典型激光器发光原理
光学经典理论激光光学的几个重要原理

光学经典理论激光光学的几个重要原理激光是光学研究十分重要的一个方向,今天为大家整理了一些关于激光光学的几个重要原理,相信很多的朋友们应该会喜欢,可以收藏一下。
激光的产生说到激光的产生就要先从原子结构说起。
卢瑟福通过α粒子散射实验得出了原子的行星模型,依照公认的电动力学法则,绕核运动的电子将连续发光,并因能量损耗终将崩溃落人核内,这与观察到的分立光谱线并不一致。
女人上了年纪,改如何保养?广告为了解决这一矛盾,1913年,玻尔提出了两点假没:第一点假设认为,电子只能在某些确定的轨道上运动,这就是所谓的“定态”,电子只要停留在这些态中的任何一个,它就不会发光;第二点假设认为只有当电子从一个较高能量的定态跃迁到一较低能量的定态时,辐射才从原子中放出,放出的辐射能量等于两定态能量的差值,通过一个类似的逆过程,原子能够吸收一个辐射量子,使得一个电子跃迁到较高能量的定态。
玻尔原子理论解决了原子的稳定性问题,以及光谱规律与原子结构的本质联系问题展开剩余97%原子发光的机理原子从某一能级吸收或释放能量,变成另一能级,称之为原子跃迁。
爱因斯坦发现,若只有自发辐射和吸收跃迁,黑体和辐射场之间不可能达到热平衡,要达到热平衡,还必须存在受激辐射。
自发辐射与受激辐射当外来光子的频率满足hv=E2-E1时,使原子中处于高能级的电子在外来光子的激发下向低能级跃迁而发光。
受激辐射光子与入射光子属于同一光子态(或光波模式),具有相同的频率、相位、波矢、偏振。
——自发辐射系数——受激辐射系数受激吸收——受激吸收系数受激辐射与受激吸收的矛盾受激辐射使光子数增多,受激吸收使光子数减少。
受激辐射与自发辐射的矛盾要克服上述矛盾就需要粒子数反转。
受激辐射占优势,光通过工作物质后得到加强,获得光放大。
激光的产生条件:1、增益介质:激光的产生必须选择合适的工作物质,可以是气体、液体、固体。
在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。
半导体激光的原理和应用

半导体激光的原理和应用引言半导体激光是一种重要的光学器件,具有广泛的应用领域。
本文将介绍半导体激光的工作原理及其在通信、医疗、制造业等领域的应用。
工作原理半导体激光的工作原理基于半导体材料的特性。
当电流通过半导体材料时,会激发出光子并形成发光。
具体工作原理如下:1.pn结构:半导体激光器的基本结构是由p型半导体和n型半导体组成的pn结构。
在pn结构中,p区和n区之间形成空间电荷区,也称为p-n 结。
2.电流注入:当通过pn结施加适当的电压,电子从n区向p区流动,形成电流注入。
这些电子与空穴在p区与n区之间复合,产生光子。
3.光反射:在激光器的两侧,通常会使用反射镜,以确保光子在激光器内部多次反射,增加激射效果。
4.放大效应:在光子多次反射后,激光器中的光子会被放大,形成激光束。
5.激光输出:当光子放大到一定程度时,会通过激光输出端口输出,形成一束聚焦强度高的激光。
应用领域半导体激光广泛应用于下述领域:1. 通信领域•光纤通信:半导体激光器的小体积、高效率和调制速度的优势,使其成为光纤通信中的关键元件。
它们被用于发送和接收信号,实现高速、稳定的数据传输。
•光纤传感器:半导体激光器可以用于光纤传感器中的光源,通过测量光的特性实现温度、压力和应变等参数的监测。
2. 医疗领域•激光眼科手术:半导体激光器可以用于激光眼科手术,如LASIK手术。
它们通过改变角膜的形状来矫正近视、远视和散光等眼科问题。
•激光治疗:半导体激光器可以用于激光治疗,如治疗疱疹病毒感染、减少毛囊炎症等。
3. 制造业领域•材料加工:半导体激光器用于材料加工,如切割、焊接和打孔等。
由于激光束的高能量密度和聚焦性,它们可以实现高精度的材料加工。
•激光制造:半导体激光器可以用于激光制造,如3D打印、激光烧结等。
它们可以实现复杂结构的制造,提高生产效率。
