆定理,非负数的性质:绝对值及算术平方根,以及等腰直角三角形的判定,熟练掌握非负数的性质及勾股定理的逆定理是解本题的关键.14.写出同时具备下列两个条件的一次函数(正比例函数除外)表达式y=﹣x+1(写出一个即可)(1)y随着x的增大而减小;(2)图象经过点(﹣1,2).考点:一次函数的性质.专题:开放型.分析:由题可知,需求的一次函数只要满足k<0且经过点(﹣1,2)即可.解答:解:设函数关系式是y=kx+b∵y随着x的增大而减小∴k<0∴可设k=﹣1,将(﹣1,2)代入函数关系式,得b=1∴一次函数表达式为y=﹣x+1.(此题答案不唯一)点评:此类题要首先运用待定系数法确定k,b应满足的一个确定的关系式,再根据条件确定k的值,进一步确定b的值,即可写出函数关系式.15.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件AF=CE,使四边形AECF是平行四边形(只填一个即可).考点:平行四边形的判定与性质.专题:开放型.分析:根据平行四边形性质得出AD∥BC,得出AF∥CE,根据有一组对边相等且平行的四边形是平行四边形推出即可.解答:解:添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.故答案为:AF=CE.点评:本题考查了平行四边形的性质和判定的应用,主要考查学生运用性质进行推理的能力,本题题型较好,是一道开放性的题目,答案不唯一.16.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=1:2,菱形ABCD的面积S=16.考点:菱形的性质.分析:由菱形的性质可知:对角线互相平分且垂直又因为AC:BD=1:2,所以AO:BO=1:2,再根据菱形的面积为两对角线乘积的一半计算即可.解答:解:∵四边形ABCD是菱形,∴AO=CO,BO=DO,∴AC=2AO,BD=2BO,∴AO:BO=1:2;∵菱形ABCD的周长为8,∴AB=2,∵AO:BO=1:2,∴AO=2,BO=4,∴菱形ABCD的面积S==16,故答案为:1:2,16.点评:本题考查了菱形性质和勾股定理,注意:菱形的对角线互相垂直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一半.17.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是小林.考点:方差;折线统计图.专题:应用题;压轴题.分析:观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.解答:解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.考点:待定系数法求一次函数解析式;一次函数的应用.分析:先运用待定系数法求出y与x之间的函数关系式,然后把x=240时代入解析式就可以求出y的值,从而得出剩余的油量.解答:解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+35.当x=240时,y=﹣×240+3.5=2(升).故答案为:2.点评:本题考查了运用待定系数法求一次函数的运用,根据自变量求函数值的运用,解答时理解函数图象的含义求出一次函数的解析式是关键.三、解答题(本题共9题,共90分)19.计算:(1)+(π﹣1)0﹣4+(﹣1)(2)+﹣(﹣)(3)|2﹣3|﹣(﹣)﹣2+.考点:二次根式的加减法;零指数幂;负整数指数幂.专题:计算题.分析:(1)先根据零指数幂的意义计算,再把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)先利用绝对值和负整数指数的意义计算,再把化简,然后合并即可.解答:解:(1)原式=3+1﹣2+﹣=+;(2)原式=2+2﹣+3=+5;(3)原式=3﹣2﹣4+3=﹣1.点评:本题考查了二次根式的加减运算:先把各二次根式化为最简二次根式,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.考点:矩形的判定与性质;三角形中位线定理.专题:证明题.分析:由DE、DF是△ABC的中位线,可证得四边形DECF是平行四边形,又由在Rt△ABC 中,∠ACB=90°,可证得四边形DECF是矩形,根据矩形的对角线相等,即可得EF=CD.解答:证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥A C,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.点评:此题考查了矩形的判定与性质以及三角形中位线的性质.此题难度不大,注意掌握数形结合思想的应用.21.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)考点:勾股定理的应用.专题:应用题.分析:本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB 的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.解答:解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.点评:本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意题目中单位的统一.22.