物理化学总结

物理化学总结
物理化学总结

第二章 热力学第一定律

一、基本概念

系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。 二、基本定律

热力学第一定律:ΔU =Q +W 。 焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式

1、体积功的计算 δW = -p e d V

恒外压过程:W = -p e ΔV

可逆过程:12

21ln ln p p nRT V V nRT W ==

2、热效应、焓

等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV )

焓与温度的关系:ΔH =?2

1

d p T T T C

3、等压热容与等容热容

热容定义:V V )(T U C ??=;p p )(T H C ??=

定压热容与定容热容的关系:nR C C =-V p

热容与温度的关系:C p =a +bT +c’T 2

四、第一定律的应用

1、理想气体状态变化

等温过程:ΔU =0 ; ΔH =0 ; W =-Q =?-p e d V 等容过程:W =0 ; Q =ΔU =?T C d V ; ΔH =?T C d p 等压过程:W =-p e ΔV ; Q =ΔH =?T C d p ; ΔU =?T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ

求出T 2,

W =ΔU =?T C d V ;ΔH =?T C d p

不可逆绝热过程:

Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,

W =ΔU =?T C d V ;ΔH =?T C d p

2、相变化

可逆相变化:ΔH =Q =n Δ_H ;

W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W

3、热化学

物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。

摩尔反应热的求算:)298,()298(B H H m f B m r θθν?=?∑

反应热与温度的关系—基尔霍夫定律:

)(])([,p B C T H m p B

B m r ∑=???ν。 关于节流膨胀 :恒焓过程

J T

H

T p μ-??

?= ???? μJ-T 称为焦耳—汤姆逊系数

第三章 热力学第二定律

一、基本概念

自发过程与非自发过程 二、热力学第二定律

1、热力学第二定律的经典表述

克劳修斯,开尔文,奥斯瓦尔德。实质:热功转换的不可逆性。

2、热力学第二定律的数学表达式(克劳修斯不等式)

“=”可逆;“>”不可逆

三、熵

1、熵的导出:卡若循环与卡诺定理

1W Q h -=121

T T T -=

2

3、熵的物理意义:系统混乱度的量度。

4、绝对熵:热力学第三定律

5、熵变的计算

(1)理想气体等温过程:

(2

(3

(4)理想气体pTV 都改变的过程:

2

1

12,ln

ln p p nR T T nC S m p +=?

(5

(6)化学反应过程:)298,()298(B S S m B m r ∑=?θθν

四、赫姆霍兹函数和吉布斯函数

1、定义:A=U-TS ;G=H-TS

等温变化:ΔA=ΔU -TΔS ;ΔG=ΔH -TΔS

2、应用:不做其他功时,ΔA T ,V ≤0 ;自发、平衡 ΔG T ,P ≤0 ;自发、平衡

3、热力学基本关系式

d A =-S d T -P d V ;d G =-S d T +V d P

4、ΔA 和ΔG 的求算

五、1、克拉配龙方程

由基本式: ()G H TS ?=?-?pVT 变化:

2211()

G H T S T S ?=?--恒T : G H T S

?=?-?理想气体

2

1

ln

p G nRT p ?=相变:

G ?=设计过程:pVT 变化+平衡相变

(1)由?H , ?S → ?G ;(2)由各步的?G i →?G

平衡相变

非平衡相变

化学反应: 由其它反应求

求:f m G D $由 r m r m ,H S D D

r m r m r m

$$$

G H T S D =D -D

r m B f m,B

$

$

G G n D =

D ?

βαβαm m d d H p T T V D =

D

克-克方程

第四章 多组分系统热力学

一、化学势的概念

1、化学式的定义和物理意义

)(,,)(B c c n p T B

B n G ≠??=μ

;在T 、p 及其他物质的量保持不变

的情况下,增加1molB 物质引起系统吉布斯函数的增量。

2、化学势的应用

在等温等压不作其他功时,∑B B μν<0自发;=0平衡;>逆向自发

3、化学时表示式

理想气体:

)/ln(θ

θμμp p RT += 纯固体和纯液体:θ

μμ=

二、拉乌尔定律和亨利定律

1、拉乌尔定律

p A =p *x A ;p A =p *a x ,A

适用于液态混合物和溶液中的溶剂。

2、亨利定律

p B =k x,B x B =k b,B b B =k %,B [%B ] ; p B =k x,B a x,B =k b,B a b,B =k %,B a %,B 适用于溶液中的溶质。

二、液态混合物和溶液中各组分的化学势

1、理想液态混合物

x RT T mix p T x ln )(),,(+=θ

μμ

标准态为:同温下的液态纯物质。

理想液态混合物的混合性质

都为0

2、真实液态混合物

x x a RT T mix p T ln )(),,(+=θ

μμ

标准态为:同温下的液态纯溶剂。 3、理想稀溶液

溶剂:A A x A x RT T sln p T ln )(),,(+=θ

μμ

标准态为:同温下的液态纯溶剂。

mix B B

B

ln G R T

n x D =?

ln mix mix B B

B

p

G S R n x T

骣禗琪D =-=-琪桫??mix V D mix H D mix U D

溶质:B B x B x RT T sln p T ln )(),,(+=θ

μμ

标准态为:同温下x B =1且符合亨利定律的溶质(假

想状态)。

4、真实溶液

溶剂:A x A x A a RT T sln p T ,,ln )(),,(+=θ

μμ ;a x,A =f x,A x ;

标准态为:同温下的液态纯溶剂。

溶质:B x B x B a RT T sln p T ,ln )(),,(+=θ

μμ ; a x,B =γx,B x B ;

标准态为:同温下x B =1且符合亨利定律的溶质(假想状态)。

B b B b B a RT T sln p T ,,ln )(),,(+=θ

μμ; a b,B =γb,B b B ;

标准态为:同温下b B =1且符合亨利定律的溶质(假想状态)。

B B

B a RT T sln p T %,%,ln )(),,(+=θ

μμ; a %,B =γ%,B [%B]; 标准态为:同温下[B%]=1且符合亨利定律的溶质(一般为假想状态)。 三、各种平衡规律

1、液态混合物的气液平衡

p A =p *A

a x,A ; p B =p *A

a x,B ; p=p A +p B 2、溶液的气液平衡

p A =p *A

a x,A ;p B =k x,B a x,B =k b,B a b,B =k %,B a %,B ;p=p A +p B 3、理想稀溶液的凝固点降低,

4、沸点升高

5、范特霍夫渗透压公式

第五章 化学平衡

一、化学平衡的条件

二、化学平衡常数与平衡常数表达式 如:Zn+2HCl(aq)=H 2+ZnCl 2(aq )

)

HCl ()]ZnCl (][/)H ([222c c p p K θ

θ

= r m

,00T p

G G x

?D <

琪琪桫,即,反应正向进行

r m ,00T p

G G x

?D >>?骣

琪琪桫,即,正反应不能进行(但逆反应可进行)

r m

,00T p

G G x

?D ==?骣

琪琪桫,即,反应达到平衡

()*2

b A

b B

vap m,A

R T M T b H D =D $

B B

,V n R T c R T P P ==或

B

B B

B

B B B (/)()

(/)(/)

{/()}

p c y

n K

p p K p K c R T p K p p K p p n ννννν-

∑==∑=∑=∑=∏∑$

$$

$$$$$

三、 标准平衡常数的求算

θ

θ

K RT T G m r ln )(-=?

