第七章 曲线与曲面积分导学答案12-16(第一、二类曲面积分)

合集下载

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略以心同学整理一、计算第一类曲线积分步骤:(一)平面曲线积分t t g y t x L ,)()(:1.化简(1)代入化简【常用在k t g t f )](),([ (常数)的情形】Lds y x f ),(Lds t g t f )](),([ kskds L其中s 为积分曲线L 的长度。

(2)利用奇偶对称性化简①若积分曲线L 关于坐标轴y 轴对称,则有Lds y x f ),(1),(,),(2),(0L x y x f ds y x f x y x f 的偶函数是的奇函数是,其中1L 为y 轴右边部分。

②若积分曲线段L 关于坐标轴x 轴对称,则有Lds y x f ),(1),(,),(2),(0L y y x f ds y x f y y x f 的偶函数是的奇函数是,其中1L 为x 轴上边部分。

(3)利用轮换对称性化简若积分曲线L 中把x 与y 互换,积分曲线不变,则有Lds y x f ),( Ldsx y f ),(2.确定积分曲线L 的参数式方程t t g y t x L ,)()(:注:积分曲线一般以)(x f y 或)(y g x 的形式出现,此时参数式为:b x a x f y x x L,)(:,dy c y y y g x L,)(:3.套公式(一代二换三定限)化为定积分Lds y x f ),(dtt g t t g t f )()()](),([22注意:上限 大于下限 4.计算定积分例1【2017-2018期末】设L 是直线)40(1243 x y x 的一段,则Lds y x )43(60;解:Lds y x )43( Lds12代入化简6012 s 。

例2【2018-2019期末】计算Lds x y)(2,其中L 为圆周422 y x .解:法一:L 的参数方程为sin 2cos 2y x ( 20 ),d d ds 2)cos 2()sin 2(22 ,于是Lds x y )(22022)cos 2sin 4(d 0sin 8202d822148 .法二:由对称性有Lds y 2 Lds x 2(轮换对称),0 Lxds (奇偶对称)所以Lds x y )(2 Lds y 2L ds y x )(2122 Lds 421(代入化简)8422 Lds .例3【2019-2020期末】计算曲线积分Lds y xy x )(22,其中L 为平面区域}0,1|),{(22 y y x y x D 的边界曲线。

曲线积分曲面积分总结

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分.第一节 对弧长的曲线积分一、 对弧长的曲线积分的概念与性质在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ.如图13-1我们可以将物体分为n 段,分点为n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ∆∆∆.取其中的一小段弧i i M M 1-来分析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点(),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于(),i i i s ρξη∆.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即()∑=∆≈ni i i i s y x M 1,ρ.用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到1lim (,).ni i i i M s λρξη→∞==∆∑即这个极限就是该物体的质量.这种和的极限在研究其它问题时也会遇到.上述结果是经过分割、求和、取极限等步骤而得到的一种和数得极限,这意味着我们已经得到了又一种类型的积分. 抛开问题的具体含义,一般的来研究这一类型的极限,便引入如下定义:定义 设L 是xoy 面内的一条光滑曲线,函数()y x f ,在L 上有界,用L 上任意插入一点图13-1列n M M M ,...,,21将曲线分为n 个小段. 设第i 段的长度为i s ∆(1,2,,i n =L ),又()i i ηξ,为第i 个小段上任意取定的一点,作乘积()i i i s f ∆ηξ,,并作和()iiini s f ∆∑=ηξ,1,若当各小段的长度λ的最大值趋于零时,此和式的极限存在,称此极限为函数()y x f ,在曲线L 上对弧长的曲线积分, 也称为第一类曲线积分, 记作()⎰L ds y x f ,, 即1(,)lim (,)n i i i Li f x y ds f s λξη→==∆∑⎰,其中()y x f ,叫做被积函数,L 称为积分弧段.当L 是光滑封闭曲线时,记为()⎰Lds y x f ,.类似地,对于三元函数()z y x f ,,在空间的曲线L 上光滑,也可以定义()z y x f ,,在曲线L 上对弧长的曲线积分()⎰Lds z y x f ,,.这样,本节一开始所要求的构件质量就可表示为(,).LM x y ds ρ=⎰由对弧长的曲线积分的定义可以知道,第一类曲线积分具有下面的性质: 性质1(线性性)若,f g 在曲线L 上第一类曲线积分存在,,αβ是常数, 则(,)(,)f x y g x y αβ+在曲线L 上第一类曲线积分也存在,且()()()()(),,,,LLLf x yg x y ds f x y ds g x y ds αβαβ±=±⎰⎰⎰;性质2(对路径的可加性)设曲线L 分成两段12,L L . 如果函数f 在L 上的第一类曲线积分存在,则函数分别在1L 和2L 上的第一类曲线积分也存在. 反之,如果函数f 在1L 和2L 上的第一类曲线积分存在,则函数f 在L 上的第一类曲线积分也存在. 并且下面等式成立1212L L L L fds fds fds +=+⎰⎰⎰.(12L L +表示L )对于三元函数也有类似的性质,这里不再一一列出. 二、 第一类曲线积分的计算定理 设有光滑曲线():,[,].()x t L t y t ϕαβψ=⎧∈⎨=⎩ 即'()t ϕ,'()t ψ连续. 若函数(,)f x y 在L 上连续,则它在L 上的第一类曲线积分存在,且()()()(,,Lf x y ds f t t βαϕψ=⎰⎰证明 如前面定义一样,对L 依次插入121,,...,n M M M -,并设0((),())M ϕαψα=,((),())n M ϕβψβ=. 注意到01.n t t t αβ=<<<=L 记小弧段1i i M M -的长度为i s ∆,那么,1,2,.ii t i t s i n -∆==⎰L1,(').i i t i i i i t s t t τ--∆=<<⎰所以, 当('')i i x ϕτ=,('')i i y ψτ=时,ii i 11(,)((''),(t ,n niiii i f x y s f ϕτψτ==∆=∑∑这里i 1i i i t ',''t .ττ-≤≤ 设ni i i 1f ((''),(i t σϕτψτ==∆∑则有n niiiii i i 1i 1f (x ,y )s f ((''),(t .ϕτψτσ==∆=+∑∑令12n t max{t ,t ,,t },∆=∆∆∆L 要证明的是t 0lim 0.σ∆→=因为复合函数f ((t),(t))ϕψ关于t 连续,所以在闭区间[,]αβ上有界,即存在M ,对一切t [,]αβ∈有|f ((t),(t))|M.ϕψ≤再由[,]αβ上连续,所以它在[,]αβ上一致连续. 即当任给0ε>,必存在0δ>,当t δ∆<时有|.ε≤从而1||().ni i M t M σεεβα=≤∆=-∑所以lim 0.t σ∆→=再从定积分定义得n22i i i i i 0i 1lim f ((''),(''))'('')'('')t t ϕτψτϕτψτ∆→=+∆∑22((),())'()'().f t t t t dt βαϕψϕψ=+⎰所以当n n22iiiii i i i i 1i 1f (x ,y )s f ((''),(''))'('')'('')t ϕτψτϕτψτσ==∆=+∆+∑∑两边取极限后,即得所要证的结果.特别地,如果平面上的光滑曲线的方程为(),,y y x a x b =≤≤则()()()()()2,,1'b Laf x y ds f x y x y x dx =+⎰⎰.例 计算曲线积分⎰Lds y ,其中L 是抛物线2x y =上的点()0,0A 与点()1,1B 之间的一段弧.(如图)图13-2解:积分曲线由方程[]1,0,2∈=x x y给出,所以()()⎰⎰+=1222'1dx x x ds y L12014x dx =+⎰()1241121⎥⎦⎤⎢⎣⎡+=x =()155121-.例 计算积分()22nLxyds +⎰Ñ,其中L 为圆周:sin ,x a t =cos ,y a t =02t π≤≤.解:由于L 为圆周:π20,cos ,sin ≤≤==t t a y t a x ,所以()()()()222220sin cos nnLxyds a t a t π+=+⎰⎰Ñ⎰==ππ20222nn a dt a . 对于三元函数的对弧长的曲线积分,可以类似地计算.例如:若曲线L 由参数方程()()()t z z t y y t x x ===,,,βα≤≤t 确定,则有()()()dt t z t y t x ds 222'''++=,从而()()()()()()()()dt t z t y t x t z t y t x f ds z y x f L⎰⎰++=βα222''',,,,.例13.3 计算曲线积分()⎰Γ++ds z y x222,其中Γ是螺旋线cos ,x a t = sin ,y a t =z kt =上相应于t 从0到π2的一段弧.解:由上面的结论有()()()()()()()dt k t a t a kt t a t a ds z y x⎰⎰++-++=++Γπ20222222222cos sin sin cos()()2222220222224332k a k a dtk a t k aπππ++=++=⎰例 计算2Lx ds ⎰, 其中L 为球面2222x y z a ++=被平面0x y z ++=所截得的圆周.解:由对称性可知222,LLLx ds y ds z ds ==⎰⎰⎰所以22222312().333L L L a x ds x y z ds ds a π=++==⎰⎰⎰习题1. 计算半径为R 、中心角为2α的圆弧L 对于它的对称轴的转动惯量I (设线密度1μ=).2. 计算曲线积分222()x y z ds Γ++⎰,其中Γ为螺旋线cos x a t =,sin y a t =,z kt=上相应于t 从0到2π的一段弧.3. 计算,x Cye dS -⎰其中C 为曲线2ln(1),23x t y arctgt t =+=-+由0t =到1t =间的一段弧.4. 求L xydS ⎰,其中L 是椭圆周22221x y a b+=位于第一象限中的那部分。