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.点评:此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质.23.如图,已知直线l:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标;(2)若直线y=mx经过线段AB的中点P,求m的值.考点:一次函数图象上点的坐标特征.分析:(1)令x=0求得与y轴的交点纵坐标,令y=0求得与x轴的交点横坐标,由此得出点A、点B的坐标;(2)由(1)求得中点P的坐标,代入函数解析式y=mx求得m的值即可.解答:解:(1)令x=0,则y=3,令y=0,则x=﹣4,所以点A的坐标为(﹣4,0);点B的坐标为(0,3);(2)点P的坐标为(﹣2,),代入y=mx得=﹣2m,解得m=﹣.点评:本题考查了用待定系数法求出函数的解析式,一次函数和坐标轴的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.24.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.考点:菱形的性质.分析:(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据等边三角形的性质求出△DAB=60°,然后根据两直线平行,同旁内角互补求解即可;(2)根据菱形的对角线互相平分求出AO,再根据等边三角形的性质可得DE=AO.解答:解:(1)∵E为AB的中点,DE⊥AB,∴AD=DB,∵四边形ABCD是菱形,∴AB=AD,∴AD=DB=AB,∴△ABD为等边三角形.∴∠DAB=60°.∵菱形ABCD的边AD∥BC,∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,即∠ABC=120°;(2)∵四边形ABCD是菱形,∴BD⊥AC于O,AO=AC=×4=2,由(1)可知DE和AO都是等边△ABD的高,∴DE=AO=2.点评:本题考查了菱形的性质,等边三角形的判定与性质,熟记各性质是解题的关键.25.某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工50人,每人所创年利润的众数是8万元,平均数是8.12万元;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)求出3万元的员工的百分比,5万元的员工人数及8万元的员工人数,再据数据制图.(2)利用3万元的员工除以它的百分比就是抽取员工总数,利用定义求出众数及平均数.(3)优秀员工=公司员工×10万元及(含10万元)以上优秀员工的百分比.解答:解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人)5万元的员工人数为:50×24%=12(人)8万元的员工人数为:50×36%=18(人)(2)抽取员工总数为:4÷8%=50(人)每人所创年利润的众数是8万元,平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12万元故答案为:50,8万元,8.12万元.(3)1200×=384(人)答:在公司1200员工中有384人可以评为优秀员工.点评:此题考查了条形统计图,扇形统计图,以及加权平均数的计算公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.考点:正方形的性质;全等三角形的判定与性质.分析:(1)由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,(2)由(1)则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.解答:(1)证明:∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS);(2)∵△EAB≌△GAD,∴EB=GD,∵四边形ABCD是正方形,AB=3,∴BD⊥AC,AC=BD=AB=6,∴∠DOG=90°,OA=OD=BD=3,∵AG=3,∴OG=OA+AG=6,∴GD==3,∴EB=3.点评:此题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.27.(14分)如图,在平面直角坐标系中,直线分别与x轴、y轴交于点B、C,且与直线交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.考点:一次函数综合题;解二元一次方程组;一次函数图象上点的坐标特征;待定系数法求一次函数解析式;三角形的面积;菱形的性质.专题:计算题.分析:(1)把x=0,y=0分别代入直线L1,即可求出y和x的值,即得到B、C的坐标,解由直线BC和直线OA的方程组即可求出A的坐标;(2)设D(x,x),代入面积公式即可求出x,即得到D的坐标,设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入即可求出直线CD的函数表达式;(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,根据菱形的性质能写出Q的坐标.解答:解:(1)直线,当x=0时,y=6,当y=0时,x=12,∴B(12,0),C(0,6),解方程组:得:,∴A(6,3),答:A(6,3),B(12,0),C(0,6).(2)解:设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴y=﹣x+6,答:直线CD的函数表达式是y=﹣x+6.(3)答:存在点Q,使以O、C、P、Q为顶点的四边形是菱形,点Q的坐标是(6,6)或(﹣3,3)或.点评:本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
