物理化学第一章总结.
物理化学知识点总结(热力学第一定律)

热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。
封闭系统:与环境只有能量交换而无物质交换的系统。
(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。
2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。
根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。
广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。
强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。
注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。
二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。
它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。
或者说dU与过程无关而δQ和δW却与过程有关。
这里的W既包括体积功也包括非体积功。
以上两个式子便是热力学第一定律的数学表达式。
它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。
三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。
将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。
当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。
物理化学知识点总结

第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律热力学第一定律:ΔU =Q +W 。
焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程:1221ln ln p p nRT V V nRT W ==2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂=定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p =a +bT +c’T 2 四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p 等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。
摩尔反应热的求算:)298,()298(B H H m f B m r θθν∆=∆∑反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。
厦门大学 物理化学 (上) 各章 知识点 总结

第1章第零定律与物态方程一、基本要点公式及其适用条件1.系统的状态和状态函数及其性质系统的状态—就是系统物理性质和化学性质的综合表现,它采用系统的宏观性质来描述系统的状态,系统的宏观性质,也称为系统的"状态函数"。
系统的宏观性质(状态函数)—就是由大量(摩尔级)的分子、原子、离子等微观粒子组成的宏观集合体所表现出的集团行为,简称"热力学性质"或“热力学函数”如p、V、T、U、H、S、A、G 等。
Z=f(x,y)表示一定量、组成不变的均相系统,其任意宏观性质(Z)是另两个独立宏观性质(x,y)的函数。
状态函数Z具有五个数学特征:(1),状态函数改变量只决定于始终态,与变化过程途径无关。
(2),状态函数循环积分为零,这是判断Z是否状态函数的准则之一。
(3),系Z的全微分表达式(4),系Z的Euler 规则,即微分次序不影响微分结果。
(5),系Z、x、y满足循环式,亦称循环规则。
2.热力学第零定律即热平衡定律:当两个物态A和B分别与第三个物体C处于热平衡,则A和B之间也必定彼此处于热平衡。
T =t+273.15,T是理想气体绝对温标,以"K"为单位。
t是理想气体摄氏温标,以"℃"为单位。
绝对温标与摄氏温标在每一度大小是一样的,只是绝对温标的零度取在摄氏温标的-273.15℃处,可以看出,有了绝对温标的概念后,只需确定一个固定参考点(pV)0p=0,依国际计量大会决定,这个参考点选取在纯水三相点,并人为规定其温度正好等于273.16K。
3.理想气态方程及其衍生式为:;式中p、V、T、n单位分别为Pa、m3、K、mol;R=8.314J〃mol-1〃K-1,V m为气体摩尔体积,单位为m3〃mol-1,ρ 为密度单位kg〃m-3,M 为分子量。
此式适用于理想气或近似地适用于低压气。
4.理想混合气基本公式(1)平均摩尔质量;式中M B和y B分别为混合气中任一组份B 的摩尔质量与摩尔分数。
《大学物理化学》知识点总结

第一章 理想气体1、理想气体:在任何温度、压力下都遵循PV=nRT 状态方程的气体。
2、分压力:混合气体中某一组分的压力。
在混合气体中,各种组分的气体分子分别占有相同的体积(即容器的总空间)和具有相同的温度。
混合气体的总压力是各种分子对器壁产生撞击的共同作用的结果。
每一种组分所产生的压力叫分压力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。
P y P B B =,其中∑=BBB B n n y 。
分压定律:∑=BB P P道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组分单独存在时所产生的压力的总和。
∑=BB V RT n P )/(3、压缩因子ZZ=)(/)(理实m m V V 4、范德华状态方程 RT b V V ap m m=-+))((2 nRT nb V Van p =-+))((225、临界状态(临界状态任何物质的表面张力都等于0)临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数:(1)临界温度c T ——气体能够液化的最高温度。
高于这个温度,无论如何加压 气体都不可能液化;(2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。
6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。
取决于状态,主要取决于温度,温度越高,饱和蒸气压越高。
7、沸点:蒸气压等于外压时的温度。
8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。
对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、rr r c r r r c c c T Vp Z T V p RT V p Z =⋅=10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应的Z 。
物理化学期末总结