曲线与曲面积分应用

曲线与曲面积分应用

曲线与曲面积分应用曲线与曲面积分是数学中重要的概念和工具,被广泛应用于物理学、工程学和计算机图形学等领域。

本文将介绍曲线与曲面积分的基本概念、计算方法和应用实例。

一、曲线积分曲线积分是通过将曲线分割成无穷小的线段,并对每个线段上的函数值进行累加来计算整条曲线上的函数积分。

曲线积分可以分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分是函数在曲线上的积分,常用符号表示为∫f(x,y) ds。

其中f(x,y)表示曲线上的函数,ds表示曲线的弧长差。

第一类曲线积分可以应用于计算质量、重心和功等物理量。

2. 第二类曲线积分第二类曲线积分是向量场在曲线上的积分,常用符号表示为∫F·ds。

其中F表示向量场,ds表示曲线的弧长差。

第二类曲线积分可以应用于计算流量、环量和曲线的平均速度等物理量。

二、曲面积分曲面积分是通过将曲面分割成无穷小的面元,并对每个面元上的函数值进行累加来计算整个曲面上的函数积分。

曲面积分可以分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分是函数在曲面上的积分,常用符号表示为∬f(x,y,z) dS。

其中f(x,y,z)表示曲面上的函数,dS表示曲面的面积元。

第一类曲面积分可以应用于计算质量、电荷和电通量等物理量。

2. 第二类曲面积分第二类曲面积分是向量场在曲面上的积分,常用符号表示为∬F·dS。

其中F表示向量场,dS表示曲面的面积元。

第二类曲面积分可以应用于计算通量、旋度和曲面的平均速度等物理量。

三、曲线与曲面积分的应用实例1. 物理学中的应用曲线与曲面积分在物理学中有广泛的应用。

例如,通过计算电场在闭合曲面上的曲面积分,可以求解闭合曲面内的电荷总量。

又如,通过计算磁场在闭合曲线上的曲线积分,可以求解闭合曲线内的电流总量。

2. 工程学中的应用曲线与曲面积分在工程学中也有许多实际应用。

例如,在流体力学中,通过计算流速场在曲面上的曲面积分,可以求解通过曲面的流体质量。

高等数学 曲线积分和曲面积分 (10.2.2)--第二类曲线积分和第二类曲面积分

高等数学  曲线积分和曲面积分  (10.2.2)--第二类曲线积分和第二类曲面积分

习题10.21. 把下列第二类曲线积分化为第一类曲线积分.(1) 2d d Cx y x x y -⎰, 其中C 为曲线3y x =上从点(1,1)--到点(1,1)的弧段; (2) d d d LP x Q y R z ++⎰, 其中L 为曲线32===t z t y t x ,,上相应于参数t 从0变到1的弧段.2. 计算曲线积分22()d d OAx y x xy y -+⎰,其中O 为坐标原点,点A 的坐标为(1,1):(1) OA 为直线段x y =; (2) OA 为抛物线段2=x y ; (3) OA 为0=y ,1=x 的折线段. 3. 计算下列第二类曲线积分:(1)d d ||||C x yx y ++⎰,其中C 为1||y x =-上从点(1,0)经点(0,1)到点(1,0)-的折线段;(2) d d C y x x y +⎰, 其中C 为⎩⎨⎧==t a y t a x sin ,cos π:04t ⎛⎫→ ⎪⎝⎭; (3) 222()d 2d d Ly z x yz y x z -+-⎰, 其中L 为⎪⎩⎪⎨⎧===32t z t y t x ,,(:01)t →.(4) ()d ()d ()d L z y x x z y y x z -+-+-⎰, 其中L 为椭圆221,2,x y x y z ⎧+=⎨-+=⎩且从z 轴正向看去, L 取顺时针方向.4. 计算下列变力F 在质点沿指定曲线移动过程中所作的功.(1) ),(2xy y x -=F , 沿平面曲线34()(,)t t t =r 从参数0t =到1t =的点. (2) ),,(22z xy x =F , 沿空间曲线2()(sin ,cos ,)t t t t =r 从参数0t =到π2t =的点. 5. 设变力F 在点(,)M x y 处的大小||||||||k =F r ,方向与r 成2π的角, 其中OM =r (图10-38),试求当质点沿下列曲线从点)0,(a A 移到点),(a B 0时F 所作的功:(1) 圆周222=+a y x 在第一象限内的弧段; (2) 星形线323232=+a y x 在第一象限内的弧段.6. 在过点(0,0)O 和(π,0)A 的曲线族sin (0)y a x a =>中,求一条曲线C ,使沿该曲线从O 到A 的积分3(1)d (2)d Cy x x y y +++⎰的值最小.7. 把第二类曲面积分(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y ∑++⎰⎰化为第一类曲面积分:(1) ∑为平面x z a +=被柱面222x y a +=所截下的部分, 并取上侧;图 10-38xyOM (x , y )Fr(2) ∑为抛物面222y x z =+被平面2y =所截下的部分, 并取左侧. 8. 计算下列第二类曲面积分:(1) 2d d z x y ∑⎰⎰, 其中∑为平面1x y z ++=位于第一卦限部分, 并取上侧;(2) 22d d xy z x y ∑⎰⎰, 其中∑为球面2222=++R z y x 的下半部分, 并取外侧;(3)2e d d e d d d d yxy z y z x xy x y ∑++⎰⎰, 其中∑为抛物面22z x y =+ (01x ≤≤,1≤≤0y ), 并取上侧;(4)222d d d d d d x y z y z x z x y ∑++⎰⎰, 其中∑为球面2221xy z ++=位于第二卦限部分,并取外侧; (5)d d d d d d xy y z yz z x zx x y ∑++⎰⎰, 其中∑为平面0x =, 0y =, 0z =和1x y z ++=所围立体的表面, 并取外侧;(6) 2222d d d d x y z z x y x y z ∑+++⎰⎰, 其中∑为圆柱面222x y R +=与平面z R =和z R =- (0)R >所围立体的表面, 并取外侧;(7)d d (1)d d y z x z x y ∑-++⎰⎰, 其中∑为圆柱面4=+22y x被平面2=+z x 和0=z 所截下的部分, 并取外侧; (8)2d d d d d d y y z x z x z x y ∑++⎰⎰, 其中∑为螺旋面cos x u v =,sin y u v =,z v =,(01u ≤≤, 0πv ≤≤), 并取上侧.9. 计算下列流场在单位时间内通过曲面∑流向指定侧的流量:(1) ),(),,(222z y x z y x =v , ∑为球面1=++222z y x 第一卦限部分, 流向上侧; (2) ),,(),,(22y xy x z y x =v , ∑为曲面22+=y x z 和平面1=z 所围立体的表面, 流向外侧.。