2016八年级数学下册期末试卷

2016⼋年级数学下册期末试卷 ⼋年级数学期末考试的即将到来,那么作为⼀名初⼆学⽣⽣,你是否已经为接下来的期末考试做好准备了呢?下⾯是店铺为⼤家带来的关于2016⼋年级数学下册期末试卷,希望会给⼤家带来帮助。
2016⼋年级数学下册期末试卷: ⼀.选择题: (每⼩题3分,满分24分) 1.在直⾓坐标系中,点P(2,3)在( )A.第⼀象限B.第⼆象限C.第三象限D.第四象限 2.⼩亮3分钟共投篮80次,进了64个球,则⼩亮进球的频率是A.80B.64C.1.2D.0.8 3.在下列形中,既是轴对称形⼜是中⼼对称形的是( ). 4.在□ABCD中,BC=BD, ∠C=65°,则∠ADB的度数是( )A.25°B.35°C.50°D.60° 5.在正⽅形ABCD中,对⾓线AC与BD相交于O,则中的等腰三⾓形有A.10个B.8个C.6 个D.4个 ( ) 6.在菱形ABCD中,AC与BD相交于O , AC=8,BD=6,则菱形的边长为A.5B.6C.D.10 ( ) 7.在直⾓△ABC中,∠A CB=90°,∠A=55°,将其折叠,使点A落在CB上的A 处,折痕CD,则∠A DB= ( )A.10°B.20°C.30°D.40° 8.⼀次函数的⼤致象可能是( ) ⼆.填空题: (每⼩题3分,满分24分) 9.点Q(5,-3)到两坐标轴的距离之和为 _________. 10.在函数中,⾃变量的取值范围是_________. 11.抛硬币15次,有7次出现正⾯,8次出现反⾯,则出现正⾯的频数是 ________. 12.⼀张长⽅形纸⽚,剪去⼀部分后得到⼀个三⾓形,则中∠1+∠2的度数是 _________. 13.将□ABCD的⼀边BC延长⾄E,若∠A=110°,则∠DCE= ______. 14.已知在⼀次函数中,当时,,那么这个⼀次函数在轴上的交点坐标为_________. 15.在△ABC中,D、E分别是AB、AC中点,若BC=6,则DE=_______. 16.在△ABC中,∠C=90°,AD平分∠CAB,BC=6 ,BD=4 ,那么点D到直线AB的距离是_________ . 三.解答题: (请写出主要的推导过程) 17.(本题满分6分)在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,(直接写出结果,不必说明理由) 18. (本题满分6分)活动⾐帽架由三个相同菱形组成,利⽤四边形的不稳定性,调整菱形的内⾓A,使⾐帽架拉伸或收缩,若菱形的边长等于10 ∠A=120°,则 AB= . AD= . 19.(本题满分6分).在A港有甲、⼄两艘渔船,甲船沿北偏东60°的⽅向以6海⾥/时的速度前进、⼄船沿南偏东30°的⽅向以8海⾥/时的速度前进,2⼩时后分别到达B、C两岛,求BC两岛的距离. 20.(本题满分6 分).在平⾯直⾓坐标系中,菱形OBCD的顶点O、D的坐标分别是(0、0)、(3、4),求顶点C的坐标. 21.(本题满分6分)已知直线经过点A(-2,0)和点B(0,2)求直线的表达式. 22.(本题满分6分)在四边形ABCD中,AB=AD=8 ,∠A=60°, ∠BDC=90°, BC=10 ,求△BCD的⾯积. 23.(本题满分8分).某商场促销期间规定,如果购买不超过50元的商品,则按全额收费,如果购买超过50元的商品,则超过50元的部分按九折收费.设商品全额为元,交费为元. (1)写出与之间的函数关系; (2)某顾客在⼀次消费中,向售货员交纳了212元,那么在这次消费中,该顾客购买的商品全额为多少元? 24.(本题满分8分)在矩形ABCD中,AC与BD相交于点O,AO=3 , ∠OBC=30°,求矩形的周长. 25.(本题满分10分)在△ABC中,AD⊥BC于D,AB=4,AC=3,DC= . (1)求BD的长; (2)判断△ABC的形状. 26.(本题满分10分).富豪阁社区为了解居民每⽉⽤于信息消费的⾦额,随机抽取了部分家庭进⾏调查,数据整理成所⽰的不完整统计,已知A、B两组户数直⽅的⾼度⽐为1∶5,请结合中相关数据回答下列问题. (1)A组的频数是_______;本次调查样本的容量是_______; (2)补全直⽅(请标明各组频数); (3)若该社区有1500户住户,请估计⽉信息消费额不少于300元的户数是多少? 组别消费额(元) A 10≤ <100 B 100≤ <200 C 200≤ <300 D 300≤ <400 E >400 2016⼋年级数学下册期末试卷答案: ⼀.选择题:(每⼩题3分,满分24分)1.A2.D3.C4.C5.B6.A7.B8. B ⼆.填空题: (每⼩题3分,满分24分) 9.8 10. ≠1 11. 7 12.90° 13.70° 14.(0,4) 15. 3 16.2 三.解答题: 17.(6分)解:AD∥BC 18.( 6分)解:AB ,AD . 19.(6分)解:由题设可知∠BAC=90°,AB=12,AC=16, 由股定理得BC=20(海⾥).答:BC两岛的距离为20海⾥. 20.(6分).