物理化学期末总结物理化学学期总结绪论1.物理化学的概念:物理化学是从研究化学现象和物理现象之间的相互联系入手,从而探求化学变化中具有普遍性的基本规律的一门科学。
在实验方法上主要采用物理学中的方法。
2.物理化学的研究内容(1) 化学变化的方向和限度问题。
(2) 化学反应的速率和机理问题。
(3) 物质的性质与其结构之间的关系问题。
第一章气体1.理想气体概念:任何压力机任何温度下都严格服从理想气体状态方程的气体叫做理想气体。
2.分子热运动理论:物质由大量分子构成,分子不停的做无规则的高速运动,热运动有使分子相互分散的倾向,分子间存在相互作用力:引力和斥力。
3.理想气体混合物:(1)自然界的气体多数为混合气体。
(2)假设混合气体中,各气体组分均为理想气体。
(3)混合气体服从理想气体状态方程。
4. 道尔顿分压定律:在气体混合物中,混合气体的总压力等于各气体在相同温度和相同体积下单独存在时的分压力之和。
5.阿马格分体积定律 :在气体混合物中,混合气体的总体积等于各气体在相同温度和相同压力下单独存在时的体积之和。
6. 真实气体对于理想气体的偏差的概念:由于真实气体仅在压力很低、温度较高条件下才近似符合理想气体状态方程。
而真实气体的压力、温度偏离理想气体条件时,就出现对理想气体状态方程的明显偏差。
7. 偏差的原因真实气体不符合理想气体的微观模型。
(a 真实气体分子占有一定体积;b 分子间存在相互引力)。
8.液体的饱和蒸汽压概念:是指在一定条件下,能与液体平衡共存的它的蒸汽的压力,通常也叫做蒸汽压。
同一种液体,其蒸汽压决定决定于液体所处的状态,主要取决于液体的温度,温度升高,则蒸汽压增大。
∑=B Bp p p RT n V BB ∑=第二章热力学第一定律1.热力学的研究对象:(1)热力学是研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律;主要基础是热力学第一定律和热力学第二定律。
(2)热力学第一定律研究各种物理变化和化学变化过程中所发生的能量效应;(3)热力学第二定律研究化学变化的方向和限度。
物理化学第一章总结

第一章总结一热力学基本概念①系统分类:敞开、封闭、孤立②平衡态:各部分宏观性质不变,无宏观流③性质分类:广度,强度④状态函数及特点:1)2)3)⑤过程分类:恒温、恒容、绝热、恒压⑥可逆过程:无损耗、过程无限缓慢、做功最大或最小⑦理想气体物态方程:PV=nRT二热力学定律1)热力学第零定律:分别于第三物体达到平衡的两物体,他们彼此也一定互呈热平衡(确定温度)2)热力学第一定理:dU=δQ+δW焓的定义:dH=dU+d(PV)3)热力学第二定律:ds≥δQ/T=>“>”不可逆过程,T表环境温度“=”可逆过程,环境温度等于体系温度“<”熵变小于热温商过程不可能发生自发过程特征:一定方向和限度;不可逆;存在方向限度的决定因素。
又卡诺定理推出热力学第二定理:η=(Q1+ Q2)/Q1=(T1- T2)/T1=>(T2-T1)/T2>1+Q1/Q2 (卡诺定理)=>Q1/T1+Q2/T2<0=>dS≥δQ/T4)热力学第三定理:0K时任何完美晶体熵等于0理想气体各可逆过程重要变量计算过程 W Q △U △H △S自由膨胀 0 0 0 0 nRIn(V2/V1) 恒容 0 n Cv.m dT n Cv.m dT n m .p C dT n Cv.m In(V2/V1) 恒温 nRTIn(V2/V1) nRTIn(V2/V1) 0 0 nRTIn(V2/V1) 绝热 n Cv.m dT=(P2V2-P1V1)/(r-1) 0 n Cv.m dT n m p .C dT 0恒压 -pdT n m .p C dT n Cv.m dT n m .p C dT n m .p C In(V2/V1)。
物理化学各章节总结

