大学物理波动与光学考试重点概念总结归纳
物理高考波动光学精要

物理高考波动光学精要波动光学是物理学中的重要分支之一,涉及到波的传播和波的干涉、衍射等现象。
在高考物理考试中,波动光学是一个重要的考点,考察学生对波动光学基本原理和应用的理解。
本文将对波动光学的精要内容进行归纳总结,帮助考生复习备考。
一、波动光学的基本原理波动光学研究光的传播和光的性质,它的基本原理可以用光的波动性和光的干涉、衍射现象来解释。
1. 光的波动性波动光学起源于光的波动性的发现,它将光看作是横波,具有传播速度、波长和频率等特性。
2. 光的干涉现象干涉是指两个或多个光波相遇时,互相叠加形成干涉图样的现象。
干涉现象证明了光的波动性,并且可以通过干涉图样的特征来确定光的波长和相位差等信息。
3. 光的衍射现象衍射是指光波遇到障碍物或通过狭缝时发生偏折和扩散的现象。
衍射现象也是光的波动性的重要证明之一,它进一步揭示了光的传播和光的波长等特性。
二、光的干涉光的干涉是波动光学中的重要内容,可以分为干涉现象的分类和光的干涉应用两个方面。
1. 干涉现象的分类干涉现象又可分为干涉条纹、干涉色和空气薄膜干涉等。
干涉条纹形成的条件是光的相干性,它可以通过干涉仪器如双缝干涉仪、单缝干涉仪等来观察和研究。
2. 光的干涉应用光的干涉不仅仅是一种现象,还有很多实际应用。
例如,干涉仪器可以用于测量物体的形态和表面的质量,干涉色可以应用于薄膜的质量控制和光学材料的研究等。
三、光的衍射光的衍射是波动光学中的另一个重要内容,主要包括衍射现象的分类和光的衍射应用两个方面。
1. 衍射现象的分类根据不同的衍射形式,光的衍射可以分为菲涅尔衍射、菲涅耳衍射和夫琅禾费衍射等。
衍射现象可以通过衍射仪器如单缝衍射仪、双缝衍射仪等来观察和研究。
2. 光的衍射应用光的衍射具有很多实际应用,例如,可以通过衍射仪器来测量光的波长和光的相位差等信息,光的衍射还可以应用于显微镜、天文学的研究以及光的光栅等方面。
四、物理高考中的波动光学考点在物理高考中,波动光学是一个重要的考点,考察学生对波动光学基本原理和应用的理解和掌握程度。
2025高考物理波动与光学知识点总结

2025高考物理波动与光学知识点总结物理作为一门基础学科,在高考中占据着重要的地位。
其中,波动与光学部分是一个重点和难点,涵盖了丰富的概念、原理和应用。
为了帮助同学们更好地掌握这部分知识,下面对 2025 高考物理中波动与光学的知识点进行全面总结。
一、机械波1、机械波的产生和传播机械波是由机械振动在介质中传播而形成的。
要产生机械波,需要有波源和介质。
介质中的质点并不随波迁移,只是在各自的平衡位置附近振动。
2、横波和纵波横波的振动方向与波的传播方向垂直,如绳波。
纵波的振动方向与波的传播方向平行,如声波。
3、波长、频率和波速波长是相邻两个振动相位相同的质点间的距离。
频率是波源的振动频率,由波源决定。
波速由介质决定,公式为 v =λf ,其中 v 是波速,λ 是波长,f 是频率。
4、波的图象波的图象直观地反映了某一时刻各个质点的位移情况。
通过波的图象,可以判断质点的振动方向、波长、振幅等。
5、波的叠加和干涉两列波相遇时会相互叠加,在某些区域振动加强,某些区域振动减弱,这种现象叫波的干涉。
产生干涉的条件是两列波的频率相同、相位差恒定。
6、多普勒效应由于波源和观察者之间有相对运动,使观察者接收到的波的频率发生变化的现象叫多普勒效应。
当波源与观察者相互靠近时,观察者接收到的频率增大;相互远离时,频率减小。
二、电磁波1、电磁波的产生变化的电场和磁场交替产生,由近及远地传播形成电磁波。