曲线积分与曲面积分17398

曲线积分与曲面积分17398

曲线积分与曲面积分曲线积分1 计算曲线积分⎰+Lds y x )(, 其中L 是x x y --=|1|,20≤≤x .解 曲线参数化.曲线L 是一条折线. 要分段计算. 以x 为参数.⎰+Lds y x )(=)15(21)1(5)21(2110+=-+-+⎰⎰dx x dx x x 2计算曲线积分⎰++Γds z y x)(222, 其中Γ是曲面与的交线.解 代入化简被积函数.曲面和的交线是一个圆. 坐标原点到平面的距离等于, 于是这个圆的半径等于, 周长等于π4. 又因为曲线Γ是曲面和的交线, 所以Γ上所有点满足球面方程. 代入, 得⎰++Γds z y x )(222=⎰Γds 29= 3 计算曲线积分, 其中L 是双纽线θ2cos 2a r =.解 曲线参数化. 奇偶对称性.选极角为参数. 利用奇偶对称性. 计算在第一象限的部分, 则θ2cos )(22ar r ='+, 代入公式, 得=θθθθπd aa ⎰402cos sin 2cos 4=a )224(-4 计算曲线积分⎰Γds x 2, 其中Γ是曲面与的交线. 解 轮换对称性. 代入化简被积函数.因为曲线Γ关于平面x y =及x z =都对称, 所以⎰Γds x 2⎰++=Γds z y x )(3122232323a ds a πΓ==⎰ 结论: 设分段光滑曲线)(x y y =关于y 轴对称, 将它从左到右定向记作L . 是它的位于右半平面的部分. 又设函数在L 上连续, 且满足, , 则⎰Ldx y x P ),(=⎰1),(2L dx y x P ,⎰=Ldy y x Q 0),(.5. 计算曲线积分⎰+--+Lyx dy y x dx y x 22)()(, 其中L 是圆周222a y x =+的正向. 解 曲线参数化.将t a x cos =,t a y sin =代入, 得⎰+--+L yx dy y x dx y x 22)()(ππ220-=-=⎰dt 6. 计算曲线积分, 其中L 是由曲线和围成的区域的边界的正向.解 曲线参数化. 奇偶对称性.不考虑方向, 曲线L 关于y 轴对称, 被积函数关于变量y 是偶函数, 用奇偶对称性, 有. 被积函数关于变量x 是偶函数, 曲线和在右半平面的部分分别记作和, 则=+两段曲线具有不同的表达式, 需分别计算. 计算在+1L 上的积分时, 以x 为参数; 计算在上的积分时, 以极角为参数. 代入公式, 得=+⎰+-20sin 2cos 2sin 22πθθθθd =2)234ln(32π-+格林公式1. 计算曲线积分, 其中L 是由曲线, , 围成区域D 的正向边界.解 用格林公式计算. 根据格林公式, 有=⎰⎰Dxd σ2用二重积分的换元法. 令, 则区域D 变成平面上的矩形. 雅可比行列式, 代入公式, 得==2. 计算曲线积分, 其中L 是曲线上从点)0,(π到点)0,2(π的弧.解 添加一段弧成闭路, 用格林公式计算.添加x 轴上从点)0,2(π到点)0,(π的直线段, 记它们共同围成的区域为D , 用格林公式, 得=σd y x y y x y y D ⎰⎰⎪⎪⎭⎫ ⎝⎛+-++22222⎰-ππ2xdx =22394π+ 3. 计算曲线积分⎰+++-L x yx dy y x dx y e 2233)sin ()(, 其中222:R y x L =+的正向. 解 化简被积函数, 用格林公式计算.因为被积函数在原点没有定义, 不能直接用格林公式. 将曲线方程代入被积函数的分母, 得⎰⎰++-=+++-LxLx dy y x dx y eRy x dy y x dx y e )sin ()(1)sin ()(3322233这时可以使用格林公式了. 记222:R y x D =+, 则⎰⎰⎰+=++-D Ld y x Rdy y x dx y e R σ)33(1)sin ()(12223322223R π= 4. 设函数有连续的偏导数, 求证: ⎰≥-L dx x f ydy y xf π2)()(, 其中L 是圆周的正向. 证 用格林公式证明不等式. 用格林公式, 有=⎰⎰⎥⎦⎤⎢⎣⎡+D d x f y f σ)(1)(. 因为区域D 关于直线对称, 用轮换对称性, 有⎰⎰⎥⎦⎤⎢⎣⎡+D d x f y f σ)(1)(=⎰⎰⎥⎦⎤⎢⎣⎡+D d x f x f σ)(1)(πσ22=≥⎰⎰D d5. 求极限⎰++++→Lt dy ny mx dx by ax t )()(1lim20, 其中L 是圆周222t y x =+的正向.解 用格林公式求极限.设L 围成的区域为D , 根据格林公式, 有⎰++++→Lt dy ny mx dx by ax t )()(1lim 20⎰⎰-=+→Dt d b m t σ)(1lim2)()(1lim220b m t b m tt -=-=+→ππ6. 设函数有连续导数, 则曲线积分与路径无关.证 用曲线积分与路径无关的条件.计算可得, , 满足曲线积分与路径无关的条件. 7. 求函数)(x p , 使得曲线积分⎰+++Ly ydy x xe dx y xp e)()]([2与路径无关.解 用曲线积分与路径无关的条件.根据曲线积分与路径无关的条件, 有)(2y p x e x e y y '+=+, 即2)(='y p . 积分, 得C y y p +=2)(. 8. 计算曲线积分⎰+-+-L y c x ydydx c x 2/322])[()(, 其中L 是曲线上从点到点的弧.解 曲线积分与路径无关. 选择比较简单的路径. 计算可得xQ y c x c x y y P ∂∂∂∂=+---=2/522])[()(3, 满足曲线积分与路径无关的条件. 因此, 选择容易计算的积分路径: 先从点沿直线到点),(b a , 再从点),(b a 沿直线到点.⎰+-+-L y c x ydy dx c x 2/322])[()(=⎰+-b y c a ydy 02/322])[(+⎰+--02/322])[()(a b c x dxc x=9. 