解:∵D(3、4) ∴OD=5,CD=5 ∴C的坐标的坐标为(8,4) 22.(6分)解:直线为 将点A(-2,0)和点B(0,2)的坐标代⼊得 解得∴直线的表达式为 22.(6分)解:∵AB=AD=8 ,∠A=60°, ∴△ABC为等边三⾓形. ∴BD=8.在直⾓△BDC中,∵BD=8,BC=10, 由勾股定理CD=6, △BCD的⾯积为 CD BD=24. 23.(8分)解:(1)当0≤ ≤50, ;当﹥50时, (2)若,则,∴ ∴该顾客购买的商品全额为230元. 24.(8分)解:∵∠OBC=30°,∴∠OBA=60° ∴△AOB为等边三⾓形,∴AB=3,AC=6, 在直⾓△ABC中,由勾股定理BC= ,∴矩形的周长为( ) . 25.(10 分)解:(1)在△ADC中,由勾股定理AD= ,⼜在△ADB中, BD= (2) ∵BC =BD+DC=5,,且AB +AC =BC ∴△ABC是直⾓三⾓形. 26.(10分)解:(1)A组的频数是: ; 调查样本的容量是: ; (2)C组的频数是:,D组的频数是:,E组的频数是: ,略. (3)∵,∴该社区⽉信息消费额不少于300元的户数是540户.。
人教版八级下学期期末数学试卷一附参考答案与试题解析

人教版 2016 年八年级下学期期末数学试卷一附参照答案与试题剖析一、选择题(本大题共 12 小题,每题 3 分,共 36 分。
在每个小题给出的四个选项中,只有一项为哪一项符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应地址上)1.的值等于()A .4B.±4C.±2D. 22.数据 10, 15, 15, 20, 40 的众数是 ()A .15B.C. 20D. 403.已知 a>0,则以下计算正确的选项是 ()A.+=B.﹣=C.=a 2=1D.4.已知,能取的是(a=5cm, b=9cm ,且三条线段)a, b,c 首尾相连能围成三角形,则以下线段中 c 不A .5B. 9C.D. 105.以下二次根式中的最简二次根式是()A.B.C.D.6.如图,矩形ABCD的长和宽分别为 6 和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于()A .20B. 10C.4D.27.如图,在Rt△ABC 中,∠ BAC=90 °,AB=6 , D 是斜边 BC 的中点,若AD=5 ,则 AC 等于()A .8B. 64C. 5D. 68.以下给出的点中,在函数y= ﹣ 2x+1 的图象上的点是 ()A .(1, 3)B.(﹣,﹣ 4)C.(,﹣ 4)D.(﹣ 1, 1)9.已知直线 a: y=kx (k≠0)和直线b: y=kx+1 ( k≠0),则说法正确的选项是 ()A .直线 a 向上平移 1 个单位获取直线bB .直线 a 向下平移 1 个单位获取直线bC.直线 a 向左平移 1 个单位获取直线bD .直线 a 向右平移 1 个单位获取直线b10.已知代数式+ 在实数范围内存心义,则x 的取值范围是 ()A .0< x≤1B. x≥1C. x>0D. 0≤x≤111.某学校要招聘一名教师,分笔试和面试两次考试,笔试、面试和最后得分的满分均为100 分,竞聘教师的最后得分按笔试成绩:面试成绩 =3:2 的比率计算.在此次招聘考试中,某竞聘教师的笔试成绩为90 分,面试成绩为 80 分,则该竞聘教师的最后成绩是() A.43 分B.85分C.86 分D. 170 分12.实数 a、b 在数轴上的地址如图,则化简+﹣的结果是 ()A .0B.﹣ 2a C. 2b D.﹣ 2a+2b二、填空题(本大题共 4 小题,每题 3 分,共 12 分 .不要求写出解答过程,请把答案直接填写在答题卷相应地址上)213.已知 x﹣=,则x +=__________.14.如图,分别以Rt△ ABC 的三边为边长,在三角形外作三个正方形,若正方形P 的面积等于 89,Q 的面积等于25,则正方形R 的边长是 __________.15.如图,一次函数y=kx+b ( k<0)的图象过点(0,﹣ 2),则不等式kx+b <﹣ 2 的解集是__________.16.春耕期间,某农资门市部连续 5 填调进一批化肥销售.在开始调进化肥的第 4 天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个门市部的化肥存量S(单位: t)与时间t(单位:天)之间的函数关系以以下列图,则该门市部这次化肥销售活动(从开始进货到销售完成)所用时间是__________ 天.三、解答题(本大题共 8 小题,共 72 分。
2016--2017学年八年级(下)期末数学试卷新人教版及解析

2016--2017学年八年级(下)期末数学试卷一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.(3分)下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,93.(3分)若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是()A.y1>y2 B.y1≥y2C.y1<y2D.y1≤y24.(3分)如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差6.(3分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)二、填空题(每题3分,共24分)7.