电磁波可以在真空中传播,速度等于光速。
2、电磁波的特性电磁波具有波动性和粒子性。
电磁波在传播过程中,频率不变,波长和波速会根据介质的不同而变化。
3、电磁波谱电磁波按照波长或频率的大小顺序排列,形成电磁波谱。
包括无线电波、红外线、可见光、紫外线、X 射线和γ射线等。
三、光的折射和全反射1、光的折射定律折射光线、入射光线和法线在同一平面内,折射光线和入射光线分别位于法线两侧,入射角的正弦与折射角的正弦成正比,即 n = sin i / sin r ,其中 n 是折射率。
大学物理波动的知识点总结

大学物理波动的知识点总结一、波动的基本概念1.波动的定义波动是一种可以在介质中传播的能量或者信息的方式。
波动既可以是物质的波动,比如水波、声波等,也可以是场的波动,比如电磁波等。
根据波的传播方式和规律,波动可以分为机械波和电磁波。
2.波动的特点波动具有传播性、干涉性、衍射性和波粒二象性等特点。
波动的传播性表明波动能够沿着介质传播,干涉性指波动能够互相叠加,并产生干涉现象,衍射性说明波动能够弯曲传播并产生衍射现象,波粒二象性则是指波动既具有波动特征,也具有粒子特征。
3.波的基本要素波的基本要素包括振幅、频率、波长、波速等。
振幅是波动能量的大小,频率是波动的振动周期,波长是波动在空间中占据的长度,波速是波动在介质中的传播速度。
二、波动方程1.一维波动方程一维波动方程描述了一维波动在空间和时间上的变化规律。
一维波动方程的基本形式为:∂²u/∂t²=v²∂²u/∂x²其中u(x,t)表示波动的位移,v表示波速,t表示时间,x表示空间坐标。
2.二维波动方程二维波动方程描述了二维波动在空间和时间上的变化规律。
二维波动方程的基本形式为:∂²u/∂t²=v²(∂²u/∂x²+∂²u/∂y²)其中u(x,y,t)表示波动的位移,v表示波速,t表示时间,x和y表示空间坐标。
3.波动方程的解波动方程一般是偏微分方程,其解一般通过分离变量、叠加原理、傅里叶变换等方法求解。
对于特定的边界条件和初始条件,可以得到波动方程的具体解。
三、波动的性质1.反射和折射波动在介质表面的反射和折射是波动的基本性质之一。
反射是波动从介质边界反射回来的现象,折射是波动通过介质界面时改变传播方向的现象。
2.干涉和衍射干涉是波动相遇并相互叠加的现象,衍射是波动通过小孔或者障碍物后产生的弯曲传播的现象。
干涉和衍射都是波动的波动性质。
大学物理波动光学总结资料

大学物理波动光学总结资料波动光学是指研究光的波动性质及与物质相互作用的学科。
在大学物理中,波动光学通常包括光的干涉、衍射、偏振、散射、吸收等内容。
以下是波动光学的一些基本概念和应用。
一、光的波动性质1.光的电磁波理论。
光是由电磁场传输的波动,在时空上呈现出周期性的变化。
光波在真空中传播速度等于光速而在介质中会有所改变。
根据电场和磁场的变化,光波可以分为不同的偏振状态。
2.光的波长和频率。
光波的波长和频率与它的能量密切相关。
波长越长,频率越低,能量越低;反之亦然。
3.光的能量和强度。
光的能量和强度与波长、频率、振幅有关。
能量密度是指单位体积内的能量,光的强度则是表征单位面积内能量流的强度。
二、光的干涉1.干涉的定义。
干涉是指两个或多个光波向同一方向传播时,相遇后相互作用所产生的现象。
2.杨氏双缝干涉实验。
当一束单色光垂直地照到两个很窄的平行缝口上时,在屏幕上会出现一系列互相平衡、互相补偿的亮和暗的条纹,这种现象就叫做杨氏双缝干涉。
3.干涉条纹的间距。
干涉条纹的间距与光波的波长、发生干涉的光程差等因素有关。
4.布拉格衍射。