计算曲线积分, 其中函数有连续导数,点.解 用条件判定曲线积分与路径无关. 选择比较简单的路径.计算可得x Qyxy f xy xy f y P ∂∂∂∂=-'+=21)()(, 满足曲线积分与路径无关的条件. 因此, 选择容易计算的积分路径: 沿曲线2=xy 从点)32,3(A 到点)2,1(B .⎰⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡+AB dy y x xy xf dx xy yf y 2)()(1 dx x f x f xx ⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+=132)2(2)2(22413-==⎰dx x10. 计算曲线积分, 其中L 是包含坐标原点在其内部的正向闭曲线.证 用复连通区域的格林公式. 选择比较简单的闭路.积分式在坐标原点无意义, 取0>ε足够小, 使得圆周222:ε=+y x C 在L 的内部. 因为被积函数满足微分方程xQy P ∂∂=∂∂, 所以在L 与C 之间的区域上的二重积分等于零. 于是在用多连通区域的格林公式时, 相当于换成另一条闭路,==πθεθεθεπ2sin cos 2022222=+⎰d 11. 验证是某个函数的全微分, 并求出一个这样的函数.解 用全微分的条件. 计算可得xQy e y P x ∂∂∂∂=-=sin , 满足全微分的条件. 选坐标原点为始点, 则⎰⎰-=yx xxydy e dx e y x u 0sin ),(1cos cos 1-=-+-=y e e y e e x x x x验算: 0)0,0(=u .曲面积分结论1.设光滑曲面∑关于xoy 平面对称, 1∑是∑在上半空间的部分. 函数),,(z y x f 在曲面∑上连续, 且满足),,(z y x f -=),,(z y x f , 则⎰⎰⎰⎰=1),,(2),,(∑∑dS z y x f dS z y x f .2.设函数),,(z y x f 在光滑曲面∑上连续,∑的面积记作A , 则存在点∑ζηξ∈),,(M , 使得⎰⎰∑dS z y x f ),,(=A f ),,(ζηξ.1. 计算曲面积分⎰⎰+∑dS y x )(22, 其中∑是锥面z x y z =+≤221,.解 向坐标平面投影.向xoy 平面的投影区域为D x y :221+≤. 1222++=z z x y . 用计算公式, 得⎰⎰+∑dS y x )(22=()x y dxdy D222+⎰⎰=222012πθπ=⎰⎰rdr r d2. 计算曲面积分()x y z dS ++⎰⎰∑, 其中∑是z x y z =+≤221,.解 奇偶对称性.曲面关于xoz 平面和yoz 平面对称, 因此0)(=+⎰⎰∑dS y x .⎰⎰⎰⎰+++=Ddxdy y x y xzdS 2222441)(∑⎰⎰+=πθ2012341dr r r d)1525(60+=π3. 计算曲面积分⎰⎰++∑dS z y x)32(222, 其中∑是球面2222R z y x =++解 轮换对称性.因为球面2222R z y x =++关于平面x z =和y z =都对称, 所以⎰⎰∑dS x2=⎰⎰∑dS y 2=⎰⎰∑dS z 2于是,⎰⎰++∑dS z y x )32(222=⎰⎰++∑dS z y x )(2222=28R π结论 设光滑有向曲面∑关于yoz 平面对称, 函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在∑上连续, 且),,(),,(z y x P z y x P =-, ),,(),,(z y x Q z y x Q -=-,),,(),,(z y x R z y x R -=-, 则⎰⎰=∑dydz z y x P ),,(⎰⎰=∑dzdx z y x Q ),,(⎰⎰=∑0),,(dxdy z y x R . 4. 计算曲面积分⎰⎰+∑zdxdy dydz x 2, 其中∑是锥面z x yz =+≤221,的下侧.解 向坐标平面投影. 奇偶对称性.曲面∑关于yoz 平面对称, 被积函数2x 关于x 是偶函数, 于是⎰⎰=∑02dydz x.⎰⎰⎰⎰+-=∑D dxdy y x zdxdy 22πθπ3220102-=-=⎰⎰dr r d5. 计算曲面积分⎰⎰-+-+-∑dxdy y x dzdx x z dydz z y )()()(, 其中∑是圆锥面22y x z +=, h z ≤的下侧.解 轮换对称性.曲面∑关于平面x y =对称, 用轮换对称性, 得⎰⎰-+-+-∑dxdy y x dzdx x z dydz z y )()()(=⎰⎰-+-+-∑dxdy x y dzdy y z dxdz z x )()()(于是⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()(=06.计算曲面积分)()1(⎰⎰+++∑dxdy dzdx dydz yz x , 其中∑是柱面y x =2, y ≤1,10≤≤z 的右侧.解 向坐标平面的投影是曲线弧.因为曲面∑在xoy 平面的投影是一条曲线, 所以0)1(=+⎰⎰∑yzdxdy x .曲面∑关于yoz 平面对称, 函数yz 关于x 的是偶函数, 所以0=⎰⎰∑yzdydz ; 函数xyz 关于x 的是奇函数, 所以0=⎰⎰∑xyzdzdx .记1∑是∑在第一卦限的部分, D 1是1∑在yoz 平面上的投影, 2D 是1∑在zox 平面上的投影, 用计算公式, 得)()1(⎰⎰+++∑dxdy dzdx dydz yz x=⎰⎰⎰⎰+1122∑∑yzdzdx xyzdydz ⎰⎰⎰⎰+=2122/322D D zd x zd yσσ=⎰⎰1012/32zdy ydz+⎰⎰10122zdx x dz =1511。

