反比例函数寒假训练卷2
反比例函数 专题练习(含答案)

反比例函数专题练习(含答案)一.选择题(共10小题)1.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.2.如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A.﹣5<x<1 B.0<x<1或x<﹣5 C.﹣6<x<1 D.0<x<1或x<﹣63.如图,直线y=﹣x+3与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣4.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=﹣2m B.n=﹣C.n=﹣4m D.n=﹣5.如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数的图象上,那么y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y16.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k2﹣k1的值是()A.1 B.2 C.4 D.87.如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是()A.1<k<2 B.1≤k≤3 C.1≤k≤4 D.1≤k<48.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A.1 B.2 C.3 D.49.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大 B.一直减小 C.先增大后减小 D.先减小后增大10.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6.则k的值为()A.1 B.2 C.4 D.无法确定二.填空题(共8小题)11.已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值.12.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=.13.如图,点A在双曲线y=上,AB⊥x轴于点B,且△AOB的面积是2,则k的值是.14.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.15.直线l1:y=k1x+b与双曲线l2:y=在同一平面直角坐标系中的图象如图所示,则关于x的不等式>k1x+b的解集为.16.若反比例函数的图象与一次函数y=ax+b的图象相交于A(﹣2,m),B(5,n)两点,则3a+b=.17.如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y=图象上,则图中过点A的双曲线解析式是.18.若反比例函数y=的图象位于第一、三象限,则正整数k的值是.三.解答题(共10小题)19.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20.平行四边形ABCD的两个顶点A、C在反比例函数y=(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.22.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.23.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.24.如图,点A(1,4),B(﹣4,n)在双曲线y=的图象上,直线AB分别交x轴、y轴于C,D,过点A作AE⊥x轴,垂足为E,过点B作BF⊥y轴,垂足为F,连接AF,BE交于点G.(1)求k的值及直线AB的解析式;(2)判断四边形ADEF的形状,并写出证明过程.25.如图,直线y=﹣x﹣1与x轴、y轴分别交于点A、B,与反比例函数y=(x<0)的图象交于点C,过点A作AD⊥0A,交反比例函数的图象于点D,连结CD.(1)若已知AB=AC,求反比例函数的表达式;(2)若已知CD=AC,求△ACD的面积.26.如图,已知双曲线y=与直线y=x相交于A,B两点,点C(2,2),D(﹣2,﹣2)在直线y=x上.(1)若点P(1,m)为双曲线y=上一点,求PD﹣PC的值.(2)若点P(x,y)(x>0)为双曲线y=上一动点,请问PD﹣PC的值是否为定值?请说明理由.(3)若点P(x,y)(x>0)为双曲线y=上一动点,连接PC交双曲线另一点E,当点P(x,y)使得PD﹣CE=2PC.求P的坐标.27.如图,已知A(﹣4,n),B(3,4)是一次函数y1=kx+b的图象与反比例函数的图象的两个交点,过点D (t,0)(0<t<3)作x轴的垂线,分别交双曲线和直线y1=kx+b于P、Q两点.(1)求反比例函数和一次函数的解析式;(2)当t为何值时,;(3)以PQ为边在直线PQ的右侧作正方形PQMN,试说明:边QM与双曲线(x>0)始终有交点.28.如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n=,求n的值.参考答案与试题解析一.选择题(共10小题)1.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.【分析】根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.【解答】解:当k>0时,反比例函数图象经过一三象限;一次函数图象经过第一、二、三象限,故A、C错误;当k<0时,反比例函数经过第二、四象限;一次函数经过第二、三、四象限,故B错误,D正确;故选:D.【点评】考查反比例函数和一次函数图象的性质:(1)反比例函数y=:当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;(2)一次函数y=kx+b:当k>0,图象必过第一、三象限,当k<0,图象必过第二、四象限.当b>0,图象与y轴交于正半轴,当b=0,图象经过原点,当b<0,图象与y轴交于负半轴.2.如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A.﹣5<x<1 B.0<x<1或x<﹣5 C.﹣6<x<1 D.0<x<1或x<﹣6【分析】由△AOB是等腰三角形,先求的点B的坐标,然后利用待定系数法可求得双曲线和直线的解析式,然后将将y1=与y2=联立,求得双曲线和直线的交点的横坐标,然后根据图象即可确定出x的取值范围.【解答】解:如图所示:∵△AOB为等腰直角三角形,∴OA=OB,∠3+∠2=90°.又∵∠1+∠3=90°,∴∠1=∠2.∵点A的坐标为(﹣3,1),∴点B的坐标(1,3).将B(1,3)代入反比例函数的解析式得:3=,∴k=3.∴y1=将A(﹣3,1),B(1,3)代入直线AB的解析式得:,解得:,∴直线AB的解析式为y2=.将y1=与y2=联立得;,解得:,当y1>y2时,双曲线位于直线线的上方,∴x的取值范围是:x<﹣6或0<x<1.故选:D.【点评】本题主要考查了反比例函数和一次函数的交点问题,求得双曲线和直线的交点的横坐标是解题的关键,同时本题还考查了函数与不等式的关系:从函数的角度看,y1>y2就是双曲线y1=位于直线y2=上方部分所有点的横坐标的集合;从不等式的角度来看y1>y2就是求不等式>的解集.3.如图,直线y=﹣x+3与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y= B.y=﹣C.y= D.y=﹣【分析】先求出点A的坐标,然后表示出AO、BO的长度,根据AO=3BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【解答】解:∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),∴反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.4.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=﹣2m B.n=﹣C.n=﹣4m D.n=﹣【分析】首先根据点C的坐标为(m,n),分别求出点A的坐标、点B的坐标;然后根据AO、BO所在的直线的斜率相同,求出m,n满足的关系式即可.【解答】解:由反比例函数的性质可知,A点和B点关于原点对称,∵点C的坐标为(m,n),∴点A的坐标为(,n),∴点B的坐标为(﹣,﹣n),根据图象可知,B点和C点的横坐标相同,∴﹣=m,即n=﹣.故选:B.【点评】此题主要考查了反比例函数的图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.5.