应用回归分析第三版何晓群刘文卿课后习题答案完整版

合集下载

应用回归分析课后题答案

应用回归分析课后题答案

《应用回归分析》部分课后习题答案第一章回归分析概述1.1 变量间统计关系和函数关系的区别是什么?答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。

1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。

b.相关分析中所涉及的变量y与变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题?答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。

(完整word版)应用回归分析,第9章课后习题参考答案

(完整word版)应用回归分析,第9章课后习题参考答案

第9章 含定性变量的回归模型思考与练习参考答案9.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0—1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。

出现这种情况的原因是什么?答:假如这个含有季节定性自变量的回归模型为:t t t t kt k t t D D D X X Y μαααβββ++++++=332211110其中含有k 个定量变量,记为x i 。

对春夏秋冬四个季节引入4个0—1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,显然,(X ,D)中的第1列可表示成后4列的线性组合,从而(X ,D)不满秩,参数无法唯一求出。

这就是所谓的“虚拟变量陷井",应避免。

当某自变量x j 对其余p —1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型.称Tol j =1—2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0。

0001。

也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。

而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。

⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα9。

2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例9.1说明。

一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。

应用回归分析(第三版)何晓群_刘文卿_课后习题答案_完整版

应用回归分析(第三版)何晓群_刘文卿_课后习题答案_完整版

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n)仍满足基本假定。

求β1的最小二乘估计 解:21112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:)()(ˆ1211∑∑===ni ini ii XY X β01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。

应用回归分析何晓群

应用回归分析何晓群

第一章回归分析概述
1.2回归分析与相关分析的联系与区别是什么?
答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有a在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。

b.相关分析中所涉及的变量y与变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x 可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

1.3回归模型中随机误差项ε的意义是什么?
答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…xpD的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4线性回归模型的基本假设是什么?
答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值是常数。

2.等方差及不相关的假定条件为E(ci)=0i=1,2…xi1.x12……..xip
Cov(e i, e j)=i a2
3.正态分布的假定条件为相互独立。

4.样容量的个数要多于解释变量的个数。

《应用回归分析》课后题答案.

《应用回归分析》课后题答案.

《应用回归分析》部分课后习题答案第一章回归分析概述1.1 变量间统计关系和函数关系的区别是什么?答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。

1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。

b.相关分析中所涉及的变量y与变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题?答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。

应用回归分析第三版·何晓群-第三章所有习题答案

应用回归分析第三版·何晓群-第三章所有习题答案

应用回归分析第三章习题 3.1y x =β基本假定:(1) 诸1234n x ,x x ,x x ……非随机变量,rank (x )=p+1,X 为满秩矩阵(2) 误差项()()200i i j E ,i j cov ,,i j⎧ε=⎪⎧δ=⎨εε=⎨⎪≠⎩⎩(3)()20i i j ~N ,,⎧εδ⎪⎨εε⎪⎩诸相互独立3.2()10111ˆX X X X |rank(X X )p rank(X )p n p -'β'≠'=+≥+≥+存在,必须使存在。

即|则必有故3.3()()()()()22111221222211111111n nn i i ii i i i nii i ni i E e D e h n h n p ˆE E e n p n p n p =====⎛⎫==-δ ⎪⎝⎭⎛⎫=-δ=--δ ⎪⎝⎭⎛⎫∴δ==--δ=δ ⎪----⎝⎭∑∑∑∑∑3.4并不能这样武断地下结论。

2R 与回归方程中的自变量数目以及样本量n 有关,当样本量n 与自变量个数接近时,2R 易接近1,其中隐含着一些虚假成分。

因此,并不能仅凭很大的2R 就模型的优劣程度。

3.5首先,对回归方程的显著性进行整体上的检验——F 检验001230p H :β=β=β=β==β=……接受原假设:在显著水平α下,表示随机变量y 与诸x 之间的关系由线性模型表示不合适 拒绝原假设:认为在显著性水平α下,y 与诸x 之间有显著的线性关系第二,对单个自变量的回归系数进行显著性检验。

00i H :β=接受原假设:认为i β=0,自变量i x 对y 的线性效果并不显著3.6原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。