4. 科研领域•光谱分析:半导体激光器可以用于光谱分析,如拉曼光谱和荧光光谱。
它们可以提供高分辨率和高灵敏度的光谱结果,帮助科研人员研究物质的性质。
激光入门知识讲解

激光入门知识一、激光产生原理1、普通光源的发光--受激吸收和自发辐射普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。
激发的过程是一个"受激吸收"过程。
处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。
辐射光子能量为hυ=E2-E1这种辐射称为自发辐射。
原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外未位相、偏振状态也各不相同。
由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。
在通常热平衡条件下,处于高能级E2上的原子数密度N2,远比处于低能级的原子数密度低,这是因为处于能级E的原子数密度N的大小时随能级E的增加而指数减小,即N∝exp(-E/kT),这是著名的波耳兹曼分布规律。
于是在上、下两个能级上的原子数密度比为N2/N1∝exp{-(E2-E1)/kT}式中k为波耳兹曼常量,T为绝对温度。
因为E2>E1,所以N2《N1。
例如,已知氢原子基态能量为E1=-13.6eV,第一激发态能量为E2=-3.4eV,在20℃时,kT≈0.025eV,则N2/N1∝exp(-400)≈0可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。
一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。
2、受激辐射和光的放大由量子理论知识知道,一个能级对应电子的一个能量状态。
电子能量由主量子数n(n=1,2,…)决定。
但是实际描写原子中电子运动状态,除能量外,还有轨道角动量L和自旋角动量s,它们都是量子化的,由相应的量子数来描述。
常用激光器工作原理

E1
➢He-Ne激光器是典 型的四能级系统, 其激光谱线主要有 三条 : ➢3S2P 0.6328 ➢2S2P 1.15 ➢3S3P 3.39
下能级E1 能级E3 级E2
本上是空的。其激励能量要
激光要比三能级系统容易得 多。
一.固体激光器的基本结构与工作物质
固体激光器基本上都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成的。 图5-1是长脉冲固体激光器的基本结构示意图(冷却、滤光系统未画出)。
激光的发射原理不同于常规光,不是各种能级加在一起的自发辐射产生的, 而是受激发射,各种能级的原子被泵浦到较高的一个激发态上,由于维持的 时间总体正态分布,大部分原子都在一段极短的时间内掉到同一个较低的能 态上,这种发射方式导致光处在几乎一致的能量水平,也就是我们平常所说 的激光单色性
综述.激光器发光原理
1、全反镜,6、半反镜,5、YAG棒产生震荡激光以后,在经过一个或者 两个YAG棒放大,可得到1064nn的激光光源。
2、调Q组件 4、偏振器 3、光阑
9、倍频晶体(变频器),可以改变激光的频率,输出1064nm 、532nm、 355nm的激光器的输出特性
固体激光器的基本结构示意图
YAG 激光器具有能量大、峰值功率高、结构较紧凑 、牢固耐用等优点, 广泛应 用于工业、国防、医疗、科研等领域。用调Q Nd: YAG 的谐波泵浦的可调谐染 料激光器,具有高功率、窄线宽的特点, 可用于光谱学、激光医疗与生物工程等科
工作物质
掺钕钇铝石榴石(Nd3+:YAG) ➢工作物质:将一定比例的A12O3、Y2O3,和Nd2O3在单晶炉中进行熔化结晶而 成的,呈淡紫色。它的激活粒子是钕离子(Nd3+)