如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数的图象上,那么y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【分析】分别把x=﹣2,x=﹣1,x=2代入解析式求出y1、y2、y3根据k>0判断即可.【解答】解:分别把x=﹣2,x=﹣1,x=2代入解析式得:y1=﹣,y2=﹣k,y3=,∵k>0,∴y2<y1<y3.故选:B.【点评】本题主要考查对反比例函数图象上点的坐标特征的理解和掌握,能根据k>0确定y1、y2、y3的大小是解此题的关键.6.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k2﹣k1的值是()A.1 B.2 C.4 D.8【分析】设A(a,b),B(c,d),代入双曲线得到K1=ab,K2=cd,根据三角形的面积公式求出cd﹣ab=4,即可得出答案.【解答】解:设A(a,b),B(c,d),代入得:K1=ab,K2=cd,∵S△AOB=4,∴cd﹣ab=4,∴cd﹣ab=8,∴K2﹣K1=8,故选:D.【点评】本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd﹣ab=4是解此题的关键.7.如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是()A.1<k<2 B.1≤k≤3 C.1≤k≤4 D.1≤k<4【分析】先根据题意求出A点的坐标,再根据AB=AC=2,AB、AC分别平行于x轴、y轴求出B、C两点的坐标,再根据双曲线y=(k≠0)分别经过A、B两点时k的取值范围即可.【解答】解:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=AC=2,∴B点的坐标是(3,1),∴BC的中点坐标为(2,2)当双曲线y=经过点(1,1)时,k=1;当双曲线y=经过点(2,2)时,k=4,因而1≤k≤4.故选C.【点评】本题考查一定经过某点的函数应适合这个点的横纵坐标.8.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A.1 B.2 C.3 D.4【分析】根据题意得出△AOD∽△OCE,进而得出==,即可得出k=EC×EO=2.【解答】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴===tan60°=,则=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴|xy|=AD•DO=×6=3,∴k=EC×EO=1,则EC×EO=2.故选:B.【点评】此题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,得出△AOD∽△OCE是解题关键.9.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大 B.一直减小 C.先增大后减小 D.先减小后增大【分析】设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.【解答】解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选:C.【点评】本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.10.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6.则k的值为()A.1 B.2 C.4 D.无法确定【分析】分别过点A、B作x轴的垂线,垂足分别为D、E,那么由AD∥BE,AD=2BE,可知B、E分别是AC、DC 的中点,得出OC=3a,进而求出S△AOC=AD×CO=(a+2a)×==6,即可求出k的值.【解答】解:分别过点A、B作x轴的垂线,垂足分别为D、E.则AD∥BE,AD=2BE=,∴B、E分别是AC、DC的中点.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==6,解得:k=4.故选C.【点评】本题主要考查了反比例函数的性质、三角形的中位线的判定及梯形的面积公式,体现了数形结合的思想,同学们要好好掌握.二.填空题(共8小题)11.已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值y>1或﹣≤y<0.【分析】画出图形,先计算当x=﹣1和x=2时的对应点的坐标,并描出这两点,根据图象写出y的取值.【解答】解:当x=﹣1时,y=﹣=1,当x=2时,y=﹣,由图象得:当﹣1<x<0时,y>1,当x≥2时,﹣≤y<0,故答案为:y>1或﹣≤y<0.【点评】本题结合图形考查了反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.12.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=﹣4.【分析】过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(﹣4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式;【解答】解:过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB•sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4;故答案为﹣4.【点评】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.13.如图,点A在双曲线y=上,AB⊥x轴于点B,且△AOB的面积是2,则k的值是﹣4.【分析】根据反比例函数的系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可得|k|=S△AOB=2,据此求出k的值是多少即可.【解答】解:∵△AOB的面积是2,∴|k|=2,∴|k|=4,解得k=±4,又∵双曲线y=的图象经过第二、四象限,∴k=﹣4,即k的值是﹣4.故答案为:﹣4.【点评】此题主要考查了反比例函数的系数k的几何意义,要熟练掌握,解答此题的关键是要明确:比例系数k的几何意义在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.14.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为6.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.15.直线l1:y=k1x+b与双曲线l2:y=在同一平面直角坐标系中的图象如图所示,则关于x的不等式>k1x+b的解集为x<或0<x<.【分析】先根据图象得出两函数的交点的横坐标,根据交点的横坐标结合图象即可得出答案.【解答】解:∵直线y=k1x+b与双曲线y=在同一平面直角坐标系中的图象的交点的横坐标是﹣和,∴关于x的不等式>k1x+b的解集是x<﹣或0<x<,故答案为:x<﹣或0<x<.【点评】本题考查了一次函数与反比例函数的交点问题的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,用了数形结合思想.16.若反比例函数的图象与一次函数y=ax+b的图象相交于A(﹣2,m),B(5,n)两点,则3a+b=0.【分析】根据A(﹣2,m),B(5,n)两点在反比例函数的图象上,求出m、n的值,用待定系数法求出a、b 的值,计算得到答案.【解答】解:∵A(﹣2,m),B(5,n)两点在反比例函数的图象上,∴m=﹣,n=,,解得,,3a+b=0,故答案为:0.【点评】本题考查的是反比例函数与一次函数的交点问题,根据运用待定系数法求出一次函数的系数是解题的关键,注意含有参数的二元一次方程组的解法.17.如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y=图象上,则图中过点A的双曲线解析式是y=﹣.【分析】要求函数的解析式只要求出点A的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=,然后用待定系数法即可.【解答】解:设点B的坐标是(m,n),因为点B在函数y=的图象上,则mn=2,则BD=n,OD=m,则AC=2m,OC=2n,设过点A的双曲线解析式是y=,A点的坐标是(﹣2n,2m),把它代入得到:2m=,则k=﹣4mn=﹣8,则图中过点A的双曲线解析式是y=﹣.故答案为:y=﹣.【点评】求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.18.若反比例函数y=的图象位于第一、三象限,则正整数k的值是1.【分析】由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.