布拉格衍射是一种基于干涉理论的衍射现象,用于分析材料的晶体结构。
三、光的衍射1.衍射的定义。
衍射是指光波遇到障碍物时出现波动现象,其表现形式是波动向四周传播并在背面出现干涉现象。
2.夫琅和费衍射。
夫琅和费衍射是指光波通过一个很窄的入口向一个屏幕上的孔洞传播时,从屏幕背面所观察到的特征。
孔洞的大小和形状会影响到衍射现象的质量。
3.斯特拉斯衍射。
斯特拉斯衍射是指透过一个透镜后,将光线聚焦到一个小孔上,然后在背面观察到的光的分布情况。
4.阿贝原则与分束学。
阿贝原则是指光学成像的基本原理,根据这个原理,任意一个物体都可以被看作一个点光源阵列。
分束学是将任意一个物体看作一个点光源阵列,在分别聚焦到像平面后重新合成图像。
四、光的偏振1.偏振的定义。
偏振是指光波的电场振动在一个平面内进行的波动现象。
大学物理波动光学知识点总结

大学物理波动光学知识点总结1.惠更斯-菲涅耳原理:波面上各点都看作是子波波源,它们发出的子波在空间相遇时,其强度分布是子波相干叠加的结果。
2. 光波的叠加 两相干光在空间一点P 相遇,P 点的光强为:相干叠加12I I I ϕ=++∆ 非相干叠加 12I I I =+ 3.光的干涉 (1)光程:i i iln r =∑ (i r 指光在真空中传播的距离,i n 指介质的折射率).(2)光干涉的一般条件: (3)杨氏双缝干涉: 光程差明暗条纹距屏幕中心的位置分布为:相邻的两条明纹(或暗纹)间距(4)薄膜干涉:等倾干涉 a. 光程差b.干涉条件等厚干涉 a. 劈尖干涉: 光程差(垂直入射)亮纹厚度 暗纹厚度b. 牛顿环 明环 暗环01 2... k r k ==,,,(5)迈克尔逊干涉仪 4.光的衍射1k k D x x x dλ+∆=-=2,1,2,4e kk nλ==⋅⋅⋅22ne λδ=+22λδ+≈ne (21),0,1,2,4e k k nλ=+=⋅⋅⋅Dxd d d r r n ⋅=≈≈-=θθδtg sin )(12122d d d N λ∆=-=⋅2,1,2,2()(21),0,1,2,2k k i k k λδλ⎧=⋅⋅⋅⎪⎪=⎨⎪+=⋅⋅⋅⎪⎩ 明纹暗纹⋅,0,1,2....() 21, 0,1,2....2k Dk k d x D k k d λλ⎧±=⎪⎪=⎨⎪±+=⎪⎩明纹()(暗纹)1 2 3,... k r k =,,2211220,1,2,212k n r n r k k λδλ⎧±⎪⎪=-==⋅⋅⋅⎨⎪±+⎪⎩ (干涉加强)() (干涉削弱)(1)单缝夫琅和费衍射: 暗纹 明纹 中央明纹光强 (2)圆孔夫琅和费衍射: 第一暗环所对的衍射角(最小分辨角):分辨本领:(3)光栅衍射: 垂直入射 干涉明纹位置主极大 衍射暗纹位置缺级 光强斜入射布拉格公式 加强5.光的偏振 偏振光:线偏振光,部分偏振光,圆偏振光和椭圆偏振光,偏振光的获得马吕斯定律 ; 布鲁斯特 6. 晶体的双折射 双折射现象…,3,2,1sin =±=k k a λθ…,3,2,1 2)1 2(sin ='+'±=k k a λθ0sin =θ a 2sin sin 0sin a I I aπθλπθλ⎛⎫⎪= ⎪ ⎪⎝⎭,2,1,0sin =±=k k d ,λθ,3,2,1 sin =''±='k k a ,λθk k a d '= '=k ad k ,'=θθλθk i d ±=±)sin (sin 1=sin 1.22Dλδθθ≈11.22DR δθλ≡=2cos 0I I α=2tg 0211n i n n ==2sin , 1 2 3 d Φk k λ⋅==,,220sin sin sin ⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=ββααN I I p 单。