1. 固体激光器的激光脉冲特性 ➢一般的脉冲固体激光器产生的激光脉冲是由一连串不规则振荡的短脉冲(或 称尖峰)组成的,各个短脉冲的持续时间约为(0.11)m,各短脉冲之间的间隔 约为(510) s。泵浦光愈强,短脉冲数目愈多,其包络峰值并不增加。
激光的原理特性和应用

第二章激光与半导体光源激光的原理、特性和应用发光二极管与半导体激光器§2-1 激光的工作原理一、光的发射与光的吸收当原子从高能级向低能级跃迁时,将两能级之差部分以光子形式发射出去,称光的发射;当原子从低能级向高能级跃迁时,将吸收两能级之差部分的光子能量,称光的吸收。
光的发射和吸收过程满足相同的规律:两能级之差决定发射和吸收光子的频率光发射的三种跃迁过程1自发辐射:处在高能级的原子以一定的几率自发的向低能级跃迁,同时发出一个光子的过程,a)图;2 受激辐射过程:在满足两能级之差的外来光子的激励下,处在高能级的原子以一定的几率自发向低能级跃迁,同时发出另一个与外来光子频率相同的光子,b)图;两种辐射过程特点的比较:自发辐射过程是随机的,发出一串串光波的相位、传播方向、偏振态都彼此无关,辐射的光波为非相干光;受激辐射的光波,其频率、相位、偏振状态、传播方向均与外来的光波相同,辐射的光波是相干光。
3 受激吸收过程:在满足两能级之差的外来光子的激励下,处在低能级的原子向高能级跃迁,c)图受激辐射与受激吸收过程同时存在:实际物质原子数很多,处在各个能级上的原子都有,在满足两能级能量之差的外来光子激励时,两能级间的受激辐射和受激吸收过程同时存在。
当吸收过程占优势时,光强减弱;当受激辐射占优势时,光强增强。
二、粒子数反转与光放大当一束频率为的光通过具有能级E1和E2(假定E2>E1)的介质时,将同时发生受激辐射和受激吸收过程,在dt时间内,单位体积内受激吸收的光子数为dN12,受激辐射的光子数为dN21 ,设两能级上的原子数为N1、N2(正常情况下N2> N1),有dN21/ dN12 =B N2/ N1,比例系数B与能级有关。
1、N2/ N1<1时,高能级E2上原子数少于低能级E1上原子数(称正常分布),有dN21 < dN12,表明光经介质传播的过程中受激辐射的光子数少于受激吸收的光子数,宏观效果表现为光被吸收。
激光器的发光原理

激光器的发光原理
激光器的发光原理是基于受激辐射的物理现象。
在激光器中,有一个激光介质,可以是晶体、气体或半导体。
当激光介质受到能量激励(如电子束、光束等)时,其内部电子会被激发,跃迁到更高的能级。
当这些电子返回到低能级时,会放出能量,并与周围的电子发生相互作用,导致更多的电子被激发。
这种过程会不断放大,并在激光介质中形成一种激发态,使得大量的电子处于高能级。
当这些电子跃迁到低能级时,它们放出的能量会被聚集在一个狭窄的能级带中,形成了一个相干的光束,即激光。
这个光束是由具有相同频率、相同相位和同向的光子组成的,具有很高的亮度和单色性。
这就是激光器的发光原理。
- 1 -。
激光器的原理

三、工作过程1.激光器的工作原理和结构我们通常把发光的物体叫做光源,如太阳、电灯、燃烧的蜡烛等。
光具有能量,它可以使物体变热,使照相底片感光,这就是能的转换现象。
光能含在光束中,光束射入人的眼睛,才引起人的视觉,所以我们能够看到光源发射的光。
那么我们为什么还能看到不发光的物体呢?是因为光源发射的光照射到它们,不发光的物体受光后,向四面八方漫反射的光射入了我们的眼睛,所以我们也能看到不发光的物体。
产生激光的光源,和普通的光源明显不同。
如普通白炽灯光源是通过电流加热钨丝的原子到激发态,处于激发态的原子不断地自发辐射而发光。
这种普通的光源具有很大的散射性和漫射性,不能控制形成集中的光束,也就不能应用于激光打印机。
激光打印机所需要的激光光束必须具有以下特性:①高方向性。
发出的光束在一定的距离内没有散射和漫射。
②高单色性。
纯白光由七色光组成。
③高亮度,有利于光束的集中并带有很高的物理能量。
④高相干性,容易叠加和分离。
激光器是激光扫描系统的光源,具有方向性好、单色性强、相干性高及能量集中、便于调制和偏转的特点。