第七章 曲线与曲面积分导学答案13-16(第一、二类曲面积分联系及高斯公式)

第七章 曲线与曲面积分导学答案13-16(第一、二类曲面积分联系及高斯公式)

第七章 曲线与曲面积分7.2.6 第二类曲面积分及一、二类曲面积分的联系(计算)7.2.7 Gauss 公式(导学解答)一、相关知识1.高斯公式的两种表示方法答:设空间闭区域Ω是由分片光滑的闭曲面∑所围成, 函数P (x , y , z )、Q (x , y , z )、R (x ,y , z )在Ω上具有一阶连续偏导数, 则有⎰⎰⎰⎰⎰∑Ω++=∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z Ry Q x P )(, 或 dS R Q P dv z R y Q xP )cos cos cos ()(⎰⎰⎰⎰⎰∑Ω++=∂∂+∂∂+∂∂γβα二、对坐标的曲面积分及应用高斯公式时的有关问题1.坐标曲面积分的实质是什么?答:其实质是将曲面积分中的曲面,进行有向投影,进而转化为平面上的二重积分. 2.坐标曲面积分过程中对称性的应用?(1)设分片光滑的曲面∑关于xoy 坐标面对称,且∑在xoy 上半空间的部分曲面1∑取定上 侧,在xoy 下半空间的部分曲面2∑取定下侧,则()()()()10,,,,,d d 2,,d d ,,,R x y z z R x y z x y R x y z x y R x y z z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰关于是偶函数,关于是奇函数. 类似的有分片光滑的曲面∑分别关于,xoz yoz 平面对称的结论. (2)若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)p x y z dydz p y z x dzdx p z x y dxdy ∑∑∑==⎰⎰⎰⎰⎰⎰=1(,,)(,,)(,,)3p x y z dydz p y z x dzdx p z x y dxdy ∑++⎰⎰ 3.高斯公式的实质是什么?答:高斯公式表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系. 4.高斯公式添加辅助面的技巧?答:辅助面一般取为坐标面或平行于坐标面的平面,并且应给出所选定的侧. 5. 两类曲面积分的联系其联系表达式为:(,,)(,,)cos R x y z dxdy R x y z dS γ∑∑=⎰⎰⎰⎰,(,,)(,,)cos P x y z dydz P x y z dS α∑∑=⎰⎰⎰⎰(,,)(,,)cos P x y z dydz P x y z dS β∑∑=⎰⎰⎰⎰其中 221cos yx xz z z ++-=α, 221cos yx yz z z ++-=β, 2211cos yx z z ++=γ,若有向曲面∑指定一侧的法向方向余弦为cos α、cos β、cos γ,则两类曲面积分的关系为:(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑++=++⎰⎰⎰⎰三、练习题1.计算sxdydz ydxdy zdxdy ++⎰⎰,其中S 是球面2222xy z R ++=的外侧解: ∵球面2222x y z R ++=关于x ,y ,z 具有对称性∴sssxdydz ydxdz zdxdy ==⎰⎰⎰⎰⎰⎰先计算sxdydz ⎰⎰为此应分别考虑前半球面(记为1S)及后半球面(记为2S )上的曲面部分1S的方程为x =它在oyz 平面上的投影域y D 为圆域222y z R +≤,因此,若用1w S 表示前半球面的外侧 则有:1S wDyxdydz σ=⎰⎰=230023R d r R πθπ=⎰⎰对于在后半球面2S 上的曲面积分,由于2S的方程为:x =外侧,故关于后半球面外侧(记为2w S )的曲面积分为:2S wxdydz =⎰⎰Dyσ=323R π因此Sxdydz =⎰⎰31243S w S wxdyxz xdydz R π+=⎰⎰⎰⎰ 3SSxdydz ydxdz zdxdy xdyxz ++=⎰⎰⎰⎰334343R R ππ=⋅=2.计算y x r z x z r y z y rx I d d d d d d 333++=⎰⎰∑,其中222z y x r ++=,∑为球面2222R z y x =++的外侧.解: 因为∑关于z y x ,,具有轮换对称性,所以y x rzI d d 33⎰⎰∑=,又因为∑关于xoy 面上下对称,上∑与下∑方向相反,且3r z 是z 的奇函数,则y x rzy x r z d d 2d d 33⎰⎰⎰⎰∑∑=上,故有 πθπ4d d 6d d 6d d 602220322233222=-=--==⎰⎰⎰⎰⎰⎰≤+∑a R y x r r r R R y x y x R R y x r z I 上3.利用高斯公式计算曲面积分⎰⎰∑-++=dxdy zdzdx y dydz x I )1(322233, 其中∑是曲面)0(122≥--=z y x z 的上侧。