波动与光学知识点总结及讲解

波动与光学知识点总结及讲解光学是物理学的一个重要分支,主要研究光的传播、反射、折射和干涉等现象。
而光的传播和现象背后蕴含着许多波动性质,本文将对波动和光学的相关知识点进行总结和讲解。
一、波动性质的基本概念1. 波与粒子:波动可以看作是在空间中传播的能量传递方式,而粒子是物质的基本单位。
波动和粒子性质的研究互为补充,比如光既有粒子性质(光子),也具有波动性质(电磁波)。
2. 波的特征:波的特征包括波长、频率和振幅。
波长指的是相邻两个波峰或波谷之间的距离,用λ表示,单位为米(m);频率指的是单位时间内波的周期数,用ν表示,单位为赫兹(Hz);振幅是波的最大偏离值,用A表示。
二、波的分类1. 机械波:机械波是需要介质来传播的,比如水波、声波等。
机械波可分为横波和纵波两种类型,横波的振动方向垂直于波的传播方向,纵波的振动方向平行于波的传播方向。
2. 电磁波:电磁波是在真空中也能传播的波动,是通过电场和磁场相互耦合传播的。
电磁波包括射线、微波、红外线、可见光、紫外线、X射线和γ射线等,其中可见光是人眼能够感知的电磁波。
三、光的传播与反射1. 光的传播:光在真空中传播的速度是恒定的,约为3×10^8米/秒,用c表示。
当光通过介质时,速度会减小,这是因为光与介质中的原子或分子相互作用引起的。
2. 光的反射:光在与界面发生反射时,根据入射角和反射角之间的关系可分为镜面反射和漫反射。
镜面反射指的是光束以相同的角度与界面反射回来,形成明亮的反射光;而漫反射指的是光束以多个不同的角度反射,形成均匀、散射的光。
四、光的折射与全反射1. 光的折射:当光从一种介质传播到另一种介质时,由于光速改变,会发生折射现象。
根据斯涅尔定律,入射角、折射角和两种介质的折射率之间有一定关系。
2. 全反射:当光从光密介质射向光疏介质时,入射角大于一个临界角时,发生全反射现象。
全反射只会发生在折射率较大的介质射向折射率较小的介质中,并且入射角超过临界角一定范围。
高考物理波动知识点与光学题型剖析

高考物理波动知识点与光学题型剖析在高考物理中,波动和光学部分一直是重要的考点,这部分知识不仅需要我们理解相关的概念和原理,还需要能够熟练运用这些知识解决各种题型。
下面我们就来详细剖析一下高考物理中波动知识点与光学题型。
一、波动知识点1、机械波的产生和传播机械波的产生需要有振源和介质。
介质中的质点在各自的平衡位置附近做往复运动,随着波源的振动,质点依次被带动,形成机械波。
机械波传播的是振动的形式和能量,质点并不随波迁移。
在理解机械波的传播时,要注意波长、波速和频率的关系。
波长是相邻两个同相质点间的距离,波速由介质决定,频率由波源决定,三者的关系为:波速=波长×频率。
2、横波和纵波横波是质点的振动方向与波的传播方向垂直的波,如电磁波。
纵波是质点的振动方向与波的传播方向平行的波,如声波。
横波的特点是有波峰和波谷,纵波的特点是有疏部和密部。
在高考中,可能会通过图象来考查对横波和纵波的理解。
3、波的图象波的图象是描述某一时刻各个质点相对平衡位置的位移情况。
通过波的图象,可以直观地看出波长、振幅等信息。
要能够根据波的图象判断质点的振动方向,或者根据质点的振动方向画出波的图象。
同时,还要能够结合波的传播方向和时间,分析质点的位移、速度等变化情况。
4、波的干涉和衍射波的干涉是两列频率相同、相位差恒定的波相遇时,某些区域振动加强,某些区域振动减弱的现象。
