八年级上册实数测试题及答案A

合集下载

2022-2023学年苏科版八年级数学上册第四章《实数》试题卷附答案解析

2022-2023学年苏科版八年级数学上册第四章《实数》试题卷附答案解析

2022-2023学年八年级数学上册第四章《实数》试题卷一、单选题1( )A .B .±9C .±3D .92.下列等式中,正确的是( )A .34=B 34=C .38=±D 34=± 3.下列语句中正确的是( )A .16的平方根是4B .﹣16的平方根是4C .16的算术平方根是±4D .16的算术平方根是4 4.在下列各组数中,互为相反数的一组是( )A .2-B .-2与1-2C .-D .25.下列说法:①无限小数都是无理数;②无理数都是带根号的数;③负数没有立方根;的平方根是±8;⑤无理数减去任意一个有理数仍为无理数.其中正确的有( )A .0个B .1个C .2个D .3个 6.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a 2>-B .b 1<C .a b ->D .a b <7.实数﹣3,3,0,中最大的数是( )A .﹣3B .3C .0 D8.为落实“双减”政策,鼓楼区教师发展中心开设“鼓老师讲作 业”线上直播课.开播首月该栏目在线点击次数已达66799次,用四舍五入法将66799精确到千位所得到的近似数是( )A .36.710⨯B .46.710⨯C .36.7010⨯D .46.7010⨯9.某市年财政收入取得重大突破,地方公共财政收入用四舍五人法取近似值后为35.29亿元,那么这个数值( )A .精确到十分位B .精确到百分位C .精确到千万位D .精确到百万位10.如图,在数轴上点B 表示的数为1,在点B 的右侧作一个边长为1的正方形BACD ,将对角线BC 绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M 处,则点M 表示的数是( )A B +1 C .1﹣ D .﹣二、填空题11.如果14x +是的平方根,那么x = .12.已知一个正数的两个平方根是32x +和520x -,则这个数是 .13的相反数为 ,倒数为 ,绝对值为 .14.可以作为“两个无理数的和仍为无理数”的反例的是 .151 3(填“>”、“<”或“=”).三、计算题16.计算:12011|7|(π 3.14)43--⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭. 17.计算:)1021112-⎛⎫-+ ⎪⎝⎭18.计算 ()31-+.四、解答题19.将-π,0,2 ,-3.15,3.5用“>”连接.20.把下列各数填入相应的集合圈里(填序号)⑴﹣30 ⑴ ⑴3.14 ⑴ 225 ⑴0 ⑴+20 ⑴﹣2.6 ⑴ ⑴ -2π⑴ 0.05 ;⑴﹣0.5252252225…(每两个5之间依次增加1个2) ⑴ ⑴21.若 x y + 是9的算术平方根, x y - 的立方根是 2- ,求 22x y - 的值.22.已知a 的平方根是±3,b -1的算术平方根是2,求a -2b 的立方根.23.已知实数 a 、 b 、 c 在数轴上的对应点为 A 、 B 、 C ,如图所示:化简: b a c b ----.24.甲同学用如图所示的方法作出C OAB 中,90OAB ∠=,2OA =,3AB =,且点O ,A ,C 在同一数轴上,OB OC =.仿照甲同学的做法,在如图所示的数轴上描出表示F .25.一个篮球的体积为39850cm ,求该篮球的半径r (π取3.14,结果精确到0.1cm ).答案解析部分1.【答案】A【解析】3=.故答案为:A.3=,再求出3的平方根即可.2.【答案】B【解析】【解答】解:34=±,故A、C错误;34=,故B正确,D错误;故答案为:B.【分析】根据平方根、算术平方根逐一计算,并判断即可.3.【答案】D【解析】【解答】解:∵16的平方根是±4,16的算术平方根是4,负数没有平方根,∴选项D正确.故答案为:D.【分析】一个正数x2=a(a>0)则这个正数x就是a的算术平方根,一个数x2=a(a>0)则这个数x就是a的平方根;正数有两个平方根,这两个平方根互为相反数,0的平方根是0,负数没有平方根,据此一一判断得出答案.4.【答案】C【解析】【解答】解:A2=-,故本选项不符合题意;B、-2与2是相反数,故本选项不符合题意;C、-=是相反数,故本选项符合题意;D2=,故本选项不符合题意故答案为:C.【分析】利用二次根式的性质、立方根、绝对值的性质将各选项中能化简的数先化简,再根据只有符号不同的数是互为相反数,可得答案.5.【答案】B【解析】【解答】解:根据无理数的定义可知:①无限小数都是无理数;说法错误;②无理数都是带根号的数;说法错误;③负数没有立方根;负数有立方根,故说法错误;=8的平方根是±,故说法错误;⑤无理数减去任意一个有理数仍为无理数.说法正确;正确说法有1个.故答案为:B.【分析】无限不循环小数叫做无理数,据此判断①②;每一个数都有立方根,据此判断③;根据平方根的概念可判断④;根据无理数的认识以及减法法则可判断⑤.6.【答案】C【解析】【解答】解:根据数轴得:a b <,a b >,故C 选项符合题意,A ,B ,D 选项不符合题意. 故答案为:C.【分析】根据数轴可得a<-2<0<1<b<2且|a|>|b|,据此判断.7.【答案】B【解析】【解答】解:根据题意得:3>>0>−3, 则实数−3,3,0, 中最大的数是3, 故答案为:B.【分析】利用实数的大小比较:正数都大于0和负数,观察可得答案.8.【答案】B【解析】【解答】解:66799=6.6799×104,精确到千位为46.710⨯.故答案为:B.【分析】利用科学记数法表示出此数,再利用四舍五入法将此数精确到千位.9.【答案】D【解析】【解答】∵35.29亿末尾数字9是百万位,∴35.29亿精确到百万位;故答案为:D .【分析】根据近似数的定义及四舍五入的方法求解即可。