【解答】解:∵反比例函数的图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k的值是:1.故答案为:1.【点评】本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.三.解答题(共10小题)19.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),P(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.【点评】本题主要考查的是一次函数和反比例函数的综合应用,根据题意列出方程组是解题的关键.20.平行四边形ABCD的两个顶点A、C在反比例函数y=(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y=(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.【解答】解:(1)∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y=(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3=,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:=.【点评】本题考查反比例函数与一次函数的交点问题、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.【分析】(1)根据在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),可以求得点D的坐标,又因为双曲线y=(k≠0,x>0)过点D,从而可以求得k的值,从而可以求得双曲线的解析式;(2)由图可知三角形CDE的面积等于三角形EDA与三角形ADC的面积之和,从而可以解答本题.【解答】解:(1)∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),∴点D的坐标是(1,2),∵双曲线y=(k≠0,x>0)过点D,∴2=,得k=2,即双曲线的解析式是:y=;(2)∵直线AC交y轴于点E,∴S△CDE=S△EDA+S△ADC=,即△CDE的面积是3.【点评】本题考查反比例函数与一次函数的交点问题、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.22.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【分析】(1)求出OA=BC=2,将y=2代入y=﹣x+3求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案;(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.【解答】解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)把x=4代入y=得:y=1,即CN=1,∵S四边形BMON=S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4,由题意得:|OP|×AO=4,∵AO=2,∴|OP|=4,∴点P的坐标是(4,0)或(﹣4,0).【点评】本题考查了用待定系数法求反比例函数的解析式,一次函数与反比例函数的交点问题,三角形的面积,矩形的性质等知识点的应用,主要考查学生应用性质进行计算的能力,题目比较好,难度适中23.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.【分析】(1)把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;(2)根据A、B的横坐标,结合图象即可得出答案;(3)分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.【解答】解:(1)把A(2,m),B(n,﹣2)代入y=得:k2=2m=﹣2n,即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC=S梯形BCAD﹣S△BDA=5,∴×(2﹣n+2)×2﹣×(2﹣n)×(﹣n+2),解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k2=6,即反比例函数的解析式是y=;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.24.如图,点A(1,4),B(﹣4,n)在双曲线y=的图象上,直线AB分别交x轴、y轴于C,D,过点A作AE⊥x轴,垂足为E,过点B作BF⊥y轴,垂足为F,连接AF,BE交于点G.(1)求k的值及直线AB的解析式;(2)判断四边形ADEF的形状,并写出证明过程.【分析】(1)根据反比例函数图象上点的坐标特征求出k,利用待定系数法求出直线AB的解析式;(2)根据一组对边平行且相等的四边形是平行四边形证明即可.【解答】解:(1)∵点A(1,4)在双曲线y=的图象上,∴4=,解得k=4,∴点B的坐标(﹣4,﹣1),设直线AB的解析式为y=kx+b,则,解得,,∴直线AB的解析式为y=x+3;(2)直线AB的解析式为y=x+3与y轴的交点D的坐标为(0,3),∴OD=3,又OF=1,∴DF=4,又AE=4,∴AE=DF,∵AE∥DF,∴四边形ADEF是平行四边形.【点评】本题考查的是一次函数与反比例函数的交点、平行四边形的判定,掌握待定系数法求函数解析式的一般步骤、掌握平行四边形的判定定理是解题的关键.25.如图,直线y=﹣x﹣1与x轴、y轴分别交于点A、B,与反比例函数y=(x<0)的图象交于点C,过点A作AD⊥0A,交反比例函数的图象于点D,连结CD.(1)若已知AB=AC,求反比例函数的表达式;(2)若已知CD=AC,求△ACD的面积.。
初一数学寒假作业之一次函数与反比例函数综合应用题

初一数学寒假作业之一次函数与反比例函数综合应用题一、基础知识:1、在下面的四个有理数中,最小的是( ).A、 1B、0C、1D、 22、地球上的陆空中积约为149000000平方千米,这个数字用迷信记数法表示应为( ).A、0.149B、1.49C、1.49D、14.93、假定a为有理数,以下结论一定正确的选项是( ).A、 B、 C、 D、 04、-2的立方与-2的平方的和是 ( ).A、0B、4C、-4D、0或-45、和是同类项,那么的值是( ).A、2B、3C、4D、66、以下解方程步骤正确的选项是( ).A、由,得B、由,得C、由,得D、由,得7、某书上有一道解方程的题:,处在印刷时被油墨盖住了,查前面的答案知这个方程的解是,那么处应该是数字( ).A、7B、5C、2D、 28、线段AB=10cm,点C是直线AB上一点,BC=4cm,假定M 是AC的中点,N是BC的中点,那么线段MN的长度是( ).A、7cm B 、3cm C、7cm或3cm D、5cm二、填空题(此题共8小题,每题3分,共24分)9、假定|x|=2,那么 =__________ 。
10、用四舍五入法把0.00304保管两个有效数字所失掉的近似值是。
11、数轴上,假定点A表示的数是 , 点B与A到原点的距离相等,点C与点B的距离是2,那么点C所表示的有理数为。
12、单项式的系数是________,次数是_______。
13、假定有理数a,b,c在数轴上的位置如下图,那么可化简为_________。
14、一项工程甲独自做要20小时,乙独自做要12小时。
如今先由甲独自做5小时,然后乙参与出去合做。
完成整个工程一共需求多少小时?假定设一共需求x小时,那么所列的方程为。
15.角,角,那么 .16.观察下面两行数第一行:4,-9, 16,-25, 36,第二行:6,-7, 18,-23, 38,那么第二行中的第6个数是 ;第n个数是 .17.计算:(1)(2) .18. ,求的值。
反比例函数 练习题(带答案))

∴
.
( 2 )∵
,
∴反比例函数的解析式为
,
其函数图象如图所示;
当
时, 的取值范围
当
时, 的取值范围是
故答案为:
,
【标注】【知识点】反比例函数图象
;
或
.
或
.
5. 如图,有反比例函数
、
.
的图象和一个以原点为圆心, 为半径的圆,则 阴影
3
y
x
O
【答案】
【解析】 根据反比例函数的对称性,可知
的面积与 的面积相等,
,
∴
,
16
∵反比例函数的图象关于直线
对称,
,
点 与点 关于直线
对称,
∵
,
∴
,
设直线 的函数表达式为
,
将 、 代入得:
,
解得:
,
∴直线 的函数表达式为
.
( 3 )∵正比例函数的表达式为
设直线 的表达式为
将
代入得:
解得:
,
∴直线 的表达式为
由
,得
,且
,
,
,
,
(舍)或
,
∴点 的坐标为
.