早期生产的激光打印机多采用氦-氖(He-Ne)气体激光器,其波长为632.8μm,其特点是输出功率较高、体积大、是寿命长(一般大于1万小时)性能可靠,噪音低,输出功率大。
但是因为体积太大,现在基本已淘汰。
现代激光打印机都采用半导体激光器,常见的是镓砷-镓铝砷(CaAs-CaAlAs)系列,所发射出的激光束波长一般为近红外光(λ=780μm),可与感光硒鼓的波长灵敏度特性相匹配。
半导体激光器体积小、成本低,可直接进行内部调制,是轻便型台式激光打印机的光源。
在对感光鼓表面充电时,随着电荷在感光鼓表面的积累,电位也不断升高,最后达到"饱和"电位,就是最高电位。
表面电位会随着时间的推移而下降,一般工作时的电位都低于这个电位,这个电位随时间自然降低的过程,称之为"暗衰"过程。
半导体二极管激光器工作原理

半导体二极管激光器,也被称为激光二极管(LD,Laser Diode),是一种将电能直接转换成光能的半导体器件。
其工作原理主要基于半导体的PN结构以及粒子数反转等条件。
首先,PN结是由n型半导体和p型半导体构成的结构,在PN结的交界处,会出现电子和空穴的复合现象,进而形成发光。
当在激光二极管的PN结上加上适当的正向电压时,电子从n型材料向p型材料移动,空穴从p型材料向n型材料移动,它们在PN结区域相遇并发生复合。
这个过程中产生了能量差,能量差被释放成光的形式,从而形成了发光效应。
其次,为了产生激光,必须满足一定的条件,包括粒子数反转、谐振腔的存在以及满足阈值条件。
其中,粒子数反转是指通过一定的激励方式,使得半导体物质的能带之间或者与杂质能级之间实现非平衡载流子的粒子数反转。
谐振腔则是由半导体晶体的解理面形成的两个平行反射镜面,它们能够起到光反馈作用,形成激光振荡。
而满足阈值条件,即增益要大于总的损耗,则需要足够强的电流注入,以便有足够的粒子数反转,从而得到足够大的增益。
总的来说,半导体二极管激光器的工作原理是通过PN结的电子和空穴复合产生发光效应,并通过满足粒子数反转、谐振腔的存在以及阈值条件等条件,从而产生激光并连续地输出。
这种激光器具有结构紧凑、效率高、波长覆盖范围广等优点,因此在激光打印、光通信、医疗设备、实验室和工业检测等领域有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般情况下,低气压放电过程中,一步激发 占主导地位,高气压放电过程中,二步过程 为主。为什么??
低气压环境中,气体分子的密度小,平均自由程 较大,电子可以被加速到较大速度,能量高,所 以可以“一步到位”。而高气压环境中,气体分 子的密度大,平均自由程较小,电子还没有加速 到较大速度就与气体分子发生碰撞,所以能量小, 需两次碰撞才能完成激发过程。
将这四个态记为1s态。
2018/11/4 2
同理1s 2s 2 p 4s及1s 2s 2 p 5s...均有四个能级 记为2s和3s态 (2) 1s 2s 2 p 3p情况 相当于一个2p 电子和一个3p 电子耦合 1 2p 电子 l1 1, s1 2 1 3p 电子 l2 1, s2 2 L 0,1, 2 S =0,1
满壳层结构的基态1s2 2s2 2 p 6恰好形成一个 封闭的壳层,称为原子实。 原子实的轨道角动量、自旋角动量以及总角 动量均等于0
1 基态: S0
考虑:(1)1s2 2s2 2 p 5 3s情况 2 p 一个p电子
5
2 p 5是满壳层缺失一个p电子, 2 p 5的轨道角动量、 自旋角动量以及总角动量与一个p电子的相同。 这就相当于一个2p电子和一个3s电子耦合。
6 5
Ar(3P ns) e(n 4,5) 5 4 Ar(3P ) e Ar(3P nd) e(n 3, 4) Ar( 4 3P 4p) e
4
2018/11/4 15
b、“一步过程”
低气压放电过程
Ar (3P 6) e Ar( 3P 4 4P)+2e'
2018/11/4 1
