(完整版)生物化学绪论
生物化学绪论

2. 动态生物化学: 动态生物化学:
20世纪初~20世纪中叶:同位素的使用,确定了生物体内各种组成物质的代谢变 世纪初~ 世纪中叶 同位素的使用, 世纪中叶: 世纪初 化,以及生物活性物质(酶、维生素和激素等)在代谢变化中的作用; 以及生物活性物质( 维生素和激素等)在代谢变化中的作用;
3. 分子生物学时代
人类基因组计划1990年启动 人类基因组计划 年启动
由美、 由美、英、日、德、法、中六国参与,其核心内容是测 中六国参与, 定人基因组的全部DNA序列, 序列, 定人基因组的全部 序列 1999年9月1日中国正式加入该计划,承担了 人类基因组 年 月 日中国正式加入该计划 承担了1%人类基因组 日中国正式加入该计划, (约三千万个碱基 的测序任务。 约三千万个碱基)的测序任务 约三千万个碱基 的测序任务。 2003年,人类基因组计划的所有目标全部实现。已完成的序 年 人类基因组计划的所有目标全部实现。 列图覆盖人类基因组所含基因区域的99%, %,精确率达到 列图覆盖人类基因组所含基因区域的 %,精确率达到 99.99%,这一进度比原计划提前两年多。 %,这一进度比原计划提前两年多 %,这一进度比原计划提前两年多。
生物化学
Biochemistry
—introduction
生物化学
生物化学( 生物化学(Biochemistry)是从分子水平上描述 解 )是从分子水平上描述/解 释生物体的化学组成、 释生物体的化学组成、化学反应及其与生理功能的联 系的一门科学,也即生命的化学。 系的一门科学,也即生命的化学。
分子生物学
基因的贮存、传递、 3.基因的贮存、传递、表达及其调控 自我复制是生命过程的又一基本特征。 自我复制是生命过程的又一基本特征。基因是 DNA分子中的功能片段 分子中的功能片段, DNA分子中的功能片段,研究基因各片段在染色 体中的定位、核苷酸的排列顺序及其功能, 体中的定位、核苷酸的排列顺序及其功能,DNA 复制、RNA转录和蛋白质生物合成过程中基因传 复制、RNA转录和蛋白质生物合成过程中基因传 递的机制, 递的机制,基因传递与表达的时空调节规律等是 生物化学极为重要的课题。 生物化学极为重要的课题。
生物化学 绪论(共46张)

• 德国Neuberg (1877-1951) 于1903年 提出“生物化学”这个名词生物化学 才成为一门独立的学科,在此之前, 分别由有机化学和生理学分别研究。
德国有机 化学家
Emil Fischer
‘‘生化之 父’
二十世纪的30年代--五十年代
30年代, 1933~1936年Krebs提出了著 名的尿素循环和三羧酸循环。 1940年德国科学家Embden 和 Meyerhof提出的糖酵解途径。
What is life science? 环境与生态 能源与资源 斯坦利(美)分离提纯酶和病毒蛋白质 开创“寡聚核苷酸基定点诱变”法 二 生物化学的概念、研究对象和内容 细胞是生命的基本组成单位 一 生物大分子的结构、性质和生物功能 1997年, 首例克隆哺乳动物“多莉”的诞生 米尔斯坦(英国)
确立有免疫抑制机理的理论, 研制出了单克隆抗体 生命科学领域显示无限广阔的发 1940年德国科学家Embden 和 Meyerhof提出的糖酵解途径。 抗体化学结构和机能
Out of 19,813,086, 19,568,394 sites were identical to their human
counterparts for a mean percent
Fujiyama et al, 2002, Science, 295: 131-134
What is life science?
生命的基本特征:
4.生物具有个体发育和进化的历史
正常的生物都具有从生到死的完整生命 过程, 即生活史。
生物个体不断繁衍后代, 无数个体失活史 串联起来就构成了生物的进化史, 遗传和 变异结合的后果。
What is life science?