中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。

3.71122011122201122ppp p p p p ˆˆˆˆˆy x x x ˆˆˆˆˆˆy y (x x )(x x )(x x )ˆˆˆˆy x x )x x )x x )y =β+β+β++β-=β+β-+β-++β--ββ=-+-++-=对最小二乘法求得一般回归方程:……对方程进行如下运算:…………*jjˆ+β=……即3.812132123313221231221233131231123233213231313*********111r r r r r r r r rr r r r r r r r r r r r ⎛⎫ ⎪= ⎪ ⎪⎝⎭∆==-∆==-∆==-即证3.9()()()()()1211121121211111j jj j j p j j j p yj j j p SSR /SSE F SSE /n p SSE /n p SSE x ,x ,,x ,x x SSE x ,x ,,x ,x ,x x r SSE x ,x ,,x ,x x -+-+-+∆∆==-----=……,?………,?…而……,?…由上两式可知,其考虑的都是通过j SSE ∆在总体中所占比例来衡量第j 个因素的重要程度,因而j F 与2yj r 是等价的。

《应用回归分析》课后习题部分答案-何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=(5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()ni i nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

《应用回归分析》课后题标准答案


3
(5)由于 1
N
(1,
2 Lxx
)
t
1 1 2 / Lxx
(1
)
Lxx
服从自由度为 n-2 的 t 分布。因而
P
|
(
1
)
Lxx
|
t
/
2
(n
2)
1
也即: p(1 t /2
Lxx
1 1 t /2
) =1 Lxx
可得
ቤተ መጻሕፍቲ ባይዱ
1
的置信度为95%的置信区间为(7-2.353
1 3
33,7+2.353 1 3
1
第二章 一元线性回归
2.14 解答:(1)散点图为:
(2)x 与 y 之间大致呈线性关系。
(3)设回归方程为 y 0 1 x
n
xi yi n x y
1=
i 1 n
7
xi2 n(x)2
i 1
0 y 1 x 20 7 3 1
可得回归方程为 y 1 7x
2
(4)
1 n-2
1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题? 答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判 断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。应注意 的问题有:在选择变量时要注意与一些专门领域的专家合作,不要认为一个回归 模型所涉及的变量越多越好,回归变量的确定工作并不能一次完成,需要反复试 算,最终找出最合适的一些变量。
t /2
0
0
1 n
( x)2 Lxx
t
/
2
)
1
可得 1的置信度为95%的置信区间为( 7.77,5.77)

应用回归分析人大前四章课后习题答案详解Word版

3.9证明y与自变量 的偏决定系数与(3.42)偏F检验值 是等价的。37
3.10验证决定系数 与F值之间的关系式: 38
3.11研究货运总量y(万吨)与工业总产值38
1)计算出y, x1 ,x2, x3的相关系数矩阵39
2)求y关于x1, x2, x3的三元线性回归方程40
3)对所求的的方程作拟合优度检验41
③不论是时间序列数据还是横截面数据的手机,样本容量的多少一般要与设置的解释变量数目相配套。
4)统计数据的整理中不仅要把一些变量数据进行折算,差分,甚至把数据对数化,标准化等,有时还须注意剔除个别特别大或特别小的“野值”,有时需要利用差值的方法把空缺的数据补齐。
1.7构造回归理论模型的基本根据是什么?
1)绘制y对x的散点图,可以用直线回归描述两者之间的关系吗?31
2)建立y对x的线性回归;32
3)用线性回归的Plots功能绘制标准残差的直方图和正态概率图,检验误差项的正态性假设。32
3多元线性回归34
3.1写出多元线性回归模型的矩阵表示形式,并给出多元线性回归模型的基本假设。34
3.2讨论样本容量n与自变量个数p的关系,它们对模型的参数估计有何影响?35
由于许多经济变量的前后期之间总是有关联的,因此时间序列数据容易产生模型中随机误差项的序列相关。对于具有随机误差项序列相关的情况,就要通过对数据的某种计算整理来消除序列相关性,最常用的处理方法是差分法。
②横截面数据是在同一时间截面上的统计数据。由于一个回归模型往往涉及众多解释变量,如果其中某一因素或一些因素随着解释变量观测值的变化而对被解释变量产生不同影响,就产生异方差。因此当用截面数据作样本时,容易产生异方差。对于具有异方差性的建模问题,数据整理就是注意消除异方差性,这常与模型参数估计方法结合起来考虑。