(3分)将直线y=2x向下平移2个单位,所得直线的函数表达式是.8.(3分)直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是.9.(3分)计算:﹣=.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.11.(3分)如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为.12.(3分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.13.(3分)一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P 是对角线AC上的一个动点,则PE+PB的最小值是.三、解答题(本大题共2小题,每题5分,共10分)15.(5分)计算:﹣+.16.(5分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.四、解答题(本大题共2小题,每题6分,共12分)17.(6分)已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标.18.(6分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)这50户家庭月用水量的平均数是,众数是,中位数是;(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?五、解答题(本大题共2小题,每小题8分,共16分)19.(8分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.20.(8分)在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线L:y=kx+3.(1)当直线l经过D点时,求点D的坐标及k的值;(2)当直线L与正方形有两个交点时,直接写出k的取值范围.六、解答题(本大题共2小题,每小题10分,共20分)21.(10分)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF 和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.22.(10分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,多宝鱼价格z(单位:元/件)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?参考答案与试题解析1.解:由题意得,x﹣2≥0,解得x≥2.故选C.2.解:A、因为12+22≠32,故不是勾股数;故此选项错误;B、因为32+42=52,故是勾股数.故此选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选:B.3.解:把A(﹣,y1)、B(1,y2)分别代入y=x+4得y1=﹣+4=,y2=1+4=5,所以y1<y2.故选C.4.解:A、∵AD∥BC,∴∠ADB=∠CBD,在△BOC和△DOA中,∴△BOC≌△DOA(AAS),∴BO=DO,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵∠ABC=∠ADC,AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC+∠BCD=180°,∴AB∥DC,∴四边形ABCD是平行四边形,正确,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,正确,故本选项错误;D、由∠ABD=∠ADB,∠BAO=∠DCO,无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选:D.5.解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.6.解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.7.解:由题意得:平移后的解析式为:y=2x﹣2=2x﹣2,即.所得直线的表达式是y=2x﹣2.故答案为:y=2x﹣2.8.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故答案为:x>2.9.解:=2﹣=.故答案为:.10.解:∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC===4,∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案为:7.11.解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2,故答案为:2.12.解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.13.解:由题意,得k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案为y=x+314.解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.15.解:﹣+=3﹣4+=0.16.解:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.17.解:(1)由题意可得2k﹣4=﹣3,解得k=,∴一次函数解析式为y=x﹣4;(2)把该函数图象向上平移6个单位可得y=x﹣4+6=x+2,令y=0可得x+2=0,解得x=﹣4,∴平移后图象与x轴的交点坐标为(﹣4,0).17.解:(1)根据条形图可得出:平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),如图所示:(2)这50 个样本数据的平均数是11.6,众数是11,中位数是11;故答案为;11.6,11,11;(3)样本中不超过12吨的有10+20+5=35(户),∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).18.解:(1)证明:如图:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠1=∠2,∵AE∥CF,∴∠3=∠4,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS);(2)∵△AEB≌△CFD,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.19.解:(1)如图,过D点作DE⊥y轴,则∠AE D=∠1+∠2=90°.在正方形ABCD中,∠DAB=90°,AD=AB.∴∠1+∠3=90°,∴∠2=∠3.又∵∠AOB=∠AED=90°,在△AED和△BOA中,,∴△AED≌△BOA,∴DE=AO=4,AE=OB=3,∴OE=7,∴D点坐标为(4,7),把D(4,7)代入y=kx+3,得k=1;(2)当直线y=kx+3过B点时,把(3,0)代入得:0=3k+3,解得:k=﹣1.所以当直线l与正方形有两个交点时,k的取值范围是k>﹣1.21.(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.22.解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+300.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.(3)设多宝鱼价格z与上市时间x的函数解析式为z=mx+n,当5≤x≤15时,有,解得:,∴此时多宝鱼价格z与上市时间x的函数解析式为y=﹣2x+42.当x=10时,y=10×10=100,z=﹣2×10+42=22,当天的销售金额为:100×22=2200(元);当x=12时,y=10×12=120,z=﹣2×12+42=18,当天的销售金额为:120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年初二数学下册期末试题(附答案)
下面是网为大家收集的初二数学下册期末,希望对大家有帮助。
一、选择题(本大题共10小题,每题3分,共30分)
1.下列根式中不是最简二次根式的是( )
A. B. C. D.
2.下列各组数中,能构成直角三角形的三边的长度是( )
A.3,5,7
B.
C. 0.3,0.5,0.4
D.5,22,23
3. 正方形具有而矩形没有的性质是( )
A. 对角线互相平分
B. 每条对角线平分一组对角
C. 对角线相等
D. 对边相等
4.一次函数的图象不经过的象限是( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
5.AC,BD是□ABCD的两条对角线,如果添加一个条件,使□ABCD为矩形,那么这个条件可以是( )
A. AB=BC
B. AC=BD
C. AC⊥BD
D. AB⊥BD
6.一次函数,若,则它的图象必经过点( )
A. (1,1)
B. (—1,1)
C. (1,—1)
D. (—1,—1)
7.比较,,的大小,正确的是( )
A. < <
B. < <
C. < <
D. < <
8. 某人驾车从A地走高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从A地出发到达B地的过程中,油箱中所剩燃油 (升)与时间 (小时)之间的函数图象大致是( )
A B C D
9. 某校八年级甲、乙两班举行电脑汉字输入速度比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:
班级参加人数中位数方差平均字数
甲 55 149 191 135
乙 55 151 110 135
有一位同学根据上表得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是( )
A. ①②③
B. ①②
C. ①③
D. ②③
10. 如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:
①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( )
A.1
B.2
C.3
D. 4x98
二、填空题(本大题共8小题,每题3分,共24分)
11.二次根式中字母的取值范围是__________.
12.已知一次函数,则它的图象与坐标轴围成的三角形面积是__________.
13.如图, □ABCD的对角线AC,BD相交于点O,点E,F分别是AO,BO的中点,若AC+BD=24㎝,△OAB的周长是18㎝,则EF= ㎝.