四、 范特荷夫等温方程

θθθθ

K J RT J RT T G T G m r m r /ln ln )()(=+?=?

五、平衡常数与温度的关系范特荷夫等压方程

θ

θθm r m r m r S T H T G ?-?=?)(;θθK RT T G m

r ln )(-=?

五、各种因素对平衡的影响

分压、总压、惰性气体、温度。

第六章 相平衡

一、相律

1、物种数、独立组分数、相数、自由度数

2、相律公式f=C-φ+2

二、单组分系统

1、克-克方程

2、水的相图

三面、三线、一点。

三、双组分系统

1、相律分析

根据f=C-φ+1(一般固定压力),φ=2,f=1;φ=3,f=0

2、杠杆规则

3、步冷曲线

四、典型相图

1、6.3.4理想液态混合物甲苯-苯相图

2、6.6.2部分互溶系统水-正丁醇相图

3、6.8.1生成稳定化合物苯酚-苯胺相图

第七章电化学

电解质溶液

一、电解质溶液的电导

1、电导

G=1/R ; 单位:S(西门子)

2、电导率

G =κA /l 或κ=G l /A ; 单位:S/m 3、摩尔电导率

Λm =κ/c

4、无限稀释摩尔电导率

∞-

-∞+

+∞+=ΛΛΛm

νν

5、离子的电迁移

l

E

U ?=++υ ;-

++

--+++++=+===U

U U I I Q Q t υυυ ;1=+-+t t

二、电解质溶液的活度

1、电解质的化学势(电解质溶液的浓度用m B 或b B 表示)

B B B a RT ln +=θ

μμ

;)

(;)(;/)(;/1/1/1ννννννθ

ννννγγγγ-+-+-+-+±-+±±±-+±±?=?=?=?==m m m m m a a a a a B 2、离子强度

∑=2

2

1B

B z m I

3、德拜—休克尔极限公式 可逆电池热力学 一、可逆电池的构成

电池反应互为逆反应;充放电时电流无穷小。 二、可逆电池热力学

1、;zFE G m r -=?C/mol 96500;=-=?F zFE

G m

r θ

θ 23、m r m r m r S T G H ?+?=?

4

、m r r S T Q ?= ;电池反应做了其他功。 三、能斯特方程

1、电池反应的能斯特方程

2、电极反应的能斯特方程

)H ()

O (lg

0592.0a a z E E +=++θ

;不常用

四、可逆电极的种类

1、第一类电极

金属电极;气体电极 2、第二类电极

难溶盐电极;难溶氧化物电极 3、氧化还原电极 五、电极电势的应用

1、测定电池反应的热力学函数

2、测定电解质的±γ

3、测定溶液的pH 值 六、极化现象和超电势

1、浓差极化

电极反应速度比离子迁移速度快造成的。 2、电化学极化

电极反应速度比电子移动速度慢造成的。 3、极化结果

e i E E -=η;对阳极η总为正;对阴极η总为负。

第十章 界面现象

一、表面吉布斯函数

1、产生

表面分子与内部分子的差别。 2、定义及单位

B n p T A

G

,,)(??=σ

;J/m 2或N/m ;因此又称表面张力。

3、影响因素

物质本性、温度、相邻相、溶质的种类。 4、表面热力学

在温度、压力、组成不变的情况下,σσAd dA dG += 缩小表面积和降低表面张力为自发方向。

二、弯曲液面的表面现象

1、附加压力

r p /2σ=?

2、饱和蒸气压

r

K p p r

/)ln(0= 3、毛细管现象

gR

h ρθ

σcos 2=

三、新相生成与介安状态

1、过饱和蒸汽与人工降雨

2、过冷现象与晶种

3、过饱和溶液与种盐

4、过热现象与沸石 四、固体表面的吸附作用 1、物理吸附与化学吸附

范德华力与化学键力;又无选择性;单分子层与多分子层。

2、吸附曲线

等温线(判断单多层);等压线(判断吸附类型)、等量线(求吸附热) 3、吸附等温式

弗伦德里希:n kp m V a ==

朗格谬尔:bp bp

V V +=∞1

五、溶液表面的吸附

1、溶液的表面张力

各类溶质对表面张力的影响。 2、吉布斯吸附公式

T c

RT c )(??-=Γσ

六、润湿现象

1、接触角θ

θ=0°,完全润湿;θ<90°,润湿;θ>90°,不润湿; θ=180°,完全不润湿。 2、杨氏方程

θσσσcos g l l s g s ---+=

七、表面活性剂

1、定义

溶于水后能显著降低水的表面张力的物质。 2、分类

离子型、非离子型。 3、结构特点

一端亲水基一端亲油基。

4、应用

乳化、去污(增溶)、浮选、改变润湿角。

第十一章化学动力学基础

一、关于反应速率的基本概念

1、反应速率的表示

2、反应速率的测定

测定不同时刻的浓度(化学法、物理法),作c~t曲线,t时刻切线的斜率即为t时的反应速率。

3、基元反应和非基元反应

一步完成的反应为基元反应,基元反应遵守质量作用定律。是否基元反应只能通过实验确定。

4、速率方程与速率常数

质量作用定律是速率方程的特殊形式,对于非基元反应也有类似的式子。

速率常数仅与温度和催化剂有关,而与浓度无关。

5、反应级数

速率方程中浓度幂之和称之。基元反应一定为正整

数,非基元反应可为0或小数。 二、浓度对反应速率的影响

1、一级反应

微分式:A A

kc dt dc =- ——与浓度的一次方成正比;

k 的单位为时间-1

积分式:kt c c =0

ln ——以ln c ~t 作图得一直线;

半衰期:k t 2ln 2

/1=

——与起始浓度无关。

2、二级反应与准一级反应

微分式:2kc dt dc =- ——与浓度的二次方成正比;

k 的单位为浓度-1时间-1

积分式:kt c c =-01

1

——以1/c ~t 作图得一直线;

半衰期:0

2

/11kc t = ——与起始浓度的一次方成反比。

准一级反应:对于A+B==Y+Z ,当A 大大过量或B

大大过量时,可按一级反应处理。

3、反应级数的测定

尝试法:将一组c ~t 数据代入不同积分公式求k ,若

k 为常数则所代公式正确;

作图法:将一组c ~t 数据按ln c ~t 、1/c ~t 等作图,若得直线可判定反应级数;