1 1 2p 电子 l1 1, s1 3s电子 l2 0, s2 2 2 L S 耦合 L l1 l2 , l1 l2 1,..., l1 l2 L 1, S 0,1 单态(s=0)p1 三重态(s=1) p0,1,2
3 1
J =1 J =0,1,2
CO2分子的振动状态用(1、 、3)表示。
l 2
(l用来区分形变振动的两种振动形式) CO2分子除了振动还有 转动,转动量子数用 J表示。 转动跃迁的选择定则: J =J 上 J 下 0, 1 J =-1,P支跃迁,J =+1R支跃迁; J =0,Q支跃迁
2018/11/4 11
2018/11/4
4
He-Ne激光器的主要谱线 3s 2p 1 0.6328 m(应用广泛,在可见光 -3 1 波段, 10 cm ) (最强) 2s 2 p 2 1.152 m 1 3s 3 p 3.39 m (谱线较强,增益 0.1 cm ) 3
3
2018/11/4
7
3)形成粒子数反转产生激光 a.1s, 2s,3s以及He的2 1 S0,2 3 S1是亚稳态, 能级寿命长,可以积累大量粒子。 b.2p,3p能级寿命很短 4) 2 p、 3 p上粒子再通过自发辐射跃迁到1s 5) 1s上粒子通过与管壁碰撞回到基态
2018/11/4
5 其中: 4 s 3P 4 4 s 3P(基态)辐射 70nm真空紫外光
4 P 3P 4 4 P 3P 4 4 s
可见光
2018/11/4
13
2018/11/4
14
激发过程: a、二步过程 高气压放电过程
Ar原子与电子碰撞形成Ar ,Ar 再与电子 碰撞被激发到高能级。 Ar (3P ) e Ar(3P ) 2e
1
3
2)处于上能级的He原子与Ne原子发生非弹 性碰撞将能量传递给Ne原子,从而使Ne原子激 发到上能级(2S、3S),He原子则回到基态。 He (2 S1 ) Ne Ne (2S)+He+(0.039ev) 1 He (2 S0 ) Ne Ne (3S)+He+(0.048ev) (上能级2s、 3s粒子跃迁到下能级2 p、 3 p产生激光)
8
二、CO2激光器 CO2激光器属于分子气体激光器,广泛应用于金属切割。 优点: (1)有比较大的功率和较高的能量转换效率(一般的CO2 激光器可以做到几十瓦的连续输出,最高的气动CO2激光 器可以达到几十万瓦的连续输出,它的能量转换效率可达 30 40%。) (2)输出谱线很丰富,在10 m附近有几十条。 (3)输出波段正好是大气窗口(大气的吸收率比较低)
2018/11/4
9
1、工作原理 激光输出的能级为电子基态的振动-转动能级间的跃迁。 振动方式: a.对称振动(1) 图(6-1-7b) b.反对称振动(3) 图(6-1-7d) c.形变振动( ) 2 (弯曲振动) 图(6-1-7c)
2018/11/4 10
2018/11/4
5
(3)跃迁过程 1 )高速电子碰撞He原子,激发到 上能级2 S0和2 S1 He+e He (2 S0 )+e ' e:碰撞前电子,e :碰撞后电子 * 3 ' He+e He (2 S1 )+e “”表示处于激发态
* 1 '
2018/11/4 6
2018/11/4 3
2
2
5
2
2
5
2
2
5
1 单态(s=0) J =0,1,2 1S0, P1 ,1 D2
1( L 0) 3 S1 3 三重态(s=1) J = 2,1, 0( L 1) P0,1,2 3, 2,1( L 2) 3 D1,2,3 共十个原子态,记为2p态。 同理1s2 2s2 2 p 5 4p也有10个原子
三、其他几种气体激光器 1.氩离子激光器 输出波长488nm和514.5nm 能量转换效率很低,10-4
2 2 6 2 6 电离
105 范围
5 基态: 1S 2 S 2 P 3S 3P 1S 2 2 S 2 2 P 6 3S 2 3P( Ar )
Ar 的激发态: 3P 4 3d ,3P 4 4 s,3P 4 4 P,3P 4 4d , 3P 4 5s