14.在一次函数中,当0≤ ≤5时,的最小值为 .
15.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF的长是_____.
16.若一组数据,,,…, 的方差是3,则数据 -3, -3, -3,…,
-3的方差是 .
17. 如图,已知函数和的图象交点为P,则不等式的解集为 .
18.如图,点P 是□ABCD 内的任意一点,连接PA、PB、PC、PD,得到△PAB、
△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:
①S1+ S3= S2+S4 ②如果S4>S2 ,则S3 >S1 ③若S3=2S1,则S4=2S2
④若S1-S2=S3-S4,则P点一定在对角线BD上.
其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).
三、解答题(本大题共46分)
19. 化简求值(每小题3分,共6分)
(1) - × + (2)
20.(本
本题5分)已知y与成正比例,且时, .
(1)求y与x之间的函数关系式;
(2)设点( ,-2)在(1)中函数的图象上,求的值.
21.(本题7分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,求EF的长.
22.(本题8分)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:
(1)这辆汽车往、返的速度是否相同?
请说明理由;
(2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.
23.(本题10分)某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:
班级行为规范学习成绩校运动会艺术获奖劳动卫生
甲班 10 10 6 10 7
乙班 10 8 8 9 8
丙班 9 10 9 6 9
根据统计表中的信息解答下列问题:
(1)请你补全五项成绩考评分析表中的数据:
班级平均分众数中位数
甲班 8.6 10
乙班 8.6 8
丙班 9 9
(2)参照上表中的数据,你推荐哪个班为区级先进班集体?并说明理由.
(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为区级先进班集体?
解:(1)补全统计表;
(3)补全统计图,并将数据标在图上.
24.(本题10分)已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.
(1)判断四边形BNDM的形状,并证明;
(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由;
(3)在(2)的条件下,若∠BAC=30°,∠ACD=45°,求四边形BNDM的各内角的度数.
八年级数学试卷参考答案及评分标准
一、选择题:(每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案 C C B B B D A C A D
二、填空题:(每小题3分,共24分)
题号 11 12 13 14 15 16 17 18
答案≥2
3 -7 10 12 >1
①④
注:第12题写不扣分.
三、解答题(46分)
19、(1) …………3分
(2)16-6 …………3分
20、解:(1) 设y=k(x+2)
(1+2)k=-6
k=-2 …………3分
(2) 当y=-2时
-2a-4=-2
a=-1 ………………5分
21、解∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3.
根据折叠的性质得:EG=BE=1,GF=DF. ……………1分
设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2.在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,
解得:. ………………6分
∴DF= ,EF=1+ ……………7分
22、解:(1)不同.理由如下:
往、返距离相等,去时用了2小时,而返回时用了2.5小时,往、返速度不同.…………………2分
(2)设返程中与之间的表达式为,
则
解得…………………5分
.( )(评卷时,自变量的取值范围不作要求) 6分
(3)当时,汽车在返程中,
.
这辆汽车从甲地出发4h时与甲地的距离为48km. ……………8分
班级平均分众数中位数
甲班 10
乙班 8
丙班 8.6
23、解:(1)
……………3分
(2)以众数为标准,推选甲班为区级先进班集体.
阅卷标准:回答以中位数为标准,推选甲班为区级先进班集体,同样得分.……………5分)
(3) (分)
补图略……………(9分)
推荐丙班为区级先进班集体……………(10分)
24、(1)∵M0=N0,OB=OD
∴四边形BNDM是平行四边形…………………3分
(2) 在Rt△ABC中,M为AC中点
∴BM= AC
同理:DM= AC
∴BM=DM
∴平行四边行BNDM是菱形…………………7分
(3) ∵BM=AM
∴∠ABM=∠BAC=30°
∴∠BMC=∠ABM+∠BAC =60°
同理:∠DMC=2∠DAC=90°
∴∠BMD=∠BMC+∠DM C=90°+60°=150°
∴∠MBN=30°
∴四边形BNDM的各内角的度数是150°,30°,150°,30°.……………10分更多相关试题:
1.
2.
3.
5.
6.
7.
8.
9.
10.。