振动加强区和振动减弱区相互间隔,且加强区和减弱区的位置是固定不变的。
波的衍射是波绕过障碍物继续传播的现象。
当障碍物或孔隙的尺寸比波长小或与波长相差不多时,衍射现象比较明显。
5、声波和超声波声波是我们日常生活中常见的机械波,它在空气中的传播速度约为340 米/秒。
超声波具有频率高、波长短、方向性好等特点,在医疗、工业检测等领域有广泛的应用。
二、光学知识点1、光的直线传播光在同种均匀介质中沿直线传播。
小孔成像、日食、月食等现象都是光沿直线传播的例证。
2、光的反射光的反射遵循反射定律:反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居法线两侧,反射角等于入射角。
波动和光学总结知识点

波动和光学总结知识点一、波动1. 波动的基本概念波动是一种物理现象,指的是由能量传递而产生的振动。
波动可以是机械波,即需要介质来传播的波动,也可以是电磁波,即不需要介质来传播的波动。
波动有许多重要特性,包括频率、周期、波长、速度等,这些特性决定了波动的行为和传播方式。
2. 波动的类型根据波动的传播方式和性质,可以将波动分为不同类型。
常见的波动类型包括机械波、电磁波、声波等。
这些波动的特性和表现形式各有不同,但都遵循波动的基本原理和规律。
3. 波动的原理波动的传播和行为是由一些基本原理和规律所决定的。
波动的原理包括赫兹波动原理、波阵面原理、叠加原理、干涉和衍射等。
这些原理揭示了波动的传播方式和特性,对于理解和应用波动具有重要意义。
4. 波动的应用波动在许多领域都有重要应用,包括声学、光学、通信、地震学等。
波动的传播和控制是许多技术和设备的基础,例如声波传感器、激光器、雷达等。
波动的应用不仅促进了技术的发展,也为人类生活带来了诸多便利和进步。
二、光学1. 光学的基本概念光学是研究光的传播和行为的科学,它涉及到光的产生、传播、干涉、衍射、折射、反射等现象。
光学是物理学中的重要分支,对于理解光的性质和应用具有重要意义。
光学的研究范围包括几何光学、物理光学、光学仪器等领域。
2. 光的性质光是一种电磁波,具有波动和粒子双重性质。
光的波动性质表现在它的频率、波长、速度等方面,而光的粒子性质表现在它可以被看作光子,具有能量和动量。
3. 光的传播光是以电磁波的形式传播的,可以在真空中和介质中传播。
在不同介质中,光的传播速度和方向会发生改变,这是由光的折射和反射现象所决定的。
4. 光的干涉和衍射光的干涉和衍射是光学中重要的现象,它们表现了光的波动性质。
干涉是指两个或多个光波相遇时产生的明暗条纹的现象,衍射是指光通过狭缝或物体边缘时发生的波动现象。
这些现象为光学仪器的设计和应用提供了重要依据。
5. 光的应用光学在许多领域都有重要的应用,包括激光技术、光学仪器、光通信等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:振动
1物体运动时,如果离开平衡位置的位移(或角位移)按余弦函数(或正弦函数)的规律随时间变化,这种运动叫简谐运动.
2.振幅:过程中离开平衡位置的最大位移的绝对值。
3.初相:定于t=0时刻的质点位置
4.相位差:表示两个相位之差.
5.领先和落后:若ϕ∆=ϕ2-ϕ1>0,则x 2比x 1较早达到正最大,称x 2比x 1领先(或x 1比x 2落后).
6.当ϕ∆=±2k π,(k =0,1,2,…),两振动步调相同,称同相.
7.当ϕ∆=±(2k+1)π,(k=0,1,2,…),两振动步调相反,称反相
8.弹簧振子:一个轻质弹簧的一端固定,另一端固结一个可以自由运动的物体,就构成一个弹簧振子.