半衰期法:根据n

Kc t -=12/1得K c n t lg lg )1(lg 2

/1+-=,

以2/1lg t ~c lg 作图可得直线,从斜率可求n 。

微分法:根据n kc =υ得k c n lg lg lg +=υ,以υlg ~c

lg 作图可得直线,斜率即为n 。

四、温度对反应速率的影响

1、阿仑尼乌斯公式

微分式:2

ln RT E dT k

d a =

2、活化能

活化分子的平均能量与反应物分子的平均能量之差。

复合反应

一、复合反应基本类型

1、平行反应

A A c k k dt

dc )(21+=- ;2

1k k c c c B =

2、对行反应

B A A c k c k dt

dc 11--=- ;11,,-=

=k k c

c K e

A e

B c

3、连串反应

A A c k dt

dc 1=- ;B A B c k c k dt dc 21-= ;B c

c k dt dc 2=

二、复合反应机理近似处理方法

1、平衡态法

反应物与中间物达成平衡。 2、稳态法

中间物的浓度维持微小量不变。 三、链反应与爆炸半岛

1、链反应

分为直链反应和支链反应;链引发、链传递、链终止。 2、爆炸半岛

常见可燃气体在空气中的爆炸限。 四、催化作用的特征

1、催化剂不能改变反应的方向和限度

2、催化剂参与反应,改变了反应途径,降低了反应的活

大学 物理化学 笔记总结

第一章 物理化学的定义,相变化(物质在熔点沸点间的转化) 物理化学的基本组成:1化学热力学(方向限度)2化学动力学(速率与机理)3结构化学 物理化学的研究方法、热力学方法、动力学方法、量子力学方法 系统、环境的定义。系统的分类:开放系统,封闭系统,隔离系统 系统的性质:强度性(不可加),广延性(可加)。系统的状态 状态函数及其性质:1单值函数2仅取决于始末态3全微分性质。 热力学能、热和功的定义 热分:潜热,显热。功分:膨胀功、非膨胀功。 热力学第一定律的两类表述:1第一类永动机不可制成。2封闭体系:能量可从一种形式转变为另一种形式,但转变过程中能量保持不变。、 恒容热、恒压热,焓的定义。PV U H def +≡ 恒容热:①封闭系统② W f =0 ③W e =0 恒压热:①封闭系统②W f =0 ③d p =0 理想气体的热力学能和焓是温度的函数。 C, C V , C V ,m , C P , C P,m 的定义。 △u =n C V ,m (T 2-T 1) △H=n C P,m (T 2-T 1) C V ,m =a+bT+cT 2+…/ a+bT -1+cT -2 +… 单原子分子C V ,m = 23R C P ,m =25R 双原子分子C V ,m =25R C P ,m =2 7R γ单= 35 γ双=5 7 C P,m - C V ,m =R R=8.3145J ·mol -1·k -1 可逆过程定义及特点:①阻力与动力相差很小量②完成一个循环无任何功和热交换③膨胀过程系统对环境做最大功,压缩过程环境对系统做最小功 可逆过程完成一个循环 △u=0 ∑=0W ∑=0Q W 、 Q 、△u 、△H 的计算 ①等容过程:W =0 Q =△u △u=n C V ,m (T 2-T 1) △H=n C P,m (T 2-T 1) ②等压过程:W =-Pe(V 2-V 1) Q=△H △u=n C V ,m (T 2-T 1) △H=n C P ,m (T 2-T 1) ③等温过程:W=-nRTln 1 2V V Q=-W △u=△H=0 ④绝热可逆过程:W=n C V ,m (T 2-T 1) /?? ? ???? ?-??? ? ??--1112111γγv v v p Q=0 △u=n C V ,m (T 2-T 1) △H=n C P ,m (T 2-T 1) 21p p =(12v v )γ 21T T =(12v v )1-γ 21T T =(2 1p p ) γ γ1 - 相变化过程中△H 及△u 的计算△u=△H-P △V=△H-nRT 见书1-10 化学计量系数ν 化学反应进度??= B νB n ?(必与指定的化学反应方程对应) 化学反应热效应定义, 盖斯定律:一个化学反应,不管是一步完成或是经数步完成,反应的总标准摩尔焓变是相同的,即盖斯定律。 标准摩尔反应焓变:)(H m T r θ ?= ∑B B θν m H (B ,,β T ) 化学反应θ m H r ?的计算:1 )(H m T r θ ?= ∑?B B θν m f H (B ,,β T ) θ m f H ?:在温度为T ,

物理化学的心得体会

物理化学心得体会 经过对物理化学的学习,感觉很系统,很科学,我对这门课程有了进一步的了解与熟悉。物理化学的研究内容是:热力学、动力学、和电化学等,它是化学中的数学、哲学,学好它必须用心、用脑,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,关键还在于用脑子去想。 学习物理化学应该有自己的方法:一、勤于思考,十分重视教科书,把其原理、公式、概念、应用一一认真思考,不粗枝大叶,且眼手并用,不放过细节,如数学运算。对抽象的概念如熵领悟其物理意义,不妨采用形象化的理解。适当地与同学老师交流、讨论,在交流中摒弃错误。二、勤于应用,在学习阶段要有意识地应用原理去解释客观事物,去做好每一道习题,与做物化实验一样,“应用”对加深对原理的理解有神奇的功效,有许多难点是通过解题才真正明白的。做习题不在于多,而在于精。对于典型的题做完后一定要总结和讨论,力求多一点“觉悟”。三、勤于对比与总结,这里有纵横二个方面,就纵向来说,一个概念原理总是经历提出、论证、应用、扩展等过程,并在课程中多次出现,进行总结定会给你豁然开朗的感觉。就横向来说,一定存在相关的原理,其间一定有内在的联系,如熵增原理、Gibbs自由能减少原理、平衡态稳定性等,通过对比对其相互关系、应用条件等定会有更深的理解,又如把许多相似的公式列出对比也能从相似与差别中感受其意义与功能。在课堂上做笔记,课下进行总结,并随时记下自己学习中的问题及感悟,书本上的、课堂上的物化都不属于自己,只有经历刻苦学习转化为自己的“觉悟”才是终身有用的。 第二、三章是热力学部分的核心与精华,在学习和领会本章内容中,有几个问题要作些说明以下几点:1. 热力学方法在由实践归纳得出的普遍规律的基础上进行演绎推论的一种方法。热力学中的归纳,是从特殊到一般的过程,也是从现象到本质的过程。拿第二定律来说,人们用各种方法制造第二类永动机,但都失败了,因而归纳出一般结论,第二类永动机是造不出来的,换句话说,功变为热是不可逆过程。第二定律抓住了所有宏观过程的本质,即不可逆性。热力学的整个体系,就是在几个基本定律的基础上,通过循环和可逆过程的帮助,由演绎得出的大量推论所构成。有些推论与基本定律一样具有普遍性,有些则结合了一定的条件,因而带有特殊性。例如从第二定律出发,根据可逆过程的特性,证明了卡诺定理,并得出热力学温标,然后导出了克劳修斯不等式,最终得出了熵和普遍的可逆性判据。以后又导出一些特殊条件下的可逆性判据。这个漫长的演绎推理过程,具有极强的逻辑性,是热力学