《应用回归分析》课后习题答案

1.7构造回归理论模型的基本依据是什么?
答:选择模型的数学形式的主要依据是经济行为理论,根据变量的样本数据作出解释变量与被解释变量之间关系的散点图,并将由散点图显示的变量间的函数关系作为理论模型的数学形式。对同一问题我们可以采用不同的形式进行计算机模拟,对不同的模拟结果,选择较好的一个作为理论模型。
df
均方
F
显著性
组间
(组合)
1231497.500
7
175928.214
5.302
.168
线性项
加权的
1168713.036
1
1168713.036
35.222
.027
偏差
62784.464
6
10464.077
.315
.885
组内
66362.500
2
33181.250
总数
1297860.000
9
由于 ,拒绝 ,说明回归方程显著,x与y有显著的线性关系。
.212
.586
1.708
a.因变量: y
(6)可以看到P值最大的是x3为0.284,所以x3的回归系数没有通过显著检验,应去除。
去除x3后作F检验,得:
Anovab
模型
平方和
df
均方
F
Sig.
1
回归
12893.199
2
6446.600
11.117
.007a
残差
4059.3.500
.724
.433
.212
.586
1.708
a.因变量: y
(2)
所以三元线性回归方程为
模型汇总
模型
R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.2 考虑过原点的线性回归模型Y i=β1X i+εi i=1,2, …,n误差εi(i=1,2, …,n)仍满足基本假定。

求β1的最小二乘估计解:得:21112)ˆ()ˆ(iniiniiieXYYYQβ∑∑==-=-=)ˆ(2ˆ111=--=∂∂∑=iiniie XXYQββ)()(ˆ1211∑∑===niiniiiXYXβ2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ01ˆˆˆˆi ii i iY X e Y Y ββ=+=-})],([21exp{)2()(),,(2010122/21210i i ni n i i ni X Y Y f L βββσπσσββ+--=∏=∑=-=2010122210)],([21)2ln(2)},,({i i ni X Y n L Ln βββσπσσββ+---=∑=0100ˆˆQQββ∂∂==∂∂上式恰好就是最小二乘估计的目标函数相同。

值得注意的是:最大似然估计是在εi ~N (0,σ2 )的假设下求得,最小二乘估计则不要求分布假设。

所以在εi ~N(0, σ2 ) 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。

2.5 证明0ˆβ是β0的无偏估计。

证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xx i ni i Y L X X X Y n E X Y E E ββ)])(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==1010)()1(])1([βεβεβ=--+=--+=∑∑==i xx i ni i xx i ni E L X X X n L X X X n E 2.6 证明证明:)] ()1([])1([)ˆ(102110i i xx i ni i xx i n i X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑==222212]1[])(2)1[(σσxx xx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7 证明平方和分解公式:SST=SSE+SSR 证明:())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=ni ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSESSR )Y ˆY Y Y ˆn1i 2ii n1i 2i +=-+-=∑∑==2.8 验证三种检验的关系,即验证:(1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/tL n SSE SSR F xx ==-=σβ证明:(1)ˆt ======(2)22222011111111ˆˆˆˆˆˆ()()(())(())nnnni i ii xx i i i i SSR y y x y y x x y x x L βββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xx L SSR F t SSE n βσ∴===-2.9 验证(2.63)式:2211σ)L )x x (n ()e (Var xxi i ---= 证明:112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i i iiiii i xx xxi xxe y yy y y y y x y y x x x x x x n L n L x x n L βββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxi xx i ni i xx i i i ni i i ii i i i L x x n L x x ny L x x y Cov x x y n y Cov x x y Cov y y Cov x x y y Cov -+=-+=--+=-+=-+∑∑==2.10 用第9题证明2ˆ22-=∑n e iσ是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n n i i i i n n i i i i xx E E y y E e n n x x e n n n L n n σσσσ=====-=---==----=-=-∑∑∑∑2.11 验证决定系数与F 值之间的关系式22-+=n F Fr证明:211/121/(/(2))1221SSR SSR r SST SSR SSE SSE SSRn SSR SSE n F n F n F ===++=-+-==-+-+2.14 为了调查某广告对销售收入的影响,某商店记录了5个月的销售收入y (万元)和广告费用x (万元),数据见表2.6,要求用手工计算: 表2.6(2) X 与Y 是否大致呈线性关系? 答:从散点图看,X 与Y 大致呈线性关系。