9.作简谐振动的质点所受的沿位移方向的合外力与它的位移成正比而反向。
这样的力称为恢复力。
10.质点在与对平衡位置的位移成正比而反向的合外力的作用下的运动就是简谐运动。
---简谐振动的动力学定义
11.能量减少到起始能量的1/e 所经过的时间称为鸣响时间12.在鸣响时间内可能振动的次数的2π倍定义为阻尼振动的品质因数13.欠阻尼ω02>δ02过阻尼ω02<δ02临界阻尼ω02=δ0
214.驱动力:对振动系统施加周期性外力,这种外力叫做驱动力,驱动力作用下的振动叫做受迫振动
15.共振:驱动力频率等于振动系统的固有频率时,振幅达到最大值,这种现象称为共振。
16.拍:频率都较大但相差很小的两个同方向振动合成是产生的这种合振动忽强忽弱的现象叫做拍。
单位时间内振动加强或减弱的次数叫做拍频。
第二章:波动
1.波动是一定的扰动的传播.
2.扰动的传播就叫行波。
3.抖动一次的扰动叫脉冲,脉冲的传播叫脉冲波。
4.横波:介质质点的振动方向和波传播方向相互垂直的波。
5.纵波:介质质点的振动方向与波传播方向在同一直线上的波。
6.简谐波:在均匀的、无吸收的介质中,波源作简谐运动时,在介质中所形成的波.
7.扰动的传播速度(波速)就是振动的相的传播速度,因此这一速度又叫相速度。
8.波长表示简谐扰动一个周期内传播的距离
9.波数K =2π/λ
10.波面:在波传播过程中,任一时刻媒质中振动相位相同的点联结成的面。
波面是平面的波称为平面波;波面是球面的波称为球面波。
11.波线:沿波的传播方向作的有方向的线
12.波前:在某一时刻,波传播到的最前面的波面。
13.物体的弹性形变、线变、切变、体变P 59
14.波动:运动函数满足波动方程
0122222=∂∂-∂∂t y u x y 的运动
鸣响时间
)2/(1/)
2exp(00δδ==-=t e E E t E E t T
t Q ω==π2 品质
15.能量密度:单位体积介质中的波动能量.
16.平均能量密度:能量密度在一个周期内的平均值.
17.能流:单位时间内垂直通过某一面积的能量.
18.能流密度(波的强度)通过垂直于波传播方向的单位面积的平均能流.
19.惠更斯原理:介质中波动传播到的各点都可以看作是发射子波的波源,而在其后的任意时刻,这些子波的包络就是新的波前.
20.波的衍射:波在传播过程中遇到障碍物时,能绕过障碍物的边缘,在障碍物的阴影区内继续传播.
21.没有折射线产生,入射波将全部反射回原来的介质,这种现象叫做全反射
22.光由光密介质入射向光疏介质就可能发生全反射
23.波的叠加原理:在几列波相遇或叠加的区域内,任一点的位移,为各个波单独在该点产生的位移的合成
24.波腹:振幅最大的各点波节:振幅为零的各点
22.驻波:两列频率、振动方向和振幅都相同而传播方向相反的简谐波叠加形成驻波
23.半波损失:波动在反射时发生π位相突变的现象称为半波损失。
(波疏介质到波密介质)
24.波阻:ρ·u ──即介质的密度与波速之乘积
25.声强:声波的能流密度.u A I 2221ωρ=
26.声强级:0
lg I I L I =贝尔(B )0lg 10I I L I =分贝(dB )27.由于波源、探测器的相对运动而引起的探测器的接收频率与波源的发射频率不等的现象,称为多普勒效应。
28.接收频率:单位时间内观测者接收到的振动次数或完整波数.