大学物理化学实验全集

实验六.二组分固-液体系相图的绘制 一、实验目的 (1)热分析法测绘Sn-Bi二元合金相图 (2)掌握热分析法的测量技术 (3)掌握热电偶测量温度的基本原理以及数字控温仪和升降温电炉的使用方法 二、实验原理 用几何图形来表示多相平衡体系中有哪些相,各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图叫相图。以体系所含物质的组成为自变量,温度为应变量所得到的T-x图就是常见的一种相图。 绘制相图的方法很多,热分析法就是常用的一种实验方法。即按一定比例配成一两组分体系,将体系加热到熔点以上成为液态,然后使其逐渐冷却,每隔一定时间记录一次温度,以体系的温度对时间的关系曲线称为步冷曲线。熔融体系在均匀冷却过程中无相变时,其温度将连续均匀下降,得到一条平滑的冷却曲线,当冷却过程中发生相变时,放出相变热,使热损失有所抵偿,冷却曲线就会出现转折。当两组分同时析出时,冷却速度甚至变为零,冷却曲线出现水平段。转折点或平台所对应的温度,即为该组成合金的相变温度。 取一系列组成不同的二元合金,测得冷却曲线,再将相应的转折点连接起来即得到二元合金相图(如下图所示) 三、实验所用仪器、试剂 1.KWL-09可控升降温电炉,SWKY-1数字控温仪 2.编号为1-6的六个金属硬质试管依次分装:纯铋、含锡20%,42%,60%,80%的合金、纯锡。8号试管为空管。 四、实验步骤 1.安装并调整SWKY-1数字控温仪与KWL-09可控升降温电炉,将控温仪与电炉用电缆连接。2号炉膛(右侧)放8号空管,将与控温仪相连的温度传感器(传感器2)插入其中 2.1.将装有试剂的试管1放入1号炉膛(注意安全,始终用铁夹小心夹住试管),并将与电炉连接的温度传感器(传感器1)插入炉膛旁边的另一小孔中(注:不要将传感器1插入试管中)。将2号传感器插入放有8号空管的炉膛2 2.2.调节控温仪(工作/量数按钮),将电炉温度设定为350℃,再调为工作状态,此时1号炉膛开始加热。调节定时按钮,是时间显示为30s。将电炉“冷风量调节”电压调到零,“加热量调节”调到180V(电压过低加热太慢,电压过高有损仪器使用寿命),给2号炉膛预热到200度左右(避免温度下降过快,减小试管冷却时发生过冷现象的可能) 2.3.当温度显示1号炉膛温度达到350℃时,再等10min左右。待温度稳定后将预热后的8号空管用铁夹移出去,并将1号试管夹入2号炉膛。换入2号试管加热,熔融。关闭“加热量调节”,此时控温仪显示温度上升,当温度上升到310℃以上时,打开“冷风量调节”,电压调为1.5V。此时温度开始下降,当温度降到接近300℃时,开始记录温度。每隔30s,控温仪会响一声,依次记下此时的仪表读数即可。

关于学习物理化学的心得体会5篇【精选】

物理课和化学课是当前高中教育阶段非常重要的两门基础课程,包含在理工科之中,但是两门课程在很大程度上具备文科的特点。下面是学习物理化学的心得体会,供你参考! 学习物理化学的心得体会篇1 经过对物理化学的学习,感觉很系统,很科学,我对这门课程有了进一步的了解与熟悉。物理化学的研究内容是:热力学、动力学、和电化学等,它是化学中的数学、哲学,学好它必须用心、用脑,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,关键还在于用脑子去想。 学习物理化学应该有自己的方法: 一、勤于思考,十分重视教科书,把其原理、公式、概念、应用一一认真思考,不粗枝大叶,且眼手并用,不放过细节,如数学运算。对抽象的概念如熵领悟其物理意义,不妨采用形象化的理解。适当地与同学老师交流、讨论,在交流中摒弃错误。 二、勤于应用,在学习阶段要有意识地应用原理去解释客观事物,去做好每一道习题,与做物化实验一样,应用对加深对原理的理解有神奇的功效,有许多难点是通过解题才真正明白的。做习题不在于多,而在于精。对于典型的题做完后一定要总结和讨论,力求多一点觉悟。 三、勤于对比与总结,这里有纵横二个方面,就纵向来说,一个概念原理总是经历提出、论证、应用、扩展等过程,并在课程中多次出现,进行总结定会给你豁然开朗的感觉。就横向来说,一定存在相关的原理,其间一定有内在的联系,如熵增原理、 bb 自由能减少原理、平衡态稳定性等,通过对比对其相互关系、应用条件等定会有更深的理解,又如把许多相似的公式列出对比也能从相似与差别中感受其意义与功能。在课堂上做笔记,课下进行总结,并随时记下自己学习中的问题及感悟,书本上的、课堂上的物化都不属于自己,只有经历刻苦学习转化为自己的觉悟才是终身有用的。 第二、三章是热力学部分的核心与精华,在学习和领会本章内容中,有几个问题要作些说明以下几点: 1. 热力学方法在由实践归纳得出的普遍规律的基础上进行演绎推论的一种方法。热力学中的归纳,是从特殊到一般的过程,也是从现象到本质的过程。拿第二定律来说,人们用各种方法制造第二类永动机,但都失败了,因而归纳出一般结论,第二类永动机是造不出来的,换句话说,功变为热是不可逆过程。第二定律抓住了所有宏观过程的本质,即不可逆性。热力学的整个体系,就是在几个基本定律的基础上,通过循环和可逆过程的帮助,由演绎得出的大量推论所构成。有些推论与基本定律一样具有普遍性,有些则结合了一定的条件,因而带有特殊性。例如从第二定律出发,根据可逆过程的特性,证明了卡诺定理,并得出热力学温标,然后导出了克劳修斯不等式,最终得出了熵和普遍的可逆性判据。以后又导出一些特殊条件下的可逆性判据。这个漫长的演绎推理过程,具有极强的逻辑性,是热力学精华之所在。采用循环和以可逆过程为参照,则是热力学独特的基本方法。 2. 热力学基本方程是热力学理论框架的中心热力学基本方程将、、、、、、A、等

大学物理化学实验报告---液体饱和蒸汽压的测定

纯液体饱和蒸汽压的测量 目的要求 一、 明确纯液体饱和蒸气压的定义和汽液两相平衡的概念,深入了解纯液体饱 和蒸气压与温度的关系公式——克劳修斯-克拉贝龙方程式。 二、 用数字式真空计测量不同温度下环己烷的饱和蒸气压。初步掌握真空实验 技术。 三、 学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸 点。 实验原理 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。 液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为1atm (101.325kPa )时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 2 m vap d ln d RT H T p ?= (1) 式中,R 为摩尔气体常数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔 气化热。 假定Δvap H m 与温度无关,或因温度范围较小,Δvap H m 可以近似作为常数,积分上式,得: C T R H p +??-=1 ln m vap (2) 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为 R H m vap ?- ,由斜率可求算液体的Δvap H m 。 静态法测定液体饱和蒸气压,是指在某一温度下,直接测量饱和蒸气压,此 法一般适用于蒸气压比较大的液体。静态法测量不同温度下纯液体饱和蒸气压,有升温法和降温法二种。本次实验采用升温法测定不同温度下纯液体的饱和蒸气压,所用仪器是纯液体饱和蒸气压测定装置,如图1所示: 平衡管由A 球和U 型管B 、C 组成。平衡管上接一冷凝管,以橡皮管与压