高等数学课后答案 第七章 习题详细解答

高等数学课后答案 第七章 习题详细解答

习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤;(3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫==⎪⎝⎭,则()f x =5.求下列各函数的定义域:(1)2222x y z x y+=-; (2)ln()arcsin y z y x x =-+;(3)ln()z xy =; (4)z =;(5)z =(6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →; (3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim (2,0)22x y x xy y f x y →++===+;(2)(,)(0,0)00112lim lim 2x y u u u u →→→===;(3)因为22(,)(0,0)lim ()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim ()sin 0x y x y xy →+=; (4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e ++++<<,而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y xx y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ=≤=(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<时,0ε-<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然 00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim(,)x h f x h y f x y z x y A h→+-==; (2)000000000000(,)(,)(,)(,)limlim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-; (3)0000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B h h→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tan x z y =;(3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z x x y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y-⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy z e y ye x ∂=⋅=∂,xy xy ze x xe y∂=⋅=∂; (4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++, 22222222z x x yy y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂1z x y xy ∂=⋅=∂ (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z zu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln z u x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212yf y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)arcsinf x x x =+-,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y y x x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点(1,1处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=. (2)按偏导数的几何意义,(1,1)y z就是曲线在点(1,1处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =+,求22z x ∂∂和2zx y∂∂∂;(4)arctan y z x =求22z x ∂∂、22z y ∂∂、2z x y ∂∂∂和2zy x∂∂∂.解(1)233sin cos z x y y x x ∂=+∂,2223cos 3cos z x y y x x y∂=+∂∂; (2)ln ln 1ln ln x x z y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂==∂==,()232222zxx xy∂-==∂+,()23222z yx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xyy x y ∂-=∂+,()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22e sin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x -∂=∂,2222e sin kn ty n nx x-∂=-∂ 所以()2222e sin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x x r ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭, 由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r ∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s tu s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin(0)xz y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--, ()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xe x y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x e y yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsind d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z++==++++++; (6)()1d d d ln d ln d yz yz yz yzu x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++ 所以12112d (2d 4d )d d 633x y z x y x y ===+=+; (2)因为22221d d arctand 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分.解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy y xyx y -----==-- 所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2e x yu -=,sin x t =,3y t =,求d d u t. 解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=3.设22z u v uv =-,cos u x y =,sin v x y =,求z x ∂∂,z y∂∂. 解()()222cos 2sin z z u z v uv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求z x ∂∂,z y∂∂. 解 222ln 3z z u z v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x ∂∂,zy∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x y x y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x y x y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanxz y=,x u v =+,y u v =-,求z u ∂∂,z v ∂∂,并验证:22z z u vu v u v∂∂-+=∂∂+.解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1)22()z f x y =-; (2),x y u f y z ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()z xf x y x ∂'=-∂,222()zyf x y y∂'=--∂; (2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23uxf xzf y ∂''=+∂,3u xyf z ∂'=∂; (4)12312xy u xf ye f f x x ∂'''=++∂,122xy u yf xe f y∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂.证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,kz y u x F x x ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证: u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂. 13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z zxy x y∂∂+=∂∂. 证cos z f x x ∂'=∂,cos (cos )zy y f y∂'=+-∂, sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22z x ∂∂,2z x y ∂∂∂,22zy ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf x x ∂∂''=⋅=∂∂,1212d d z s tf f xf f y y y∂∂''''=⋅+⋅=+∂∂. 因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y yy y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf x x ∂∂''=⋅=∂∂,2z sf yf y y∂∂''=⋅=∂∂. 因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s tf f xyf x f y y y∂∂∂''''=⋅+⋅=+∂∂∂. ()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e +=,则1313d cos d x y z u w f f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y+∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x xx ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx y ef xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233d d cos d d x y x y v w v w x f f e f e f f y y yy ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x y ef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x yx y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x --=-=-=--+. 2.设ln ln 1xy y x ++=,求1d d x yx =. 解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x yx ==-. 3.设arctany x =,求d d y x. 解设(,)ln arctan y F x y x=,则2222222222211d11d1xyyx x yyFy x yx y x yxy xx F x yx x y x yyx⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos1x y z++=,求zx∂∂,zy∂∂.解设222(,,)cos cos cos1F x y z x y z=++-,则2cos sin sin22cos sin sin2xzFz x x xx F z z z∂-=-=-=-∂-,2cos sin sin22cos sin sin2yzFz y y yy F z z z∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx++++=确定了函数(,)z z x y=,其中F存在偏导函数,求zx∂∂,zy∂∂.解1212()()xzF F y z Fzx F F y x F''++∂=-=-∂''++,1212()()yzF F x z Fzy F F y x F''++∂=-=-∂''++.6.设由方程(,,)0F x y z=分别可确定具有连续偏导数的函数(,)x x y z=,(,)y y x z=,(,)z z x y=,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证因为yxFxy F∂=-∂,zyFyz F∂=-∂,xzFzx F∂=-∂,所以1y xzx y zF FFx y zy z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=-⎪⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭.7.设(,)u vϕ具有连续偏导数,证明由方程(,)0cx az cy bzϕ--=所确定的函数(,)z f x y=满足z za b cx y∂∂+=∂∂.证令u cx az=-,v cy bz=-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v vc yϕϕϕ∂=⋅=∂,z u v u v u v a b z z ϕϕϕϕϕ∂∂=⋅+⋅=--∂∂. x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x zz F z yzx F e xy ∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y zz F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=-()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y∂=∂∂.10.求由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+,y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy ∂∂; (3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y xy x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x yJ x y y x-==+≠的条件下,22u y v x u xu yvx y x x y y x ---∂+==--∂+, 22x uy v v yu xvx y x x yy x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y∂-=∂+,22v xu yv y x y ∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu ue v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处; (2)1t x t =+,1t y t+=,2z t =在1t =的对应点处;(3)sin x t t =-,1cos y t =-,4sin2t z =在点2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t -+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,12π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=. 法平面方程为402x y π++--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得 2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y x y z xy xy x yz z y z-===.(1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 1,1,3=- ⎪⎝⎭T . 故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭. 3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处; (3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处. 解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n ,(1,1,ln 4),1,12=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫⎪⎝⎭处的切平面方程为 202x y z π-+-=. 法线方程为 114112z x y π---==-. 4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程.解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=. 解得 1z =±,则12x =±,1y =±. 所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭. 所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n . 7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.。