第三章:光的干涉
1.相干条件:两列波必须振动方向相同,频率相同,相位差恒定。
满足相干条件的波称为相干波。
2.由普通光源获得相干光的途径:
1)分波面法:双缝干涉;2)分振幅法:薄膜干涉
3.光在介质中传播路程r 和在真空中传播路程nr 引起的相位差相同。
我们称nr 为介质中与路程r 相应的光程。
4.同一厚度e 对应同一级条纹—等厚条纹
倾角i 相同的光线对应同一条干涉条纹—等倾条纹
第四章:光的衍射
1.光在传播过程中能绕过障碍物的边缘而偏离直线传播的现象叫光的衍射。
2.1)菲涅耳衍射(近场衍射):光源和观察屏离开衍射孔(或缝)的距离有限,这种衍射称为菲涅耳衍射
2)夫琅禾费衍射(远场衍射):光源和观察屏离开衍射孔(或缝)无限远处,这种衍射称为夫琅禾费衍射
3.惠更斯—菲涅耳原理
惠更斯:波传到的任何一点都是子波的波源。
定性的解释了衍射现象中光的传播方向问题。
菲涅耳:各子波在空间某点的相干叠加,决定了该点波的强度。
定量的说明了光的衍射图样中的强度的分布。
基本概念:波阵面上各点都可以当做子波波源,其后波场中各点波的强度由各子波在各该点的相干叠加决定。
4.几何光学是波动光学在a >>λ的极限情形。
5.干涉和衍射的联系与区别
干涉是有限多个分立光束的相干叠加,
衍射是波阵面上无限多个子波的相干叠加。
6.瑞利判据
对于两个等光强的非相干的物点,如果一个象斑的中心恰好落在另一象斑的边缘(第一暗纹处),则此两物点被认为是刚刚可以分辨的。
若象斑再靠近就不能分辨了。
7.光栅:大量的等宽等间距的平行狭缝(或反射面)构成的光学元件。
8:光栅常量d =a+b ,是光栅的空间周期性的表示
a −透光(或反光)部分的宽度
b −不透光(或不反光)部分的宽度
9.缺级现象:在应该干涉加强的位置上没有衍射光到达,从而出现缺级。
10.光栅光谱:同级的不同颜色的明条纹将按波长顺序排列成光栅光谱。
11.光栅的色分辨本领:δλ
λ
≡R 第五章:光的偏振
1.非偏振光(自然光):光在垂直于其传播方向的平面内,光矢量的分布各向均匀,而且各个方向光振动的振幅都相同。
2.线偏振光(完全偏振光):在垂直于其传播方向的平面内,光矢量的振动只沿着一个固定的方向,这种光是一种完全偏振光。
3.椭圆偏振光:光矢量沿着传播方向前进的同时,还绕着传播方向均匀转动。
光矢量大小保持不变---圆偏振光;光矢量大小不断该变---椭圆偏振光。
4.部分偏振光:自然光和完全偏振光的混合,就构成了部分偏振光。
5.起偏:从自然光获得偏振光
起偏器:起偏的光学器件
6.马吕斯定律:α2
0cos I I =7.当入射角等于某一值i 0时,反射光是光振动垂直于入射面的线偏振光。
i 0称为起偏振角或布儒斯特角。
8.双折射:束光入射到各向异性介质时,折射光分成两束的现象。
9.寻常(o )光和非寻常(e )光
折射式:o 光:遵从折射定律
e 光:一般不遵从折射定律
10.晶体的光轴:当光在晶体内沿某个特殊方向传播时不发生双折射,该方向称为晶体的光轴。
11.单轴晶体:只有一个光轴的晶体,如方解石。
双轴晶体:有两个光轴的晶体,如云母。
12.主平面:晶体中光的传播方向与晶体光轴构成的平面叫该束光的主平面。
13.晶体的二向色性:某些晶体对o 光和e 光的吸收有很大差异,这叫晶体的二向色性。
14.偏振棱镜:偏振棱镜可由自然光获得高质量的线偏振光,它又可分为偏光棱镜和偏光分束棱镜。
15.正晶体、负晶体:n o ,n e 称为晶体的主折射率
正晶体:n e >n o(v e <v o)
负晶体:n e <n o(v e >v o)。