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

物理化学(下)总结

《物理化学》(下) (南京大学第五版)总结 第八章 电解质溶液 一、基本概念与定义 1. 离子迁移数t 电解质溶液导电时,溶液中的i 离子运载的电流I i 与总电流之比(即i 离子所承担的导电任务的分数)。 1i i i i i i i i Q I u t t Q I u = ===∑∑ 2. 离子电迁移率(离子淌度)u i :单位电位梯度时离子的运动速率。 3. 电导与电导率 电导G(Ω-1 ):电阻R 的倒数。a 电导率κ(Ω-1 ·m -1 ):电阻率ρ的倒数。 电导池常数K cell :K cell = L/A L: 电极之间的距离;A:电极的面积 4. 摩尔电导率Λm (S ·m 2 ·mol -1 ) 含1mol 电解质的溶液置于相距单位距离的2个平行电极之间的电导池所具有的电导。 m c κ Λ= 5.电解质的平均活度和平均活度因子 对于任意价型的强电解质M ν+B ν- 平均活度因子 γ± =[ (γ+)ν+ (γ-)ν-] 1/(ν + + ν- ) a ± = m ±γ± m ± =[ (m +)ν+ (m -)ν-] 1/(ν + + ν- ) m + = ν+m ;m - = ν-m 电解质活度a = (a ±)( ν+ + ν- ) 6. 离子强度I 21 2i i i I m z = ∑ 7. 离子氛 电解质溶液中环绕在某一离子B 周围电荷与B 相反、电荷数量与B 相等的异号离子构成的球体。 8. 基本摩尔单元 发生1mol 电子转移电极反应的物质的量1/zM n+ + e → 1/z M 二、基本公式 1. Faraday 电解定律 往电解池通电,在电极上发生化学反应的物质的量与通入的电量成正比。 Q = It = znF z :电极反应M n+ + ze → M 中电子转移的计量数。

物理化学试验-华南理工大学

物理化学实验Ⅰ 课程名称:物理化学实验Ⅰ 英文名称:Experiments in Physical Chemistry 课程代码:147012 学分:0.5 课程总学时:16 实验学时:16 (其中,上机学时:0) 课程性质:?必修□选修 是否独立设课:?是□否 课程类别:?基础实验□专业基础实验□专业领域实验 含有综合性、设计性实验:?是□否 面向专业:高分子材料科学与工程、材料科学与工程(无机非金属材料科学与工程、材料化学) 先修课程:物理、物理化学、无机化学实验、有机化学实验、分析化学实验等课程。 大纲编制人:课程负责人张震实验室负责人刘仕文 一、教学信息 教学的目标与任务: 该课程是本专业的一门重要的基础课程,物理化学实验的特点是利用物理方法来研究化学系统变化规律,是从事本专业相关工作必须掌握的基本技术课程。其任务是通过本课程的学习,使学生达到以下三方面的训练: (1)通过实验加深学生对物理化学原理的认识,培养学生理论联系实际的能力; (2)使学生学会常用的物理化学实验方法和测试技术,提高学生的实验操作能力和独立工作能力; (3)培养学生查阅手册、处理实验数据和撰写实验报告的能力,使学生受到初步的物理性质研究方法的训练。 教学基本要求: 物理化学实验的特点是利用物理方法来研究化学系统变化规律,实验中常用多种物理测量仪器。因此在物理化学实验教学中,应注意基本测量技术的训练及初步培养学生选择和配套仪器进行实验研究工作的能力。 物理化学实验包括下列内容: (1)热力学部分量热、相平衡和化学平衡实验是这部分的基本内容。还可以选择稀溶液的依数性、溶液组分的活度系数或热分析等方面的实验。

学习物理化学的心得体会

学习物理化学的心得体会 学习物理化学的心得体会 当我们有一些感想时,可以将其记录在心得体会中,如此就可以提升我们写作能力了。那么心得体会该怎么写?想必这让大家都很苦恼吧,下面是小编帮大家整理的学习物理化学的心得体会,欢迎阅读,希望大家能够喜欢。 学习物理化学的心得体会1 一学期就这样悄然而逝。回想一下自己学到了什么。然而,一闭眼,感觉自己什么未曾学到。对物理化学没有整体的感知。 我想这应该说我自己平时不注重积累和总结吧。 确实,平时就只顾着赶作业,而忽视了总结。这一学期,我很少认真的想这章学完了,我该总结了。很少认真的想这两章学完了,我该总结了。更别说全本书学了,我该总结了。 总结不只应该挂在嘴上,而应落实下来。有总结才有系统的积累。这是我对学习物化及其他课的最深的一点感想,或者说是收获吧。 但仔细回想,收获还是有的。 首先,从老师那里我学到了,做事之前的准备要做好,做事时常常抬头从不同的角度看看,做完了要记得总结。做之前要认真思考:我做这件事是为了什么目的,我想达到什么效果,中间可能会出现哪些问题,我有没有在做无用功……很多时候总觉得自己很忙,可是在忙什么呢?有必要吗?有没有快速点的办法?这些问题却没有思考。 好比,进山之前,我未总体感知他;进山之后,我自顾着低头做,却忘了抬头看看脚下的路,它延向何方,路边风景如何;出山之后,却未回头看看我是怎么进去的,又是怎么出来的。还有别的路吗我没有思考过。那是我没有时间吗?当然,我们都知道,时间是挤出来的。正如,很多成功之士,他们的成功部分在于他们会挤时间,把时间用在刀刃上。 其次,我觉得有一点特别重要,就是我从何老师和周老师身上深深感受到的乐观的心态。 我一直觉得自己是一个悲观的人,我总结得自己这不行,那不行。过于在乎别人的看法,总觉得自己什么都做不来。一件事对我来说,想到的也都是它坏的一面。而老师不同,

大学物理化学实验汇总

实验一 电导的测定及其应用 一、实验目的 1、 测量氯化钾水溶液的电导率,求算它的无限稀释摩尔电导率。 2、 用电导率测量醋酸在水溶液中的解平衡常数。 3、 掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、根据电导公式:G=kA/l 式中k 为该电解质溶液目的电导率,其中 l/A 称为电导池常数,由于l 与A 不易精确测量,因此,试验中就是用一种已知电导率的溶液求出电导池常数k cell ,然后把欲测的溶液放入该电导池测出其电导值,再根据公式G=kA/l 求出摩尔电导率 , k 与 的关系为: 2、 总就是随着溶液的浓度的降低而增大的, 对于强电解质系 对于特定的电解质与溶剂来说,在一定温度下,A 就是一个常数,所以将 作图得到一 条直线,将所得的直线推至c=0可求得A m ∞。 3、对于弱电解质,其 无法用 ,由离子独立运动定律: 求得,其中 A m ∞+ 与A m ∞-分别表示正、负离子的无限稀摩尔电导率,它与温度及离子的本性有关。在无限稀的弱电解质中: 以cAm 对 作图,根据其斜率求出K 、、 三、实验仪器及试剂 仪器:梅特勒326电导仪1台,量杯50ml 2只 ,移液管125ml 9只,洗瓶1只 ,洗耳球1只。 试剂:10、00mol/m3 KCl 溶液, 100、0 mol/m3HAC 溶液 , 电导水。 四、实验步骤 1、 打开电导率仪器开关,预热5分钟。 2、 KCl 溶液电导率的测定: (1) 用移液管准确移取25ml 10、00mol/m3的KCl 溶液,置于洁净、干燥的量杯中,测定器电 导率3次,取其平均值。 (2) 再用移液管准确量取25、00ml 电导水,置于上述量杯中,搅拌均匀后,测定器电导率3 次,取其平均值。 m c κ = Λ m m,+ m, νν+--∞ ∞ ∞ =+ΛΛΛ m Λ m Λ m Λ m m ∞ =-ΛΛ m Λ m m ∞ =-ΛΛ m m = α∞ΛΛ() 2 m m m m 2 m m m m 1c c c K c c ∞∞ ∞∞?? ??-?=-=ΛΛΛΛΛΛΛΛΛ