【标注】【知识点】反比例函数与一次函数综合
是矩形,
,
,
∴设 点坐标为
,则 点坐标为
,
则
,
,
∴
矩形
,
∵
,
∴
整理得
,解得
(舍去),
, ,
∴ 点坐标为
,
∴
.
故选 .
10
【标注】【知识点】反比例函数与四边形综合
13. 反比例函数
练习21_实际问题与反比例函数-2020-2021学年【补习·寒假】九年级(原版卷+解析)

练习21实际问题与反比例函数一、单选题1.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()kPa P 是气体体积()3m V 的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不小于35m 4B .小于35m 4C .不小于34m 5D .小于34m 52.已知甲、乙两地相距s (km ),汽车从甲地行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km /h )的函数关系图象大致是( )A .B .C .D .3.探究课上,老师给出问题“一艘轮船上装有10吨货物,轮船到达目的地后开始卸货.设平均卸货速度为x 吨/小时,卸完这批货物所需的时间为y 小时.若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?”.如图,小华利用计算机先绘制出反比例函数()100y x x=>的图象,并通过观察图象发现:当05y <≤时,2x ≥.所以小华得出此题答案为;平均每小时至少要卸货2吨.小华的上述方法体现的数学思想是( )A .公理化B .数形结合C .分类讨论D .由特殊到一般4.某汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( )A .180千米/时B .144千米/时C .50千米/时D .40千米/时5.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A ,那么用电器的可变电阻R 应控制在什么范围?( )A .R ≥3ΩB .R ≤3ΩC .R ≥12ΩD .R ≥24Ω6.当温度不变时,气球内气体的气压P (单位:kPa )是气体体积V (单位:m 3)的函数,下表记录了一组实验数据:P 与V 的函数关系式可能是( )V (单位:m 3)1 1.52 2.5 3P (单位:kPa )9664 48 38.4 32 A .P =96VB .P =﹣16V +112C .P =16V 2﹣96V +176D .P =96v二、填空题 7.某市有长24000 m 的新道路要铺上沥青,则铺路所需时间t (天)与铺路速度v (m/天)的函数关系式是______________.8.某校科技小组进行野外考察,途中遇到一片十几米宽的湿地为了安全迅速地通过这片湿地,他们沿着前进路线铺若干块木板,构筑成一条临时通道.木板对地面的压强(Pa)p 是关于木板面积()2S m 的反比例函数,其图象如图所示.当木板对地面的压强不超过6000Pa 时,木板的面积至少应为________.9.某物体对地面的压强P (Pa )与物体和地面的接触面积S (m 2)之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为0.25m 2,那么该物体对地面的压强是_____Pa .10.一定质量的二氧化碳,其体积V (m³)是密度ρ(kg/m³)的反比例函数,请根据图中的已知条件,写出当 1.1ρ=kg/m³时二氧化碳的体积V =______m³.11.一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:y=kv(k≠0),其图象为如图的一段曲线,若这段公路行驶速度不得超过60km/h,则该汽车通过这段公路最少需要______h.12.我们知道当电压一定时,电流与电阻成反比例函数关系.现有某学生利用一个最大电阻为200Ω的滑动变阻器及一电流表测电源电压,结果如图所示.()1电流I(安培)与电阻R(欧姆)之间的函数解析式为________;()2当电阻在2Ω200Ω~之间时,电流应在________范围内,电流随电阻的增大而________;()3若限制电流不超过20安培,则电阻在________之间.三、解答题13.一列货车从北京开往乌鲁木齐,以50km/h的平均速度行驶需要64h.为了实施西部大开发,京乌线决定全线提速.(1)如果提速后平均速度为vkm/h,全程运营时间为t小时,试写出t与v之间的函数表达式;(2)如果提速后平均速度为64km/h,求提速后全程运营时间;(3)如果全程运营的时间控制在35h内,那么提速后,平均速度至少应为多少?14.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡.后来人们把它归纳为“杠杆原理”,即:阻力⨯阻力臂=动力⨯动力臂.小伟欲用撬棍撬动一大块大石头,已知阻力和阻力臂分别是1000N 和0.3m . (1)试确定动力()N F 关于动力臂()m l 的函数表达式(不要求写自变量的取值范围);(2)求动力600N F =时,动力臂l 的长.15.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y 随时间x (分)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分). (1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.(2)分别求出线段AB 和双曲线CD 的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?16.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x (小时)之间的函数关系如图所示,当血液中药物浓度上升(0x a ≤≤)时,满足2y x =,下降时,y 与x 成反比.(1)直接写出a 的取值,并求当8≤≤a x 时,y 与x 的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?17.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻) (1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.18.模具厂计划生产面积为4,周长为m 的矩形模具.对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x ,y ,由矩形的面积为4,得xy =4,即4y x =;由周长为m ,得2(x +y )=m ,即y =-x +2m .满足要求的(x ,y )应是两个函数图象在第 象限内交点的坐标. (2)画出函数图象 函数4y x =(x >0)的图象如图所示,而函数y =-x +2m 的图象可由直线y =-x 平移得到.请在同一直角坐标系中直接画出直线y =-x .(3)平移直线y =-x ,观察函数图象,在直线平移过程中,交点个数有哪些情况?请写出交点个数及对应的周长m 的取值范围.(4)得出结论 若能生产出面积为4的矩形模具,则周长m 的取值范围为 .19.制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15 ℃,加热5分钟后温度达到60 ℃.(1)求将材料加热时,y与x的函数关系式;(2)求停止加热进行操作时,y与x的函数关系式;(3)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?20.