第一章 生物化学绪论

第一节、生物化学发展简史
生物化学是在近代化学和生理学的基础上逐渐发展 起来的,故最初称为“生理化学”。直到 1903年才由 德国科学家C.A. Neuberg 提出“Biochemistry” 而成 为一门独立的学科。 纵观生物化学的发展史,可大致分为三个阶段,即 叙述生物化学、动态生物化学和分子生物学阶段。
第三节 生物化学与药学的关系
由生物化学、分子生物学、微生物学相结合而快速发展起
来的现代生物技术已有可能生产人体内几乎所有痕量、稀有 的多肽和蛋白质, 这些技术包括基因工程、酶工程、细胞工 程和发酵工程。生物技术制药从1982年重组人胰岛素上市至 今新批准用于治疗的生物技术药物已超百种,我国亦有包括 胰岛素、白细胞介素、干扰素、促红细胞生成素、粒细胞集 落刺激因子、胸苷激酶基因工程细胞制剂,乙肝疫苗共20多 种生物技术药物批准上市。 因此生物化学基本理论、方法和技术是药学专业学生 必备的理论知识和实践技能。
第一节、生物化学发展简史
20世纪70年代Berg成功地进行了DNA 体外重组, 标志现代基因工程的诞生。20世纪80年代后,分子 生物学和基因工程得以飞速发展,推动了医药工业 和农业的发展。20世纪末启动人类基因组计划,经 近10年努力,终于在2001年2月由人类基因组计划 和Cerela共同公布了人类基因组草图。这是人类认 识生命本质的又一重大突破。将为人类的健康和疾 病的研究带来根本性的变革。
第二节
生物化学研究的主要内容
二、物质代谢、能量代谢及代谢调节
组成生物体的物质不断地进行着复杂而有规律的化学 变化,即新陈代谢。新陈代谢是生命的基本特征之一。生 物经新陈代谢不断与外界环境进行物质交换,以维持生物 体的繁殖、生长、发育、修补和自我更新。 物质代谢 新陈代谢 能量代谢
生物化学

第一章.生物化学绪论1.生命的生物化学定义:生命系统包含储藏遗传信息的核酸和调节代谢的酶蛋白。
但是已知某种病毒生物却无核酸(朊病毒)。
2.生命(生物体)的基本特征:(1)细胞是生物的基本组成单位(病毒除外)。
( 2 ) 新陈代谢、生长和运动是生命的基本功能。
( 3 )生命通过繁殖而延续,DNA是生物遗传的基本物质。
(4)生物具有个体发育和系统进化的历史。
( 5 )生物对外界可产生应激反应和自我调节,对环境有适应性。
3.化学是在原子、分子水平上,研究物质的组成,结构、性质和变化规律的一门基础自然科学。
生物化学就是生命的化学。
4.生物化学:运用化学的原理和方法,研究生物体的物质组成和生命过程中的化学变化,进而深入揭示生命活动的化学本质的一门科学。
5.生命体的元素组成:在地球上存在的92种天然元素中,只有28种元素在生物体内被发现。
第一类元素:包括C、H、O和N四种元素,是组成生命体最基本的元素。
这四种元素约占了生物体总质量的99%以上。
第二类元素:包括S、P、Cl、Ca、K、Na和Mg。
这类元素也是组成生命体的基本元素。
第三类元素:包括Fe、Cu、Co、Mn和Zn。
是生物体内存在的主要少量元素。
第四类元素:包括Al、As、B、Br、Cr、F、Ga、I、Mo、Se、Si等。
偶然存在的元素。
6.生命分子是碳的化合物:生命有机体的化学是围绕着碳骨架组织起来的。
生物分子中共价连接的碳原子可以形成线状的、分支的或环状的结构。
7.生物(生命)分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。
生物分子的主要类型包括:多糖、聚脂、核酸和蛋白质等生物大分子。