物理化学(下)总结

物理化学(下)总结 (南京大学第五版)总结第八章电解质溶液 一、基本概念与定义 1、离子迁移数t电解质溶液导电时,溶液中的i离子运载的 电流Ii与总电流之比(即i离子所承担的导电任务的分数)。 2、离子电迁移率(离子淌度)ui:单位电位梯度时离子的运 动速率。 3、电导与电导率电导G(W-1):电阻R的倒数。a电导率 k(W-1m-1):电阻率r的倒数。电导池常数Kcell:Kcell = L/A L: 电极之间的距离;A:电极的面积 4、摩尔电导率Lm(Sm2mol-1)含1mol电解质的溶液置于相距单位距离的2个平行电极之间的电导池所具有的电导。 5、电解质的平均活度和平均活度因子对于任意价型的强电解 质Mn+Bn-平均活度因子 g =[ (g+)n+ (g-)n-]1/(n+ + n- )a = mgm =[ (m+)n+ (m-)n-]1/(n+ + n- )m+ = n+m;m- = n-m电解质活度a = (a)(n+ + n- ) 6、离子强度I 7、离子氛电解质溶液中环绕在某一离子B周围电荷与B相反、电荷数量与B相等的异号离子构成的球体。 8、基本摩尔单元发生1mol电子转移电极反应的物质的量 1/zMn+ + e1/z M

二、基本公式 1、Faraday电解定律往电解池通电,在电极上发生化学反应 的物质的量与通入的电量成正比。Q = It = znFz:电极反应Mn+ + ze M中电子转移的计量数。n:析出的M的量; 2、离子独立运动定律对于电解质Mn+Bn-的无限稀释溶液,有: 3、离子迁移数ti = n迁移/n电解 (希脱夫法,界面移动法) 4、 Debye-Hckel 极限公式 (A = 0、509) 三、电导测定的应用 1、求弱电解质的解离度和电离常数 2、求难溶盐的溶解度 3、水的纯度 4、电导滴定第九、章原电池与电解池 1、原电池与电解池的比较原电池电解池化学能电能负极(阳极),正极(阴极),电池中电极的极性取决于组成电池的电极氧化 还原电势。E端 = E可逆 h阴zF E可逆 < 0, E可逆 > 0电能化学能负极(阴极),正极(阳极)电解池中电极的极性取决于外加电 源的极性。E分解 = E可逆 + h阳 + h阴 +IRDGT, p = Wf, R > 0 在可逆条件下,h阳 = 0; h阴 = 0; IR = 0对于原电池,I0, 电极反应可逆,电池中其他过程也可逆(如液界电势0),电池为可逆电池E端 = E可逆 = j +,R,R (电池电动势的测定采用对消 法)Weston battery(cell): Cd(Hg)|CdSO4(饱和)|

物理化学公式总结

第一章 气体的pVT 关系 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。 上述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中pB 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 适用于任意气体。 V RT n p /B B = 适用于理想气体 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m n R T nb V V an p =-+))(/(22

大学物理化学实验思考题答案总结

蔗糖水解速率常数的测定 1.蔗糖水解反应速率常数和哪些因素有关? 答:主要和温度、反应物浓度和作为催化剂的H+浓度有关。 2.在测量蔗糖转化速率常数时,选用长的旋光管好?还是短的旋光管好? 答:选用长的旋光管好。旋光度和旋光管长度呈正比。对于旋光能力较弱或者较稀的溶液,为了提高准确度,降低读数的相对误差,应选用较长的旋光管。根据公式(a)=a*1000/LC,在其他条件不变的情况下,L越长,a越大,则a的相对测量误差越小。 3.如何根据蔗糖、葡萄糖、果糖的比旋光度数据计算? 答:α0=〔α蔗糖〕Dt℃L[蔗糖]0/100 α∞=〔α葡萄糖〕Dt℃L[葡萄糖]∞/100+〔α果糖〕Dt℃L[果糖]∞/100 式中:[α蔗糖]Dt℃,[α葡萄糖]Dt℃,[α果糖]Dt℃分别表示用钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t=20℃L=2 dm [蔗糖]0=10g/100mL 则: α0=66.6×2×10/100=13.32° α∞=×2×10/100×(52.2-91.9)=-3.94° 4.试估计本实验的误差,怎样减少误差? 答:本实验的误差主要是蔗糖反应在整个实验过程中不恒温。在混合蔗糖溶液和盐酸时,尤其在测定旋光度时,温度已不再是测量温度,可以改用带有恒温实施的旋光仪,保证实验在恒温下进行,在本实验条件下,测定时要力求动作迅速熟练。其他误差主要是用旋光仪测定时的读数误差,调节明暗度判断终点的误差,移取反应物时的体积误差,计时误差等等,这些都由主观因素决定,可通过认真预习实验,实验过程中严格进行操作来避免。 乙酸乙酯皂化反应速率常数测定 电导的测定及其应用 1、本实验为何要测水的电导率? 答:因为普通蒸馏水中常溶有CO2和氨等杂质而存在一定电导,故实验所测的电导值是欲测电解质和水的电导的总和。作电导实验时需纯度较高的水,称为电导水。水的电导率相对弱电解质的电导率来说是不能够忽略的。所以要测水的电导率。 2、实验中为何通常用镀铂黑电极?铂黑电极使用时应注意什么?为什么?

厦门大学物理化学近年真题考点归纳

表格中所写章节以傅献彩五版物理化学为准2007大题汇总 2008大题汇总

2009大题汇总 2010年大题汇总

2011年大题汇总

2012大题汇总 2013年大题汇总

以上列了近几年厦门大学物理化学考试科目大题的主要考点。厦门大学的物理化学不同于其他学校,他考察的题型比较单一。一般12~16分的选择题,然后剩下的大概十道左右的大题。 首先,复习过程中一般使用傅献彩的物理化学课本,据悉厦大本校上课也是使用这本教材。第一章气体的不用看,统计热力学一般就考一个选择,也可舍弃(明确说明只考概念),第十四章胶体近年来也只考选择,也可考虑舍弃。厦大的物化热力学考察并非重点,但热力学函数的关系、麦克斯韦关系要会熟练推导,并要求熟悉各个函数的意义,今年来有向热化学、能源方面考察的趋势。相图每年必考,且分值较大,考察的相图也较为常规,多进行几个典型相图的练习总结规律就行,步冷曲线也一般会要求绘制,杠杆规则的应用,并注意这部分可以和第四章结合考察。化学平衡也几乎年年考,这部分相对简单。电解质这一章本身就比较简单,一般是求电导率以及弱电解质平衡常数。第九十章电化学每年必考大题,能斯特方程要熟练运用,注意超电势的问题以及电解过程中离子浓度的改变。第十一十二章动力学每年考察的比重比较大,常用的反应级数求解、稳态近似平衡假设的使用及其使用条件、过渡态理论中热力学函数与活化能的关系、重要的关系式的推导。第十三章也年年考大题,开尔文公式、毛细现象,都很简单,但要注意浸润与不浸润时方程中R的正负(14年考的汞和玻璃,非常遗憾做错了) 最后,厦大物化最重要的参考书是孙世刚编写的物理化学的学习指导以及物理化学题库,历年真题很多出自上面。要将上面的习题反复练习。