附加题:对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0,1 两个不变值,其不变长度q等于1.(1)分别判断函数11,y x y x =-=有没有不变值?如果有,直接写出其不变长度_________; (2)函数22y x bx =-.①若其不变长度为零,求b 的值;②若13b ≤≤,求其不变长度q 的取值范围;(3)记函数()22y x x x m =-≥的图象为1G ,将1G 沿x m =翻折后得到的函数图象记为2G .函数G 的图象由1G 和2G 两部分组成,若其不变长度q 满足03q ≤≤,则m 的取值范围为_________.解析练习21实际问题与反比例函数-2020-2021学年【补习教材·寒假作业】九年级数学一、单选题1.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()kPa P 是气体体积()3m V 的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不小于35m 4B .小于35m 4C .不小于34m 5D .小于34m 5【答案】C 【分析】由题意设设k P V= (V >0),把(1.6,60)代入得到k=96,推出96P V = (V >0),当P=120时,V =45,由此即可判断. 【解答】∵根据题意可设k P V= (V >0), 由题图可知,当V=1.6时, p=60,∴把(1.6,60)代入得到60 1.6k = 解得:k=96, ∴96P V= (V >0), 为了安全起见,气球内的气压应不大于120kPa ,即96V≤120, ∴V ≥45. 故选C.【点评】此题考查反比例函数的应用,解题关键在于把已知点代入解析式.2.已知甲、乙两地相距s (km ),汽车从甲地行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km /h )的函数关系图象大致是( )A .B .C .D .【答案】C【分析】根据路程=速度⨯时间列出函数关系式,再由路程s 是常量,可知v 与t 之间的函数图象为反比例函数,结合实际意义确定自变量的取值范围解题即可.【解答】根据题意:v t s =,故v 与t 之间的函数图象为反比例函数,且根据实际意义v>0,t>0其,图象在第一象限,故选:C .【点评】本题考查函数的图象、反比例函数的应用等知识,是重要考点,难度较易,掌握相关知识是解题关键.3.探究课上,老师给出问题“一艘轮船上装有10吨货物,轮船到达目的地后开始卸货.设平均卸货速度为x 吨/小时,卸完这批货物所需的时间为y 小时.若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?”.如图,小华利用计算机先绘制出反比例函数()100y x x=>的图象,并通过观察图象发现:当05y <≤时,2x ≥.所以小华得出此题答案为;平均每小时至少要卸货2吨.小华的上述方法体现的数学思想是( )A .公理化B .数形结合C .分类讨论D .由特殊到一般【答案】B 【分析】根据题意可直接进行解答. 【解答】由小华利用计算机先绘制出反比例函数()100y x x=>的图象,并通过观察图象进行求解问题,符合数形结合的数学思想;故选B . 【点评】本题主要考查反比例函数的实际应用,熟练掌握数形结合思想是解题的关键.4.某汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( )A .180千米/时B .144千米/时C .50千米/时D .40千米/时【答案】C 【分析】根据图像可知为反比例函数,图像过点(3000,20),代入v k F=(k 0≠),即可求出反比例函数的解析式,再求出牵引力为1200牛时,汽车的速度即可.【解答】设函数为v k F =(k 0≠), 代入(3000,20),得203000k =,得k=60000, ∴60000v F=, ∴牵引力为1 200牛时,汽车的速度为60000v 1200== 50千米/时,故选C. 【点评】此题主要考查反比例函数的应用,解题的关键是找到已知条件求出反比例函数的解析式. 5.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A ,那么用电器的可变电阻R 应控制在什么范围?( )A .R ≥3ΩB .R ≤3ΩC .R ≥12ΩD .R ≥24Ω【答案】A 【分析】直接利用图象上点的坐标得出函数解析式,进而利用限制电流不能超过12A ,得出电器的可变电阻R 应控制范围.【解答】设I =U R ,把(9,4)代入得:U =36,故I =36R, ∵限制电流不能超过12A ,∴用电器的可变电阻R ≥3,故选:A .【点评】本题考查了反比例的实际应用,数形结合,利用图像解不等式是解题的关键6.当温度不变时,气球内气体的气压P (单位:kPa )是气体体积V (单位:m 3)的函数,下表记录了一组实验数据:P 与V 的函数关系式可能是( )A .P =96VB .P =﹣16V +112C .P =16V 2﹣96V +176D .P =96v 【答案】D【解析】试题解析:观察发现:196 1.564248 2.538.433296VP ,=⨯=⨯=⨯=⨯=⨯= 故P 与V 的函数关系式为96P V =, 故选D.【点评】观察表格发现96VP =,从而确定两个变量之间的关系即可.二、填空题7.某市有长24000 m 的新道路要铺上沥青,则铺路所需时间t (天)与铺路速度v (m/天)的函数关系式是______________.【答案】t =24000v(v >0)【解析】试题解析:铺路所需要的时间t 与铺路速度V 之间的函数关系式是t =24000v. 故答案为t =24000v. 8.某校科技小组进行野外考察,途中遇到一片十几米宽的湿地为了安全迅速地通过这片湿地,他们沿着前进路线铺若干块木板,构筑成一条临时通道.木板对地面的压强(Pa)p 是关于木板面积()2S m 的反比例函数,其图象如图所示.当木板对地面的压强不超过6000Pa 时,木板的面积至少应为________.【答案】20.1m【分析】由图可知1.5×400=600为定值,即k=600,易求出解析式,利用压强不超过6000Pa ,即p ≤6000时,求相对应的自变量的范围.【解答】设(0)k p S S=>, 把(1.5,400)A 代入k p S =, 得:400 1.5k =, 则 1.5400600k =⨯=,600(0)p s s∴=>, 由题意得:0000660S ≤, 解得:0.1S ≥,即木板面积至少要有20.1m .故答案为:20.1m.【点评】本题主要考查反比例函数在实际生活中的应用,正确得出函数关系式是解题关键.9.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为0.25m2,那么该物体对地面的压强是_____Pa.【答案】480.【分析】直接利用函数图象得出函数解析式,进而求出答案.【解答】设P=kS,把(0.05,2400)代入得:k=120,故P=120S,当S=0.25时,P=1200.25=480(Pa).故答案为:480.【点评】此题主要考查反比例函数的应用,解题的关键是熟知待定系数法求解函数解析式.10.一定质量的二氧化碳,其体积V(m³)是密度ρ(kg/m³)的反比例函数,请根据图中的已知条件,写出当 1.1ρ=kg/m³时二氧化碳的体积V=______m³.【答案】9【分析】先根据待定系数法求出函数的解析式,再把ρ=1.1kg/m3代入即可求解.【解答】将点(5,1.98)代入ρmV=得:m=5×1.98=9.9(kg),∴ρ9.9V=,当ρ=1.1kg/m3时,二氧化碳的体积V=9.9÷1.1=9m3.故答案为:9.【点评】本题考查了实际问题中反比例函数的性质,解题的关键是根据实际意义列出函数关系式.11.