维生素、辅酶、激素、核苷酸和氨基酸等小分子。
8 .生物大分子的结构与功能:研究生物分子的结构和功能之间的关系,代表了现代生物化学与分子生物学发展的方向。
9.生物化学的内容:静态生物化学:研究生物有机体的化学组成、结构、性质和功能。
动态生物化学:研究生命现象的物质代谢、能量代谢与代谢调节。
生物化学第一章绪论

1965年, Holly 排出酵母tRNAAla 的一级结构 1966年,Nirenberg & Khorana 破译了遗传密码 1970 年, Temin和 Baltimore 几乎同时发现逆向转录酶,证 实了 Temin 1964 年提出的“前病毒假说”,阐明在劳氏肉 瘤病毒(RSV)感染以后,首先产生含RNA病毒基因组全部 遗传信息的 DNA 前病毒,而子代病毒的 RNA 则是以前病毒 的DNA为模板进行合成。 1972 年~1973年, Berg 等成功地进行了 DNA 体外重组; Cohen创建了分子克隆技术,在体外构建成具有生物学功能 的细菌质粒,开创了基因工程新纪元。在此同时,Boyer等 在 E.coli 中成功表达了人工合成的生长激素释放抑制因子基 因
后发现维生素
1926年,美国化学家J. B. Sumner首次得到脲酶结晶 1912-1933,生物氧化得到了卓有成效的研究
30 年代,陆续得到了胃蛋白酶、胰蛋白酶、胰凝乳 蛋白酶,从而进一步证明酶是蛋白质
30年代,英国生化学家A.Krebs提出尿素循环和三羧 酸循环 40年代,能量代谢的提出为生物能学的发展奠定了 基础 此外,糖酵解途径、光合碳代谢途径得到证明,发 现了维生素和激素、血红素、叶绿素等
第一代转基因食品,是以增加农作物抗性和耐贮 性的转基因植物源食品。
这一代的转基因食品研究起始于20世纪70年代末80年代 初,是以转入抗除草剂基因、抗虫基因增加农作物的抗逆性 以及延迟成熟基因等为主要特点。
转基因抗虫水稻
转黄瓜抗青枯病基因的甜椒
生物化学-第一章绪论

脂肪酸、甘油和胆碱
•它们是脂肪和类脂质的组 成成分。类脂质中磷脂是 组建生物膜双层脂质的基 本物质。
2.物质代谢及调控
生代谢物是体生的物基体与本外特界征的新物陈质交代换谢过。程,
是活细胞进行的复杂的系列酶促反应过 程。
第一阶段:消化吸收
第二阶段:中间代谢过程
合成代谢、分解代谢、
第三阶段:排泄阶物段质互变、代谢调控和
SOD
对后续课程的作用
病理学 本课程为炎症、肿瘤、肝性脑病、酸碱 平衡学习提供分子基础。
药理学
酶类、溶栓类、肿瘤化疗类、抗病毒类、部 分降压类、糖尿病治疗类、降脂类药物的学 习均需生物化学知识。
专业课
内、外、妇、儿等专业课程发病机理、诊断 、治疗的学习必需有生物化学知识。
❖ 对象:一切生物有机体。 ❖ 医学生物化学以人体为研究对象,利用微生物
及动物实验研究获得大量有关生物分子的知识, 也可通过临床医疗实践积累人体生物化学的资 料。 ❖ 应用:其理论和技术广泛应用于临床实践和研 究。又与其他医学基础课程联系广泛。
二、生物化学的研究内容
生化的研究范围涉及整个生物界, 其内容以介绍生物界普遍存在的化 学物质和共同遵循的基本代谢规律 为主,适当结合专业实际。 课程内容主要由四部分组成:
20种氨基酸
2种单糖
•氨基酸是组成所有蛋白质分 子的单体,也参与许多其他结 构物质和活性物质的组成。
D-葡萄糖是植物光合作用的主要 产物,也是多糖化合物的主要单 体分子。D-核糖是核苷酸的组成 成分。
5种芳香族碱基