学习物理化学的心得体会5篇

学习物理化学的心得体会5篇 ----WORD文档,下载后可编辑修改---- 学习物理化学的心得体会1 一学期就这样悄然而逝。回想一下自己学到了什么。然而,一闭眼,感觉自己什么未曾学到。对物理化学没有整体的感知。 我想这应该说我自己平时不注重积累和总结吧。 确实,平时就只顾着赶作业,而忽视了总结。这一学期,我很少认真的想这章学完了,我该总结了。很少认真的想这两章学完了,我该总结了。更别说全本书学了,我该总结了。 总结不只应该挂在嘴上,而应落实下来。有总结才有系统的积累。这是我对学习物化及其他课的最深的一点感想,或者说是收获吧。 但仔细回想,收获还是有的。 首先,从老师那里我学到了,做事之前的准备要做好,做事时常常抬头从不同的角度看看,做完了要记得总结。做之前要认真思考:我做这件事是为了什么目的,我想达到什么效果,中间可能会出现哪些问题,我有没有在做无用功......很多时候总觉得自己很忙,可是在忙什么呢?有必要吗?有没有快速点的办法?这些问题却没有思考。 好比,进山之前,我未总体感知他;进山之后,我自顾着低头做,却忘了抬头看看脚下的路,它延向何方,路边风景如何;出山之后,却未回头看看我是怎么进去的,又是怎么出来的。还有别的路吗我没有思考过。那是我没有时间吗?当然,我们都知道,时间是挤出来的。正如,很多成功之士,他们的成功部分在于他们会挤时间,把时间用

在刀刃上。 其次,我觉得有一点特别重要,就是我从何老师和周老师身上深深感受到的乐观的心态。 我一直觉得自己是一个悲观的人,我总结得自己这不行,那不行。过于在乎别人的看法,总觉得自己什么都做不来。一件事对我来说,想到的也都是它坏的一面。而老师不同,她们总能从另外的角度把自己变得快乐起来。每次上课,她们都是笑嘻嘻的,非常开心。每节课都让她们变得如此精彩。我常对自己说,既然意识到了就行动啊。对,我得养成乐观的心态,向老师那样,开心的工作,愉快的学习,那样也才有效率。 这两点让我获益匪浅。 下面,我想谈谈自己对物理化学的学习情况。 物理化学上册共有七章。其中,第一章《气体》我们没上。我觉得剩下六章大概分为三类。第一类:热力学两定律和统计热力学;第二类,化学势;第三类,两个平衡,相平衡和化学平衡。这其中,我认为自己化学势和两平衡学的还好。这三章,多在计算,而喜欢动笔计算做题的我,这几章到也顺手。相图这章记住几种类型的相图就没事。不过,热力学定律学的就差点。关键是运用不是很熟悉。里面有些公式运功的条件不是把我的很准。对状态函数G和A学的不够好。对它们的定义能接受,但涉及计算和概念,还是会出错。最不好的是统计热力学。原因在于,公式太多,有很杂。“配分函数”这个概念还是有点难懂。

大学物理化学知识整理

第一章 理想气体 1、理想气体:在任何温度、压力下都遵循PV=nRT 状态方程的气体。 2、分压力:混合气体中某一组分的压力。在混合气体中,各种组分的气体分子 分别占有相同的体积(即容器的总空间)和具有相同的温度。混合气体的总压力是 各种分子对器壁产生撞击的共同作用的结果。每一种组分所产生的压力叫分压 力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。 P y P B B =,其中∑=B B B B n n y 。 分压定律:∑=B B P P 道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组 分单独存在时所产生的压力的总和。 ∑=B B V RT n P ) /( 3、压缩因子Z Z=)(/)(理实m m V V 4、德华状态方程 RT b V V a p m m =-+))((2 nRT nb V V an p =-+))((22 5、临界状态(临界状态任何物质的表面力都等于0) 临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数: (1)临界温度c T ——气体能够液化的最高温度。高于这个温度,无论如何 加压 气体都不可能液化;

(2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。 6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。取决于状 态,主要取决于温度,温度越高,饱和蒸气压越高。 7、沸点:蒸气压等于外压时的温度。 8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。 对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、r r r c r r r c c c T V p Z T V p RT V p Z =?= 10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应 的Z 。 11、阿玛格定律:B B Vy V = p RT n V B B /= 12、单原子理想气体 R C m p 25,=,双原子理想气体R C m p 27,= 第二章 热力学第一定律 1、热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能 从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过 程中能量的总和不变,△U=Q+W (适用于非开放系统)。 2、

物理化学课程总结

物理化学期末总结 在这一学期的学习中,我们主要学习到了物理化学中的电化学,量子力学,统计热力学,界面现象与化学动力学的一些基础知识,这其中我个人还有许多地方存在问题,包括一些基础概念,公式,还有解题思路,都有些欠缺。这更能说明这是一门需要我们用心才能学好的课程,在这里请允许我自我检讨一下: 在这一学期的学习生活中,我并没有尽到一个好学生应尽的义务去认真负责的完成本学期的学习任务,导致在临近期末的时候脑海中实在搜刮不出一些讲得出口,拿得出手,上得了台面的知识与技巧,又实际上没有没什么可说的,没什么能说的出口的,可以说是虚度好一段大好时光。学习本如逆水行舟,不进则退。但学期末的总结也只能说是反省一下自我过失,谈不上后悔,和如果当初了......为了期末考试对于我来说我还是要好好复习。以弥补我在这个学期中对物理化学学习的不用功。 但是,这学期的课程中有很多我感兴趣的部分知识点,仍然学了些可以总结的东西,比如电化学。 电化学学习伊始,老师就提点了我们几点基本的学习要求:①理解原电池与电解池的异同点;理解电导‘电导率’摩尔电导率的定义及其应用。②掌握电解质的活度‘离子平均活度和离子平均活动系数的定义及计算。③掌握离子迁移数,离子电迁移率的定义了解迁移数的测定方法。掌握离子独立运动定律和德拜休克尔极限定律。④掌握电池反应和电极反应的能斯特方程,会利用能斯特方程计算电池电动势和电极电动势。⑤了解浓差电池的原理,了解液接电势的计算。⑥了解分解电压和极化的概念以及极化的结果。 学习中我了解到电化学是研究化学能和电能相之间相互转化规律的科学。其中电解质的导电任务是由正,负离子共同承担,向阴,阳两极迁移的正负离子物质的量总和恰好等于通入溶液的总电量,等类似的基本概念。还学会了希托夫法测量离子迁移数的测定方法,电导定义,德拜休克极限公式和有关电池热力学方面的计算与测定。当然不能不提的还有电池的原设计,其中有氧化还原反应的,中和反应的,沉淀反应的以及浓差电池——扩散过程。 窥一斑而见全豹,从本学期的电电化学的学习中,我更加深了了解物理化学这门课的含义:即物理化学是在物理和化学两大学科基础上发展起来的。它以丰富的化学现象和体系为对象,大量采纳物理学的理论成就与实验技术,探索、归纳和研究化学的基本规律和理论,构成化学科学的理论基础。也更加明白了问什么说“物理化学的水平在相当大程度上反映了化学发展的深度”。 最后我想说的是物理化学是一门值得我们学生努力学习的一门课,它相对而言更难,更精,是我们化学专业领域的一块好工具,傻傻的我一开始并不清楚,只有失去才懂得追悔莫及。