(3) 用最小二乘法估计求出回归方程。

计算表回归方程为: (4) 求回归标准误差先求SSR (Q e )见计算表。

所以(5) 给出 的置信度为95%的区间估计; 由于(1-α)的置信度下, 的置信区间是 查表可得 915.110667.36ˆ2ˆ1===xxL S σβ所以 的95%的区间估计为:(7—3.182*1.915,7+3.182*1.915),即(0.906,13.094)。

351.6)102551(667.36)1(ˆ22ˆ=+=+=xx L X n S σβ10101L xx X X Y 71ˆˆˆ1+-=+=ββ.055.631102ˆ==-=n Q e σ10ˆ,ˆββ22ˆˆˆˆ(,)iii i t s t s ααββββ-⨯+⨯iβˆ182.3)3()2(025.02/==-t n t α1ˆβ所以 的95%的区间估计为:(-1-3.182*6.351,-1+3.182*6.351), 即(-21.211, 19.211)。

^0β的置信区间包含0,表示^0β不显著。

(6) 计算x 和y 的决定系数说明回归方程的拟合优度高。

(7) 对回归方程作方差分析方差分析表F 值=13.364>F 0.05(1,3)=10.13(当n 1=1,n 2=8时,α=0.05查表得对应的值为10.13),所以拒绝原假设,说明回归方程显著。

(8)做回归系数β1的显著性检验H0: β1=0656.3915.1/7/ˆ1ˆ1===ββS tt 值=3.656>t 0.05/2(3)=3.182,所以拒绝原假设,说明x 对Y 有显著的影响。

(8) 做相关系数R 的显著性检验R 值=0.904>R 0.05(3)=0.878,所以接受原假设,说明x 和Y 有显著的线性关系。

ˆβ817.06004902====yy L SSR SST SSR R 904.0817.02====SSTSSRR R(9) 对回归方程作残差图并作相应的分析残差图(略) .从残差图上看出,残差是围绕e=0在一个固定的带子里随机波动,基本满足模型的假设e i ~N(0, σ2 ), 但由于样本量太少, 所以误差较大.(10)求广告费用为4.2万元时,销售收入将达到多少?并给出置信度为95%的置信区间.解: 当X 0=4.2时,所以广告费用为4.2万元时, 销售收入将达到28.4万元. 由于置信度为1-α时,Y 0估计值的置信区间为:022ˆ000ˆ0ˆˆYY Y Y S t Y Y S t Y --⨯+<<⨯-αα)1044.1511(667.36)(11(ˆ202ˆ0++=-++=-xx YY L X X n S σ所以求得Y 0的95%的置信区间为: [6.05932 ,50.74068] 预测误差较大.2.15 一家保险公司十分关心其总公司营业部加班的制度,决定认真调查一下现状。

经过十周时间,收集了每周加班工作时间的数据和签发的新保单数目,x 为每周新签发的保单数目,y 为每周加班工作时间(小时)。

见表2.7。

表2..71、画散点图4.282.471ˆˆˆ0100=⨯+-=+=X Y ββ2、由散点图可以看出, x 与y 之间大致呈线性关系。

3、用最小二乘法求出回归系数由表可知:118.0β0= 00359.0β1=回归方程为:x 00359.0118.0y ˆ+=4、求回归标准误差σˆ 由方差分析表可以得到:SSE=1.843故回归标准误差2^2SSEn σ=-,^σ=0.48。

5、给出回归系数的置信度为95%的区间估计由回归系数显著性检验表可以看出,当置信度为95%时:^0β的预测区间为[-0.701,0.937], ^1β的预测区间为[0.003,0.005].^0β的置信区间包含0,表示^0β不拒绝为零的假设。

6、决定系数由模型概要表得到决定系数为0.9接近于1,说明模型的拟合优度高。

相关文档
最新文档