2种嘌呤(腺嘌呤和鸟嘌呤)和 3种嘧啶(胞嘧啶、尿嘧啶、胸 腺嘧啶)分别参加核苷酸的组 成。核苷酸是DNA和RNA分子 的前体,也是核苷酸类辅酶和 高能磷酸化合物ATP等三磷酸核 苷酸的前体。
《生物化学》绪论

霍佩-赛勒的学生米歇尔(Miescher)研究了病理液 体和脓细胞,并从脓细胞的细胞核中分离得到了 脱氧核糖核蛋白。
19世纪50年代,巴斯德(Pasteur)证明了酒精发酵 是由微生物引起的,排除了发酵自生论。
1897年布赫纳(Büchner)兄弟利用无细胞酵母汁 液发酵蔗糖产生酒精的研究,是生化发展早期的 一个重要里程碑,他不仅结束了酒精发酵机理持 续了半个世纪的大论战,而且将酶学和代谢等现 代生化研究引入了一个快速发展的新时期。
3. 生物化学的内容
1)生物体的化学组成
四类基本生物大分子:
糖
由单糖组成
脂类
由甘油、脂肪酸、磷酸、含氮碱等组成
蛋白质
由氨基酸(20种)组成
核酸
由核苷酸组成,而核苷酸又由碱基、戊糖、磷酸
组成
研究生物大分子及其构成它们的前体小分子物质的结构、性质、功
能,以及结构与性质、功能之间的内在联系。
三大活性物质:酶、维生素、激素。
2)结构与功能:生物分子的结构、功能, 结构与功能的内在关系。
3)物质和能量的转化:生物体内大分子、 小分子之间的相互转化,以及伴随的能 量变化。
4)一切生命现象的新陈代谢,包括:生长、 分化、运动、思维等;和自我复制如: 繁殖、遗传等。
从学科范围上来讲,生物化学是由 生物学和化学交叉发展形成的边缘 科学,是以化学方法为主要手段来 研究生物(生命活动)的一门科学。
气病,用猪肝治疗夜盲症等 人们依靠经验自发的利用生物化学规律, 而对本质没有认识。
2. 18世纪(启蒙期)
法国化学家拉瓦锡(Lavoisier)研究燃烧和呼吸, 被认为是现代生物化学研究的开端。 拉瓦锡通过研究指出呼吸是不发光的燃烧,其 本质是氧化作用。
生物化学 绪论

• 1926年Sumner证 明酶是蛋白质, 并结晶了脲酶。 他获1946年诺贝 尔奖。
Sumner在观察显微镜下的脲酶结晶
•1932年Hans A. Krebs发现了尿素循 环,1937年他又发现 三羧酸循环,1953年 获诺贝尔奖。
分子生物学时期的主要发现: 1952年,提出了蛋白质α-螺旋结构模型。 1953年,阐明胰岛素的一级结构。 1953年,Watson和Crick推导出DNA分子的双螺旋结构模型。 1958年,F.Crick提出分子遗传的中心法则。 1966年,由H.G.Khorana和Nirenberg合作破译了遗传密码。 1972年,Berg和Boyer等创建了DNA重组技术。 1977年,Berget等发现了“断裂”基因,并于1993年获诺贝 尔医学和生理学奖。 1981年~1983年,Cech和Altman相继发现某些RNA具有酶的催 化活性。 1985年,美国R.Sinsheimer首次提出“人类基因组研究计 划”。并于2003年,宣布人类基因组图绘制成功。 1997年,I.Wilmut成功获得体细胞克隆羊-多莉。
言
生物化学即“生命的化学”
根据研究对象不同 人体生化 植物生化 动物生化 微生物生化
医学生物化学 已成为医学领域重 要的前沿学科之一
The first part
生物化学概述
Biochemical Overview
一、生物化学的概念与任务 二、生物化学与生命的关系 三、生物化学的发展史
一、生物生化的概念与任务
学习目标