一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:y=kv(k≠0),其图象为如图的一段曲线,若这段公路行驶速度不得超过60km/h,则该汽车通过这段公路最少需要______h.【答案】2 3【分析】直接利用已知图象得出函数解析式进而得出答案.【解答】由题意可得:k=xy=40,则y≥4060=23,即该汽车通过这段公路最少需要23 h.故答案为:23. 【点评】此题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.12.我们知道当电压一定时,电流与电阻成反比例函数关系.现有某学生利用一个最大电阻为200Ω的滑动变阻器及一电流表测电源电压,结果如图所示.()1电流I (安培)与电阻R (欧姆)之间的函数解析式为________;()2当电阻在2Ω200Ω~之间时,电流应在________范围内,电流随电阻的增大而________; ()3若限制电流不超过20安培,则电阻在________之间.【答案】(1)144I R= (2)0.72安培72~安培 减小 (3)7.2Ω200Ω~ 【分析】(1)设出函数解析式为I=mR ,将点A (8,18)代入求得m 值,则函数解析式即可求出;(2)令2≤R≤200求得I 的取值范围即可,电流随电阻的增减性可由反比例函数的性质求得;(3)令I≤20求得R 的取值范围,需注意最大电阻为200Ω.【解答】(1)设函数解析式为m I R =, 将点A (8,18)代入,得m =144,故函数解析式为144I R=; (2)当2200R ≤≤时,可得0.7272I ≤≤,故电流应在0.72安培∼72安培范围内;电流随电阻的增大而减小;(3)若限制电流不超过20安培,则1447.220R≥=(Ω),∵最大电阻为200Ω的滑动变阻器,∴电阻在7.2Ω∼200Ω之间.故答案为(1)144IR=;(2)0.72安培∼72安培,减小;(3)7.2Ω∼200Ω.【点评】考查反比例函数的应用,熟练掌握反比例函数的性质是解题的关键.三、解答题13.一列货车从北京开往乌鲁木齐,以50km/h的平均速度行驶需要64h.为了实施西部大开发,京乌线决定全线提速.(1)如果提速后平均速度为vkm/h,全程运营时间为t小时,试写出t与v之间的函数表达式;(2)如果提速后平均速度为64km/h,求提速后全程运营时间;(3)如果全程运营的时间控制在35h内,那么提速后,平均速度至少应为多少?【答案】(1)t=3200v;(2)t=50小时;(3)平均速度至少应为6407km/h【分析】(1)由题意可以得到北京与乌鲁木齐的距离,然后根据路程、速度、时间之间的关系可以得到解答;(2)令由(1)得到的函数表达式中的v=64km/h,即可得到提速后全程运营时间;(3)令由(1)得到的函数表达式中的t=35h,即可得到提速后的平均速度.【解答】(1)∵50×64=3200km,∴t与v之间的函数表达式为3200tv =;(2)把v=64km/h代入3200tv=可得:()32005064t h ==; (3)令t=35h ,则由3200t v =可得: ()32003200640/357v km h t ===. 【点评】本题考查函数的应用,根据题目给定条件正确列出有关量的函数表达式,并运用函数表达式求自变量和函数值是解题关键.14.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡.后来人们把它归纳为“杠杆原理”,即:阻力⨯阻力臂=动力⨯动力臂.小伟欲用撬棍撬动一大块大石头,已知阻力和阻力臂分别是1000N 和0.3m . (1)试确定动力()N F 关于动力臂()m l 的函数表达式(不要求写自变量的取值范围);(2)求动力600N F =时,动力臂l 的长.【答案】(1)300=F l (2)0.5m .【分析】(1)根据阻力乘以阻力臂等于动力乘以动力臂,进而得到结果;(2)根据(1)中的解析式,代入F 值,求出l 值即可.【解答】(1)根据题意10000.3300⨯=⨯=F l ,∴动力()N F 关于动力臂()m l 的函数表达式是300=F l. (2)当动力600N F =时,300600=l,解得()0.5m =l , 即动力臂l 的长为0.5m . 【点评】本题考查反比例函数应用,正确读懂题意列出函数解析式是解题的关键.15.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y 随时间x (分)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分). (1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.(2)分别求出线段AB 和双曲线CD 的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?【答案】(1)5;(2)230AB y x =+;1000CD y x=.(3)教师能在学生注意力达到所需要求状态下讲完这道题. 【分析】(1)(2)利用待定系数法分别求出AB 和CD 的函数表达式,得出第五分钟和第三十分钟的注意力指数,最后比较判断;(3)分别求出注意力指数为40时的两个时间,再将两时间之差和18比较,大于18则能讲完,否则不能.【解答】(1)(2)设线段AB 所在的直线的解析式为y 1=k 1x +30,把B (10,50)代入得,k 1=2,∴AB 解析式为:y 1=2x +30(0≤x≤10).设C 、D 所在双曲线的解析式为y 2=2k x , 把C (20,50)代入得,k 2=1000,∴曲线CD 的解析式为:y 2=1000x(x≥20); 当x 1=5时,y 1=2×5+30=40, 当x 2=30时,y 2=100030, ∴y 1>y 2∴第5分钟注意力更集中.故答案为:5;(3)当40y =时,23040,5x x +==. 100040,25x x==. ∴2552018-=>.∴教师能在学生注意力达到所需要求状态下讲完这道题.【点评】此题主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.16.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x (小时)之间的函数关系如图所示,当血液中药物浓度上升(0x a ≤≤)时,满足2y x =,下降时,y 与x 成反比.(1)直接写出a 的取值,并求当8≤≤a x 时,y 与x 的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?【答案】(1)3,18(38)=≤≤y x x;(2)抗菌新药可以作为有效药物投入生产,见解析【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)把y =3分别代入正比例函数和反比例函数解析式求出自变量的值,进而得出答案.【解答】(1)由图象知,3a =;∵当38x ≤≤时,y 与x 成反比, ∴设(0)k y k x=≠, 由图象可知,当3x =时,6y =,∴3618=⨯=k ; ∴18(38)=≤≤y x x; (2)把3y =分别代入2y x =和18y x =得, 1.5x =和6x =, ∵6 1.5 4.54-=>,∴抗菌新药可以作为有效药物投入生产.【点评】此题主要考查了反比例函数的应用以及待定系数法求函数解析式,读懂题意是解题关键. 17.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻)(1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.