(完整版)八年级数学实数测试题(含答案).doc

(完整版)八年级数学实数测试题(含答案).doc

八年级数学实数测试题(含答案)一、 (每 5 分,共 40 分。

每 只有一个正确答案, 将正确答案的代号填在下面的表格中)1. 下列 数31, π, 3.14159,8 ,327 , 12 中无理数有()7A. 2 个B. 3个C. 4 个 D. 5 个2. 下列运算正确的是()A. 93 B.3 3 C.93 D.3293. 下列各 数中互 相反数的是()A. - 2 与 ( 2) 2B. -2 与 3 8C. - 2 与 1D.2与 224. 数 a,b 在数 上的位置如 所示, 下列 正确的是()A. a b 0B. a b 0C.abD .a1 a1bb5. 有如下命 :① 数没有立方根;②一个 数的立方根不是正数就是 数;③一个正数或数的立方根与 个数同号;④如果一个数的立方根是 个数本身,那么 个数是 1 或 0。

其中的是()A .①②③B .①②④C .②③④D .①③④ 6. 若 a 数, 下列式子中一定是 数的是()A . a 2B . (a 1)2C .a 2D . ( a 1)7. 若a 2a , 数 a 在数 上的 点一定在()A .原点左B .原点右C .原点或原点左D .原点或原点右8. 你 察、思考下列 算 程: 2,所以2因 11 =121 121 =11 ; 因 111 =12321,所以 12321111;⋯⋯,由此猜想12345678987654321 = ( )A . 111111B .1111111C .11111111D . 1111111111二、解答1.( 15 分)将下列各数填入相的集合内。

11, 32 , -4 , 0, - . .- 0.4 , 3 8 ,- ,0.23, 3.1412 4①有理数集合{⋯}②无理数集合{⋯}③ 数集合{⋯}三.算: (15 分 )(1) 2 +3 2 —52(2) 6 (1-6) 6(3) |3 2 | + | 3 2 | +( 2) 2四、解方程:1. ( 15 分)已知a、b互相反数,c、d互倒数,求 a 2 b 2 - cd 的 .a 2b 22.(15分)已知a、 b 足2a 10 b50 ,解关于 x 的方程 a 4 x b 2a 12参考答案一、1. B 2 . C 3 . A 4 . A 5 . B 6 . D 7 . C 8 . D二、解答11 ,- . .. 解:有理数集合 : {- 4 ,0, 3 8 ,0.23,3.14⋯}12无理数集合 :{ 3 2 ,- 0.4 ,- ⋯ }数集合 :{- 11,-44 ,- 0.4 ,- ⋯ }12 4三.解:( 1)- 2 (2) = 5 (3) 4 2四.解:由 a+ b=0, cd=1得a2 b2 0 原式= 0- 1 =- 1. 23.解:x 113。