大学物理化学实验报告-化学电池温度系数的测定课件.doc

物理化学实验报告 院系化学化工学院 班级化学061 学号13 姓名沈建明

实验名称 化学电池温度系数的测定 日期 2009.4.20 同组者姓名 史黄亮 室温 19.60 ℃ 气压 102.0 kPa 成绩 一、目的和要求 1、掌握可逆电池电动势的测量原理和电位差计的操作技术; 2、学会几种电极和盐桥的制备方法; 3、通过原电池电动势的测定求算有关 热力学函数。 二、基本原理 (一)、凡是能使化学能转变为电能的装置都称之为电池对定温定压下的可 逆电池而言 : r m (1) nFE T , p G E S nF (2) r m T p E H nE F nF T (3) r m T p 式中,F 为法拉弟(Farady)常数;n 为电极反应式中电子的计量系数 ;E 为电池 的电动势。

另, 可逆电池应满足如下条件: 1.电池反应可逆,亦即电池电极反应可逆。 2.电池中不允许存在任何不可逆的液接界。 即充放电过程必须在平衡态下进行,3.电池必须在可逆的情况下 工作,

因此在制备可逆电池、 测定可逆电池的电动势时应符合上述条件, 不高的测量中,常用正负离子迁移数比较接近的盐类构成 “盐桥 ”来消除液接电 位。用电位差计测量电动势也可满足通过电池电流为无限小的条件。 (二)、求电池反应的 Δ r G m 、Δr S m 、Δr H m 设计电池如下 : Ag(s) | AgCl(s) |饱和 KCl | Hg 2Cl 2(s) | Hg(l) 分别 测定电池在各个温度下的电动势,作 E — T 图,从曲线斜率可求得任一温度 下的 E T p 利用公式 (1),(2),(3) 即可求得该电池反应的 Δ r G m 、Δr S m 、Δr H m 三、仪器、试剂 SDC — Ⅱ数字电位差综合测试仪 1 台 精密稳压电源(或蓄电池) SC — 15A 超级恒温槽 铜电极 2 只 铂电极 1 只 饱和甘汞电极 1 只 恒温夹套烧杯 2 只 HCl ( 0.1000mol k ·g-1) AgNO3 ( 0.1000mol k ·g-1) 镀银溶液 镀铜溶液 四、实验步骤 一、电极的制备 1.银电极的制备 将欲用的两只 Pt 电极(一个电极 Pt 较短,作为阳极, 另一个电极作为阴极, 用于镀银) 浸入稀硝酸溶液片刻, 取出用蒸馏水洗净。 将洗净的电极分别插入盛 有镀银液( AgNO 3 3g ,浓氨水, KI 60g )中,控制电流为 0.3mA ,电镀 1h ,得 白色紧密的镀银电极一只。 2. Ag-AgCl 电极制备 在精确度 KCl 饱和溶液

物理化学总结

物理化学总结 基本解释 Q:代表热,由于系统和环境之间存在温差而产生能量交换称为热。这定义可证明绝热可逆过程中,Q=0.在物质相变时,温度虽然恒定,但系统还吸收或放出热量,这种热称为潜热。显热是没有化学变化和相变的单纯升温降温过程系统吸收放出的热,由此可知在计算相变时会有过程I到II虽然温度不变 W:功是系统和环境之间能量交换的另一种形式。物理化学中功分为体积功和非体积功,其中体积功专指系统反抗外压力导致△V而做的功,这时,系统消耗自身的能量,W=-P△V 恒压过程:W=-P△V 恒温过程:恒温自由膨胀中W=-nRTlnV 2/V 1 自由膨胀:W=0 U内能:一个系统内部的能量总和。结合热力学第一定律:孤立系统的总能量不变可为其它量的计算建立联系。物理化学中,△U=Q-W。值得注意的是,如果系统的始,终态确定后,经过不同的途径完成,Q和W会有不同,但是△U不变,即Q-W的值不变。 △U=nC v,m (T 2 -T 1 ) H焓:焓是物体的一个热力学能状态函数H=U+PV(流动的内能+推动功),焓的变化值只取决于系统的始终态。焓的物理意义可以理解为恒压和只做体积功的特殊条件下,Q=ΔH,即反应的热量变化。 定义式:H=U+PV 恒压下△U=Q 其它情况包括恒压下,△H=nC p,m (T 2- T 1 ) 热容 针对理想气体 理想气体 C p,m -C v,m =R 单原子C v,m =3/2*R C p,m =5/2*R 双原子C v,m =5/2*R C p,m =7/2*R 相变:气体的相是气相,液体的相是液相,相变又称物态变化。 特征:恒压恒温 可逆相变:Q=△H=M(相对分子质量)*△H(蒸发焓,融化焓,升华焓) 若告诉蒸发热,融化热,升华热则不用上述公式,直接用△H=Q 不可逆相变:过冷水结冰,不可以用△S=△H/T 热温商:Q/T 熵:△S状态函数,是反应体系的混乱程度,但是熵变只等于可逆过程的热温商,不可逆循环热温商代数和小于零。 恒温过程:△S=Q/T;Q=W=nRTlnV 2/V 1 =nRTlnP 1 /P 2 △S=nRlnV 2 /V 1 =nRlnP 1 /P 2 恒压变温过程:△H=Q△S=Q/T=△H/T=nC p,m ln(T2/T1) 恒容变温过程:体积功为零,Q=U △S=nC v,m ln(T2/T) PVT均改变设计分解为上述几个过程,熵是状态函数,只与始末状态有关 A:亥姆霍兹函数A=U-TS,A也为状态函数 恒温过程△A=△U-T△S=△G=-nRTlnV2/V1=-nRTlnP1/P2 G:吉布斯函数G=H-TS=U+PV-TS=A+PV △G=△U+△(PV)-TS 恒温过程△G=△H-T△S 作用:判断恒温恒压且非体积功为零条件下,若系统发生不可逆过程则△G<0,且此时是自发的过程(不可逆);若过程可逆则△G=0,且系统处于平衡态 恒温过程,ΔH=△U=0;

相关文档
最新文档