知识性目标 掌握生物化学的概念、生物大分子的含义、新陈代谢的 主要途径、能量转化的核心形式,以及遗传学中心法则。 熟悉生物化学的任务及主要研究内容。 了解生物化学的发展史、生物化学与医学的关系,生物 化学在护理工作中的作用。 技能性目标 通过本章学习,使学生能对生物化学有系统、整体认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兰州科技职业学院
课程名称:生物化学授课教师:李妮 No: __4___
第一章绪论
生物化学:研究生物体的化学组成和生命过程中化学变化规律的科学,称为生物化学。
分子生物学:通常将生物大分子的结构、功能及其代谢调控等的研究,称为分子生物学。
从广义的角度可将分子生物学视为生物化学的重要组成部分。
一、生物化学发展简史
生物化学是既古老又年轻的一门学科。
在我国可追溯到公元前21世纪,而欧洲约为200年前。
直到 1903年才由德国科学家C.A. Neuberg 提出“Biochemistry” 而成为一门独
立的学科。
(一)古代生物化学的发展
1. 公元前21世纪我国人民已能用曲(麯 )造酒,称曲为酒母,即酶。
2. 公元前12世纪前,我们的祖先已能利用豆、谷、麦等为原料,制成酱、饴和醋,饴是
淀粉酶催化淀粉水解的产物,这足已表明是酶学的萌芽时期。
3. 汉代淮南王刘安制作豆腐,说明当时在提取豆类蛋白质方面已经应用了近代生物化学及胶体化学的方法。
4. 公元7世纪孙思邈用猪肝治疗雀目的记载,实际上是用富含维生素A的猪肝治疗夜盲症。
5. 北宋沈括记载的“秋石阴炼法”,实际上就是采用皂角汁沉淀等方法从尿中提取性激素制剂。
6. 明末宋应星记载的用石灰澄清法将甘蔗制糖的工艺,被近代公认为最经济的方法。
(二)近代生物化学的发展
1. 18世纪下半叶,德国药师K.Scheele首次从动植物材料中,分离出乳酸、柠檬酸、酒
石酸、苹果酸、尿酸和甘油等。
2.法国化学家voisier的实验证明,有机体的呼吸和蜡烛的燃烧同样都是碳氢化合
物的氧化。
在氧化过程中,氧被消耗而水和二氧化碳被生成,同时放出热能。
这一发现被
视为生物氧化研究的开端。
3. 1868年瑞士青年医生F.Miescher发现了核素,后来定名为核酸,为后续的研究作出了
重要贡献。
(三)现代生物化学的发展
1. 20世纪初期德国化学家E. Fischer在发现缬氨酸、脯氨酸和羟脯氨酸之后,又用化
学方法合成了18个氨基酸的多肽。
我国生物化学家吴宪等在血液分析方面,创立了血滤液的制备及血糖的测定等方法,并在
蛋白质的研究中,提出了蛋白质变性的学说。
在营养学方面,发现了必需氨基酸、必需脂肪酸及多种维生素;在内分泌学方面,发现了
多种激素;在酶学方面,酶结晶获得成功。
在物质代谢方面,确定了主要代谢途径,包括糖代谢及三羧酸循环、脂肪酸β氧化、尿素合成等。
2. 20世纪50年代初期发现了蛋白质α螺旋的二级结构形式,完成了胰岛素的氨基酸全序列分析等。
1953年J.D.Watson和F.H.Crick 提出的 DNA双螺旋结构模型,为揭示遗传信息传递规律奠定了基础。
1965年我国生物化学工作者采用人工合成方法,首次合成具有生物活性的蛋白质——结晶牛胰岛素,同时还采用 X线衍射方法成功地测定猪胰岛素分子的空间结构,分辨率达
0.18nm。
Nirenberg等人经过5年多的努力于1966年终于破译了mRNA分子中的遗传密码,书写了最为激动人心的篇章。
3. 20世纪70年代重组DNA技术的建立,不仅促进了对基因表达调控机制的研究,而且使人们主动改造生物体成为可能。
由此,相继获得了多种基因工程产品,大大推动了医药工业和农业的发展。