【答案】(1)蓄电池的电压是36V ;(2)电阻R 的取值范围是318R ≤≤.【分析】(1)根据“电压=电流×电阻”即可求解;(2)先利用待定系数法即可求出这个反比例函数的解析式,再将212I ≤≤代入即可确定电阻的取值范围.【解答】(1)蓄电池的电压是4×9=36, ∴蓄电池的电压是36V ;(2)电流I 是电阻R 的反比例函数,设k I R =, ∵图象经过(9,4),∴9436k =⨯=, ∴36I R=, 当I=2时,18R =,当I=12时,3R =,∵I 随R 的增大而减小,∴电阻R 的取值范围是:318R ≤≤.【点评】本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.18.模具厂计划生产面积为4,周长为m 的矩形模具.对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x ,y ,由矩形的面积为4,得xy =4,即4y x =;由周长为m ,得2(x +y )=m ,即y =-x +2m .满足要求的(x ,y )应是两个函数图象在第 象限内交点的坐标. (2)画出函数图象 函数4y x =(x >0)的图象如图所示,而函数y =-x +2m 的图象可由直线y =-x 平移得到.请在同一直角坐标系中直接画出直线y =-x .(3)平移直线y =-x ,观察函数图象在直线平移过程中,交点个数有哪些情况?请写出交点个数及对应的周长m 的取值范围.(4)得出结论 若能生产出面积为4的矩形模具,则周长m 的取值范围为 .【答案】(1)一.(2)见解析;(3)交点个数有:0个、1个、2个三种情况,0个交点时,m <8;1个交点时,m =8; 2个交点时,m >8;(4)m ≥8【分析】(1)x ,y 都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(3)在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=4x和y=-x+2m 并整理得:x 2-12mx+4=0,即可求解; (4)由(3)可得.【解答】(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,故答案为:一;(2)图象如下所示:(3)①在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=4x和y=-x+2m并整理得:x2-12mx+4=0,∵△=14m2-4×4,∴0个交点时,m<8;1个交点时,m=8; 2个交点时,m>8;(4)由(3)得:m≥8,故答案为:m≥8.【点评】本题为反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解,难度不大.19.制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15 ℃,加热5分钟后温度达到60 ℃.(1)求将材料加热时,y与x的函数关系式;(2)求停止加热进行操作时,y与x的函数关系式;(3)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?【答案】(1)y=9x+15;(2)y=300x;(3)15分钟【解析】(1)设加热时y=kx+b(k≠0),停止加热后y=a/x(a≠0),把b=15,(5,60)代入求解(2)把y=15代入反比例函数求得20.附加题:对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0,1 两个不变值,其不变长度q等于1.(1)分别判断函数11,y x yx=-=有没有不变值?如果有,直接写出其不变长度_________;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;②若13b ≤≤,求其不变长度q 的取值范围;(3)记函数()22y x x x m =-≥的图象为1G ,将1G 沿x m =翻折后得到的函数图象记为2G .函数G 的图象由1G 和2G 两部分组成,若其不变长度q 满足03q ≤≤,则m 的取值范围为_________.【答案】(1)函数1y x =-没有不变值;函数1y x =有-1和1两个不变值,其不变长度为2;(2)①1b =-;②12q ≤≤;(3)m 的取值范围为13m ≤≤或18m <- 【分析】(1)由题意直接根据定义分别求解即可求得答案;(2)①根据题意首先由函数y=2x 2-bx=x ,求得x (2x-b-1)=0,然后由其不变长度为零,求得答案; ②由①,利用1≤b ≤3,可求得其不变长度q 的取值范围;(3)根据题意由记函数y=x 2-2x (x ≥m )的图象为G 1,将G 1沿x=m 翻折后得到的函数图象记为G 2,可得函数G 的图象关于x=m 对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.【解答】(1)∵函数y=x-1,令y=x ,则x-1=x ,无解;∴函数y=x-1没有不变值; ∵函数1y x =,令y=x ,则1x x=,解得:x=±1, ∴函数1y x=的不变值为±1,q=1-(-1)=2, 故答案为:函数1y x =-没有不变值;函数1y x =有1-和1两个不变值,其不变长度为2; (2)①函数22y x bx =-的不变长度为零,令y=x ,则x=2x 2-bx ,整理得:x (2x-b-1)=0,。
反比例函数练习题及答案

反比例函数练习题及答案反比例函数是一种特殊的函数形式,其表达式的一部分反比于另一部分。
在数学中,反比例函数通常用来描述两个变量之间的相互关系。
本文将为你提供一些反比例函数练习题及其答案,帮助你巩固对反比例函数的理解和应用。
1. 练习题:a) 已知y与x成反比例关系,且y=5当x=2,求当x=8时,y的值。
b) 设x与y成反比例,当x=4时,y=10,求当x=6时,y的值。
c) 某条直线通过点(1,3)和(2,6),试判断该直线是否表示反比例函数。
2. 答案:a) 根据反比例函数的性质,可以得到y = k/x,其中k是常数。
将已知条件代入得到 5 = k/2,解方程得到 k = 10。
所以,当x = 8时,y =10/8 = 5/4。
b) 类似地,根据反比例函数的性质得到y = k/x,将已知条件代入得到 10 = k/4,解方程得到 k = 40。
所以,当x = 6时,y = 40/6 = 20/3。
c) 根据题意,计算斜率 k = (6-3)/(2-1) = 3。
由于斜率不是常数,所以该直线不能表示反比例函数。
通过以上练习题和答案,我们可以得到一些关于反比例函数的重要结论:- 反比例函数通常可表示为y = k/x的形式,其中k是常数。
- 当已知某一点的坐标时,可以通过代入求解得到反比例函数的具体表达式。
- 如果两个变量之间的关系不符合反比例函数的性质,那么其对应的直线也不表示反比例函数。
在实际应用中,反比例函数经常用于解决一些与比例关系有关的问题,例如速度和时间、产量和工人数量等。
希望通过这些练习题和答案,你能更好地理解和应用反比例函数的概念。
总结:本文为你提供了一些反比例函数的练习题及其答案,帮助你加深对该函数形式的理解。
通过练习题的解答过程,你可以掌握反比例函数的基本性质,以及如何应用相关概念解决实际问题。
反比例函数在数学和实际生活中都有重要的应用价值,希望这些练习题能够对你的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数寒假训练卷2
一、选择题
1.(3分)下列函数是反比例函数的是( )
A. y= B. y= C. y=x2+2x D.
y=4x+8
2.(3分)(2006•福州)反比例函数y=图象经过点(2,3),则n的值是( )