物理化学每章总结第1章 热力学第一定律及应用1.系统、环境及性质热力学中把研究的对象(物质和空间)称为系统,与系统密切相关的其余物质和空间称为环境。
根据系统与环境之间是否有能量交换和物质交换系统分为三类:孤立系统、封闭系统和敞开系统。
性质⎩⎨⎧容量性质强度性质2.热力学平衡态系统的各种宏观性质不随时间而变化,则称该系统处于热力学平衡态。
必须同时包括四个平衡:力平衡、热平衡、相平衡、化学平衡。
3.热与功 (1) 热与功的定义热的定义:由于系统与环境间温度差的存在而引起的能量传递形式。
以Q 表示,0>Q 表示环境向系统传热。
功的定义:由于系统与环境之间压力差的存在或其它机、电的存在引起的能量传递形式。
以W 表示。
0>W 表示环境对系统做功。
(2) 体积功与非体积功功有多种形式,通常涉及到是体积功,是系统体积变化时的功,其定义为:V p W d δe -=式中e p 表示环境的压力。
对于等外压过程 )(12e V V p W --= 对于可逆过程,因e p p =,p 为系统的压力,则有V p W V V d 21⎰-=体积功以外的其它功,如电功、表面功等叫非体积功,以W ′表示。
4.热力学能热力学能以符号U 表示,是系统的状态函数。
若系统由状态1变化到状态2,则过程的热力学增量为 12U U U -=∆对于一定量的系统,热力学能是任意两个独立变量的状态函数,即 ),(V T f U = 则其全微分为V V U T T U U TVd d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=对一定量的理想气体,则有0=⎪⎭⎫⎝⎛∂∂TV U 或 U =f (T ) 即一定量纯态理想气体的热力学能只是温度的单值函数。
5.热力学第一定律及数学表达式 (1) 热力学第一定律的经典描述① 能量可以从一种形式转变为另一种形式,但在转化和传递过程中数量不变。
② “不供给能量而可连续不断做功的机器称为第一类永动机,第一类永动机是不可能存在的。
物理化学知识点总结[物理化学知识点归纳]
![物理化学知识点总结[物理化学知识点归纳]](https://img.taocdn.com/s3/m/ea35e0ce227916888586d7c1.png)
物理化学知识点总结[物理化学知识点归纳]热力学第一定律...............................................................................(1)第二章热力学第二定律. (3)第三章化学势 (7)第四章化学平衡 (10)第五章多相平衡 (12)第六章统计热力学基础 (14)第七章电化学 (16)第八章表面现象与分散系统 (20)第九章化学动力学基本原理 (24)第十章复合反应动力学 (27)物理化学知识点归纳根据印永嘉物理化学简明教程第四版编写,红色的公式要求重点掌握,蓝色的公式掌握。
第一章热力学第一定律本章讨论能量的转换和守恒,其目的主要解决变化过程的热量,求功的目的也是为了求热。
1. 热力学第一定律热力学第一定律的本质是能量守恒定律,对于封闭系统,其数学表达式为∆U =Q +W 微小过程变化:d U =δQ +δW只作体积功:d U =δQ −p e d V 理想气体的内能只是温度的函数。
2. 体积功的计算:δW V =−p 外d VW V =−∫p 外d VV 1V 2外压为0(向真空膨胀,向真空蒸发):W V =0;恒容过程:W V =0恒外压过程:W V =−p 外(V 2−V 1) 恒压过程:W V =−p (V 2−V 1) 可逆过程:W V =−∫V 2V 1p d V (主要计算理想气体等温可逆、绝热可逆过程的功)3. 焓和热容由于大多数化学反应是在等压下进行的,为了方便,定义一个新的函数焓:H =U +pV焓是状态函数,是广度性质,具有能量,本身没有物理意义,在等压下没有非体积功的热效应等于焓的改变量。
等容热容:C V = δQ V⎛∂U ⎛=⎛⎛ d T ⎛∂T ⎛V等压热容:C p =δQ p⎛∂H ⎛=⎛⎛ d T ⎛∂T ⎛p对于理想气体:C p −C V =nR4. 理想气体各基本过程中W 、Q 、∆U 、∆H 的计算5. 焦耳-汤姆逊系数µ=⎛⎛∂T ⎛1⎛∂H ⎛=−⎛⎛⎛,用于判断气体节流膨胀时的温度变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
※理想气体状态方程
(a) 分子本身不占有体积 (b) 分子间无相互作用力 一种气体 p V= n R T
混合物气体的摩尔质量
Hale Waihona Puke 混合气体M mix y B M B
B
※道尔顿定律
p p B nB ( RT / V )
B
B
适用的条件:理想气体 低压气体近似符合
※阿马加定律
物理化学第一章总结
化工八班 汪建福
第一章 气体的 pVT 性质
1.想气体状态方程
2.理想气态混合物
3.真实气体状态方程 4.对应状态原理及普 遍化压缩因子图
整体知识框架
状态方程
理想气体
气 体
分压及分体积定律 状态方程
实际气体
液化及临界现象 对应状态原理及压缩因子图
下面先介绍几个内容
气体的PVT性质
(n, p 一定) (3)阿伏加德罗定律(A. Avogadro, 1811)
V / T = 常数
V / n = 常数
(T,
p 一定)
以上三式结合
理想气体状态方程
pV = nRT
单位:p Pa
pVm = RT
V m3 n mol
T K R J mol-1 K-1
R 摩尔气体常数, 8.314510
或
对应状态原理
压缩因子:
Z = pV /(nRT)= p Vm /(RT)
临界压缩因子Z:将压缩因子概念应用于临界点
1.理想气体状态方程
归纳法--低压气体经验定律: (1)玻义尔定律(R.Boyle,1662):
pV = 常数
(n,T 一定)
(2)盖.吕萨克定律(J. Gay-Lussac,1808):
E
0
r0
r
兰纳德-琼斯势能曲线
(2)理想气体模型
当实际气体p→0时,V →∞ 分子间距离无限大,则: • 分子间作用力完全消失 • 分子本身所占体积可完全忽 略不计 理想气体的微观模型 (1)分子本身不占体积 (2)分子间无相互作用力 !由微观模型可导出理想气体状态方程--演绎法
谢谢观看!
2013.9.10
J mol-1 K-1
2 理想气体模型及定义-演绎法
(1)分子间力(实际气体) 吸引力 相距较远时,有范德华引力; 排斥力 相距较近时,电子云及核产生排斥作用 。
E吸引 -1/r 6
E排斥 1/r n Lennard-Jones理论:n = 12 A B E总 E吸 引+E排 斥=- 6 12 r r 式中A-吸引常数;B-排斥常数
VB B
( n B )RT/p nRT/p V
B
真实气体状态方程
※范德华方程(考虑分子本身的体积、引力所引起的修正)
a ( p 2 )(Vm b) RT Vm
或
n2a ( p 2 )(V nb ) nRT V
※范德华常数与临界参数的关系 临界点C,范德华方程一阶、二阶导数为零