曲面积分曲线积分总结(推荐3篇)

曲面积分曲线积分总结(推荐3篇)

曲面积分曲线积分总结第1篇对坐标积分,第二型积分是有方向的,对应的物理意义是力沿曲线做功两种方法1.根据对称性、代入性 2.采用化为参数方程例题一、曲线L为 \begin {cases} x^2+y^2+z^2=R^2 \\ x+y+z=0 \end{cases} ,计算\int_{L}xyds (代入性、对称性)例题二、L为 \begin {cases} 2x^2+y^2=2\\ z=x \end {cases} ,计算 \oint_{L}(x^2+y^2)ds (转空间曲线为参数方程形式)\oint_{L}\frac{(x+y)dx-(x-y)dy}{x^2+y^2} ,其中L为 x^2+y^2=a^2 的正向直接使用xxx就是“经典错误,标准错误”当 \frac{\partial P}{dy}=\frac{\partial Q}{dx}证明与路径无关,则可以重新选择简单路径,注意选择新的路径时,一定不能含有奇点。

计算 \int_{L} \frac{x-y}{x^2+y^2}dx+\frac{x+y}{x^2+y^2}dy ,L是从A(-a,0)到B(a,0)的椭圆 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(y\geq0,a>0,b>0)的一段。

①当区域里面还有奇点,就采用挖洞法②挖洞有讲究,不能乱挖,最好挖得和分母式子是一样的,比如分母是4x^2+y^2 ,那就挖一个椭圆 4x^2+y^2=\xi^2③挖洞的方向要和所求区域是一致的同学问的题,发现这方面的题还没做到,就写一下例题:计算曲面积分 \oint_{c}(x^2+y^2)^2ds ,其中曲线c为 \begin{cases} x^2+y^2+z^2=1 \\ x=y \end{cases}解释:1投是把积分曲面投影到相应的平面,2代是把需要变的值代换,3微变是变换积分例题、求 \iint_{\Sigma}x\sqrt{y^2+z^2}dS , \Sigma 为 x=\sqrt{y^2+z^2}与x=1围成立体的边界曲面思路:这题不是常规的直接投影到xoy平面,但我们可以通过改变坐标轴来改变积分解释:1投求那个面上的积分就往那个面上投影,2代把不在平面的值代换,3定号看与z轴的夹角,若为锐角则正号,若为钝角,则是负值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 曲线与曲面积分7.2.5第一类曲面积分 7.2.6 第二类曲面积分(导学解答)一、相关知识1.物质曲面的质量问题?答:设∑为面密度非均匀的物质曲面, 其面密度为ρ(x , y , z ), 求其质量,把曲面分成n 个小块: ∆S 1, ∆S 2 , ⋅ ⋅ ⋅, ∆S n (∆S i 也代表曲面的面积);求质量的近似值:i i i i ni S ∆=∑),,(1ζηξρ((ξi , ηi , ζi )是∆S i 上任意一点); 取极限求精确值: i i i i ni S M ∆==→∑),,(lim 10ζηξρλ(λ为各小块曲面直径的最大值).2.空间曲面在坐标面上的有向投影?答:空间面积为S ∆的有向平面在坐标面上的投影将有向平面S ∆投影到xoy 坐标面,所得投影记为xy S )(∆,投影区域的面积记为()xy σ∆;设平面S ∆的法向量n 与z 轴正向的夹角为γ,则()xy S ∆()c o s 00c o s 0()c o s 0xy xy σγγσγ⎧∆>⎪=≡⎨⎪-∆<⎩即()cos xy S S γ∆=∆;如果20πγ<≤,0cos >γ(上侧),则xy xy S )()(σ∆=∆;如果πγπ≤<2,0cos <γ(下侧),则xy xy S )()(σ∆-=∆;如果2πγ=,0cos =γ,则0cos )(=∆=∆S S xy γ。

同理可以定义S ∆在yoz 、zox 坐标面上的投影为()yz S ∆及()zx S ∆为:()cos 0()0cos 0()cos 0yzyz yz S σαασα⎧∆>⎪∆=≡⎨⎪-∆<⎩()c o s 0()0c o s 0()c o s 0zxzx zx S σββσβ∆>⎧⎪∆=≡⎨⎪-∆<⎩3.流向曲面一侧的流量?答:设空间有一稳定的(流速与时间无关)不可压缩的(密度为1)流体,流速为(,,)v v x y z =Pi Qj Rk =++,从曲面∑的一侧流向另一侧。