A. ﹣2 B. ﹣1 C. 0 D.
1
3.(3分)(2011•茂名)若函数的图象在其象限内y的值随x值的增大而增大,则m
的取值范围是( )
A. m>﹣2 B. m<﹣2 C. m>2 D. m<2
4.(3分)(2009•衡阳)一个直角三角形的两直角边长分别为x,y,其面积为2,则y与x
之间的关系用图象表示大致为( )
A. B. C. D.
5.(3分)反比例函数与一次函数y=k(x+1)(其中x为自变量,k为常数)在同
一坐标系中的图象可能是( )
A. B. C. D.
6.(3分)已知点(﹣1,y1),(﹣,y2)、(,y3)在反比例函数y=(a为常数)
的图象上,下列结论中正确的是( )
A. y1>y2>y3 B. y1>y3>y2 C. y3>y1>y2 D.
y2>y1>y3
7.(3分)(2011•杭州)如图,函数y1=x﹣1和函数的图象相交于点M(2,m),N
(﹣1,n),若y1>y2,则x的取值范围是( )
A. x<﹣1或0<x<2 B. x<﹣1或x>2 C. ﹣1<x<0或0<x<2 D. ﹣1<x<0或x>2
8.(3分)(2009•青岛)一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)
与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超
过10A,那么此用电器的可变电阻应( )
A. 不小于4.8Ω B. 不大于4.8Ω C. 不小于14Ω D. 不大于14Ω
9.(3分)如图,直线y=kx(k<0)与双曲线交于A(x1,y1),B(x2,y2)两点,
则3x1y2﹣8x2y1的值为( )
A. ﹣5 B. ﹣10 C. 5 D.
10
1.(4分)如图直线y=mx与双曲线交于点A、B,过A作AM⊥x轴于M点,连接BM,
若S△AMB=2,则k的值是( )
A. 1 B. 2 C. 3 D.
4
3.(4分)(2009•兰州)如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B
是双曲线y=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会( )
A. 逐渐增大 B. 不变 C. 逐渐减小 D. 先增大后减小
二、填空题
10.(5分)反比例函数y=(m+2)的图象分布在第二、四象限内,则m的值为
_________
11.(5分)如图,点M是反比例函数y=(a≠0)的图象上一点,过M点作x轴、y轴的
平行线,若S阴影=5,则此反比例函数解析式为 _________ .
12.(5分)(2011•桂林模拟)直线y=﹣5x+b与双曲线y=﹣相交于点P(﹣2,m),则b=
_________ .
13.(5分)(2012•西宁)如图,反比例函数y=的图象与经过原点的直线相交于点A、B,
已知A的坐标为(﹣2,1),则点B的坐标为 _________ .
14.(5分)(2009•江西)函数yl=x(x≥0),(x>0)的图象如图所示,则结论:
①两函数图象的交点A的坐标为(3,3);
②当x>3时,y2>y1;
③当x=1时,BC=8;
④当x逐渐增大时,yl随着x的增大而增大,y2随着x的增大而减小.
其中正确结论的序号是 _________ .
15.(5分)(2012•黑河)如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,
C、D在x轴上,若四边形ABCD为矩形,则它的面积为 _________ .
4.(5分)(2010•衡阳)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB
的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k= _________ .
5.(5分)(2009•浙江)已知,点P是反比例函数图象上的一个动点,⊙P的半径为1,
当⊙P与坐标轴相交时,点P的横坐标x的取值范围是 _________ .
6.(5分)(2009•江西)函数yl=x(x≥0),(x>0)的图象如图所示,则结论:
①两函数图象的交点A的坐标为(3,3);
②当x>3时,y2>y1;
③当x=1时,BC=8;
④当x逐渐增大时,yl随着x的增大而增大,y2随着x的增大而减小.
其中正确结论的序号是 _________ .
9.(5分)(2009•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,
过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、
P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积
分别为S1、S2、S3、S4、S5,则S5的值为 _________ .
11.(5分)(2009•临沂)如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两
点,根据图象猜想线段MN的长的最小值是 _________ .
12.(5分)(2009•兰州)如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函
数y=(x>0)的图象上,则点E的坐标是( _________ , _________ ).
13.(5分)(2009•鸡西)如图,点A、B是双曲线y=上的点,分别经过A、B两点向x
轴、y轴作垂线段,若S阴影=1,则S1+S2= _________ .
14.(5分)(2009•福州)已知,A、B、C、D、E是反比例函数y=(x>0)图象上五个
整数点(横,纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正
方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这
五个橄榄形的面积总和是 _________ (用含π的代数式表示).
10.(3分)(2011•怀柔区二模)如图所示,P1(x1,y1)、P2(x2,y2),…Pn(xn,yn)在函
数y=(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3…△PnAn﹣1An…都是等腰直角三角形,
斜边OA1,A1A2…An﹣1An,都在x轴上,则y1= _________ .y1+y2+…yn= _________ .
三、解答题
16.(11分)(2011•成都)如图,已知反比例函数的图象经过点(,8),
直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,
连接0P、OQ,求△OPQ的面积.
17.(11分)(2009•河池)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已
知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;
药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那
么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?
18.(11分)(2010•河北)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,
顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直
线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算
判断点N是否在该函数的图象上;
(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.
19.(10分)(2009•孝感)如图,点P是双曲线(k1<0,x<0)上一动点,过点P作
x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=(0<k2<|k1|)于E、F
两点.
(1)图1中,四边形PEOF的面积S1= _________ (用含k1、k2的式子表示);
(2)图2中,设P点坐标为(﹣4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF﹣S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.