转基因动植物和基因剔除的成功是重组DNA技术发展的结果。
基因诊断与基因治疗也是重组DNA技术在医学领域中应用的重要方面。
1981年我国生物化学工作者首次成功的合成了酵母丙氨酰tRNA。
核酶(ribozyme)的发现补充了对生物催化剂本质的认识。
聚合酶链反应(PCR)技术的发明,使体外高效扩增DNA成为可能。
4. 20世纪90年代开始实施的人类基因组计划(human genome project,HGP)是生命科学领域有史以来最庞大的全球性研究计划,旨在确定人类基因组的全部序列。
进入21世纪后,随着人类基因组草图的公布,将进一步深入研究各种基因的功能与调节。
近年来蛋白质组学、RNA组学等的研究迅速兴起,这些研究结果必将进一步加深人们对生命本质的认识,也将极大地推动医学的发展。
二、生物化学研究内容
植物生化、动物生化、微生物生化、医学生化*
水:55%~67%
蛋白质:15%~18%
(一)人体的物质组成脂类:10 %~15%
(占体重) 糖类:1%~2%
无机盐:3%~4%
(二)生物分子的结构与功能
结构是功能的基础,而功能是结构的体现。
生物大分子的功能可通过分子之间的相互识别和作用来实现,如蛋白质、核酸自身之间、蛋白质与核酸之间的相互作用在基因表达调节中起着决定性作用。
目前这一领域的研究是生物化学的热点之一。
(三) 物质代谢及其调节
1. 生物体的基本特征是新陈代谢,人的一生中与外界环境进行交换的水大约为60000 kg、糖类10000 kg、蛋白质1600 kg、脂类1000 kg,其总量约高达人体重量的1300余倍。
2. 各种物质代谢途径之间存在着密切而复杂的关系,按照一定规律有条不紊地进行,需要神经、激素等整体性精确的调节来完成。
3. 物质代谢中的绝大部分化学反应由酶催化,酶结构和含量的变化起着重要调节作用。
4. 细胞信息传递参与多种物质代谢的调节,其机制及网络也是近代生物化学研究的重要课题。
(四) 基因信息传递及调控
1.基因信息传递涉及到遗传、变异、生长、分化等生命过程,与遗传性疾病、恶性肿瘤、
代谢异常性疾病、免疫缺陷性疾病、心血管病等的发病机制有关。
2.随着基因工程技术的发展,许多基因工程产品将应用于疾病的诊断和治疗。
进一步研究基因信息传递过程的机制及基因表达调控的规律(DNA重组、转基因、基因剔除、基因
克隆、人类基因组计划及功能基因组计划)将大大推动这一领域的研究进程。
三、生物化学与医学
生物化学既是重要的医学基础学科,又与医学的发展密切相关相互促进。
各种疾病发病机
制的阐明,诊断手段、治疗方案、预防措施等的实施,都无一不依据生物化学的理论和技术。
(一)发病机制的阐明
1. 糖类代谢紊乱导致的糖尿病。
2. 脂类代谢紊乱导致的动脉粥样硬化。
3. 氨代谢异常与肝性脑病。
4. 胆色素代谢异常与黄疸。
5. 维生素缺乏与夜盲症和佝偻病。
6. 基因突变导致肿瘤和分子病。
7. 遗传性酶缺乏导致白化病、痛风等。
8. 蛋白质空间构象改变导致疯牛病。
(二) 疾病的诊断、治疗和预防
1. 体液中无机盐类、有机化合物和酶类等的检测诊断。
2. PCR技术和基因诊断检测技术的临床应用、法医学鉴定和流行病学调查。
3. 遗传病基因疗法、传染病基因疗法、肿瘤基因疗法和其他疾病基因疗法的完善和应用。
4. 基因工程药物(如胰岛素)的研究开发应用。
生物化学的发展必将对临床、预防、护理、影像、检验和药学等领域产生重大影响。
只有
扎实地掌握生物化学的基本理论和基本技能,才能有望成为合格的医务工作者。