其中,,P Q R 在曲面∑上连续,用n 表示曲面∑上指向流动一侧的单位法向量。

若v 是常向量,∑是平面(则n 也是常向量),且∑的面积为S ,则流量为:||cos S v θΦ=⋅||||cos(,)S v n v n =⋅,即()v n S Φ=;对于一般的光滑曲面∑,采用分割、求和、取极限的方法,其流量为:1lim (,,)(,,)n i i i i i i i i v n S λξηζξηζ→=Φ=∆∑01lim ()ni i i i v n S λ→==∆∑;又因为:(,,)(,,)(,,)(,,)i i i i i i i i i i i i v P i Q j R k ξηζξηζξηζξηζ=++,(,,)cos cos cos i i i i i i n i j k ξηζαβγ=++,记cos ()i i i yz S S α∆=∆,cos ()i i i zx S S β∆=∆,cos ()i i i xy S S γ∆=∆则流量可以表示为:1lim {(,,)()(,,)()(,,)()}ni i i i yz i i i i zx i i i i xy i P S Q S R S λξηζξηζξηζ→=Φ=∆+∆+∆∑二、对面积曲面积分的有关问题1.对面积的曲面积分的实质是什么?答:其实质是将曲面积分中的曲面投影为平面,进而转化为二重积分. 2.对曲面的曲线积分过程中对称性的应用规则?答:(1)若曲面∑关于xoy 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑位于xoy 上部的曲面,则()()()()10,,,,,d 2,,d ,,,f x y z z f x y z S f x y z S f x y z z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.曲面关于xoz yoz ,平面对称也有类似的结论.(2) 若光滑曲面S 可以分成对称的两部分12S S S =+,且关于原点对称, 则(ⅰ)(,,)sf x y z ds ⎰⎰0=,为关于z (或x ,或y )的奇函数(ⅱ)(,,)sf x y z ds ⎰⎰=81(,,)s f x y z ds ⎰⎰,),,(z y x f 为关于z (或x ,或y )的偶函数(3) 若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)f x y z ds f y z x ds f z x y ds ∑∑∑==⎰⎰⎰⎰⎰⎰1(,,)(,,)(,,)3f x y z ds f y z x ds f z x y ds ∑∑∑=++⎰⎰⎰⎰⎰⎰ 3.对曲面的所对应不同投影平面的公式演变?(1)如果曲面为∑:(,)y y x z =,在xoz 坐标面上的投影区域为D ,(,)y x z 在D 一阶偏导数连续,则对面积曲面积分计算公式为(,,)(,(,),Df x y z dS f x y x z z σ∑=⎰⎰⎰⎰(2)如果∑恰好是xoy 坐标面的平面区域,即D ∑=:0z =1=,从而(,,)(,,0)Df x y z dS f x y d σ∑=⎰⎰⎰⎰.4.曲面面积积分在实际应用中的定义 (1)曲面面积表达式?曲面的面积:S dS ∑=⎰⎰;(2)曲面质量的表达式?曲面的质量:(,,)M x y z dS ρ∑=⎰⎰(3)曲面转动惯量的表达式?转动惯量:22()(,,)z I x y x y z dS ρ∑=+⎰⎰(4)曲面重心坐标的表达式?(,,)x x y z dSMx ρ∑⎰⎰=(,,)(,,)x x y z dSx y z dS ρρ∑∑⎰⎰=⎰⎰,y =,z =;特别当(,,)x y z ρ=常数时,重心在对称面上或对称轴上,此时重心也称为形心,且xdS xdSS dS x ∑∑∑⎰⎰⎰⎰==⎰⎰ y d S S y ∑⎰⎰= zdS S z ∑⎰⎰=三、练习题1. 计算积分1dS z∑⎰⎰,∑是球面2222x y z R ++=被平面z h =(0h R <<)截出的顶部.解:∑:z =xoy 面上的投影区域D :2222x y R h +=-,==1dS z ∑⎰⎰2σ=⎰⎰222D Rd R x y σ=--⎰⎰22D R rdrd R r θ=-⎰⎰22200r R d dr R r πθ=-⎰⎰2212(ln(2R R r π=⋅--(2ln 2ln )2ln R R R h R h ππ=⋅-=2. 计算积分xydS ∑⎰⎰,∑是圆柱面221x y +=与平面0z =,2x z +=围成的立体的全表面.解:123∑=∑+∑+∑1∑:0z =,1D :221x y +≤;1110D DxydS xyd σσ∑===⎰⎰⎰⎰⎰⎰2∑:2z x =-, 2D :221x y +≤2220D D xydS xyd σσ∑==⎰⎰⎰⎰3∑:221x y +=,33132∑=∑+∑,31∑:y =32∑:y =,其中 31∑、32∑在xoz 面上的投影区域均为3D ,且3D 由2x z +=,1x =,1x =-,0z === xydS ∑⎰⎰123xydS ∑∑∑=++=⎰⎰⎰⎰⎰⎰33132xydS xydS xydS ∑∑∑=+⎰⎰⎰⎰⎰⎰33(D D x σσ=+⎰⎰⎰⎰32D xd σ=⎰⎰1112x dx xdz --=⎰⎰11242(1)2()33x x dx -=-=-=-⎰3. 22222(),.I ax by cz d ds x y z R ∑=+++∑++=⎰⎰计算曲面积分其中是球面 解:2()I ax by cz d ds ∑=+++⎰⎰ 2222[()()()222222]ax by cz d abxy aczx bcyz adx bdy cdz ds∑=+++++++++⎰⎰根据曲面积分的对称性及被积函数的奇偶性可知:0xds yds zds xyds yzds xzds ∑∑∑∑∑∑=====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222222,,x y z R x y z x ds y ds z ds ∑∑∑++===⎰⎰⎰⎰⎰⎰因为球面关于具有对称性所以2()I ax by cz d ds ∑=+++⎰⎰因此222222221()()43a b c x y z ds R a π∑=+++++⎰⎰ 22222214[()]3R Ra b c a π=+++ 4.计算下列面积的曲面积分,()x y z ds ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分.解: 利用对称性知xds yds ∑∑=⎰⎰⎰⎰0=设xy D ={|),(y x 2222x y a h +≤-} 则()x y z ds ∑++⎰⎰=zds ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-5. 计算曲面积分()xy yz zx dS ∑++⎰⎰,∑为锥面z =被圆柱面222x y ay+=(0a >)所截下的部分.解:因为锥面、圆柱面均关于yoz 面对称,故曲面∑关于yoz 面对称,而xy xz +关于x 恰好是奇函数,yz 关于x 是偶函数,从而()xy yz zx dS ∑++⎰⎰yzdS ∑=⎰⎰12yzdS ∑=⎰⎰1∑:z =,1D 如图所示。

()xy yz zx dS ∑++⎰⎰12yzdS ∑=⎰⎰12D σ=⎰⎰1D σ=1sin D r r rdrd θθ=⋅⋅22sin 3sin a d r d πθθθθ=⎰24(2sin )sin 4a d πθθθ=22y ay =sin a θ2508sin ad πθθ=44285315a a =⋅=四、思考题1.计算曲面积分2z ds ∑⎰⎰,其中s 是球面2222xy z a ++=解:如果按照常规方法来解,计算量比较大,如果利用对称函数的特性,非常简捷∵球面2222x y z a ++=关于x ,y ,z 具有对称性 ∴222x ds y ds z ds ∑∑∑==⎰⎰⎰⎰⎰⎰ ∴2z ds ∑⎰⎰=2221()3x y z ds ∑++⎰⎰ =21133a ds ds ∑∑=⎰⎰⎰⎰ 22214.433a a a ππ==。

相关文档
最新文档