八年级实数测试题及答案

八年级实数测试题及答案

八年级实数测试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是实数的是()A. \( \sqrt{-1} \)B. \( \pi \)C. \( \frac{1}{0} \)D. \( \sqrt{2} \)答案:B2. 计算 \( \sqrt{4} \) 的值是()A. 2B. -2C. 4D. -4答案:A3. 一个数的相反数是-5,这个数是()A. 5B. -5C. 0D. 10答案:A4. 绝对值等于5的数是()A. 5C. 5或-5D. 以上都不对答案:C5. 一个数的平方等于9,则这个数是()A. 3B. -3C. 3或-3D. 以上都不对答案:C6. 下列运算中,正确的是()A. \( 3^2 = 9 \)B. \( (-3)^2 = -9 \)C. \( (-3)^3 = 9 \)D. \( (-3)^3 = -27 \)答案:D7. 计算 \( \sqrt{25} \) 的值是()A. 5B. -5C. 5或-5D. 25答案:A8. 一个数的立方等于-8,则这个数是()B. -2C. 2或-2D. -2答案:D9. 计算 \( \sqrt[3]{8} \) 的值是()A. 2B. -2C. 2或-2D. 8答案:A10. 一个数的平方根是2,则这个数是()A. 4B. -4C. 4或-4D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是3,则这个数是______。

答案:±32. 一个数的立方根是-2,则这个数是______。

答案:-83. 计算 \( \sqrt[3]{27} \) 的值是______。

答案:34. 一个数的平方根是-2,则这个数是______。

答案:45. 一个数的相反数是-3,则这个数是______。

答案:3三、解答题(每题10分,共50分)1. 计算 \( \sqrt{36} \) 的值。

答案:62. 计算 \( \sqrt[3]{64} \) 的值。

(好题)初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)

(好题)初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)

一、选择题1.下列命题是真命题的是( ) A .同位角相等B .算术平方根等于自身的数只有1C .直角三角形的两锐角互余D .如果22a b =,那么a b =2 ) A .4 B .4± C .2± D .-2 3.一个数的相反数是最大的负整数,则这个数的平方根是( ) A .1- B .1 C .±1 D .0 4.81的平方根是( )A B .9-C .9D .9±5.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★abb;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .①B .②C .①②D .①②③ 6.下列各式计算正确的是( )A +=B .26=(C 4=D =7.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7±8.下列计算正确的是( )A +=B =C 4=D 3=-9.下列说法正确的是( )A B .5C .2 3D 的点10.已知﹣1<a <0的结果为( ) A .2aB .﹣2aC .2a-D .2a11.最接近的整数是( ) A .9B .8C .7D .612.下列说法中正确的是( )A .81的平方根是9B 4 CD .64的立方根是4±二、填空题13.方程()2116x +=的根是__________. 14.已知3x -+|2x ﹣y |=0,那么x ﹣y =_____. 15.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______16.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.17.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.18.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).1913a 13b ,那么2(2)b a +-的值是________. 20.已知:15-=m m,则221m m -=_______.三、解答题21.设a 为正整数,对于一个四位正整数,若千位与百位的数字之和等于a ,十位与个位的数字之和等于1a -,则称这样的数为“a 级收缩数”.例如在正整数2634中,因为268+=,34781+==-,所以2634是“8级收缩数”,其中8a =.(1)直接写出最小的“6级收缩数”和最大“7级收缩数”;(2)若一个“6级收缩数”的千位数字与十位数字之积为6,求这个“6级收缩数”.22.25(326)(326)++-. 23.计算题: (112273⨯;(2;(3))()2331⨯-24.(1(2)计算:.25.已知(25|50x y -++-=.(1)求x ,y 的值; (2)求xy 的算术平方根.26.2++【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质判断即可. 【详解】解:A 、同位角不一定相等,原命题是假命题;B 、算术平方根等于自身的数有1和0,原命题是假命题;C 、直角三角形两锐角互余,是真命题;D 、如果a 2=b 2,那么a=b 或a=-b ,原命题是假命题; 故选:C . 【点睛】本题考查了命题的真假判断,包括同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.2.C解析:C 【分析】先计算16的算术平方根a ,再计算a 的平方根即可. 【详解】 ∵4=,∴4的平方根为±2. 故选C. 【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.3.C解析:C 【分析】由于最大的负整数是-1,本题即求-1的相反数,进而求其平方根. 【详解】解:最大的负整数是-1,根据概念,(-1的相反数)+(-1)=0, 则-1的相反数是1,则这个数是1,1的平方根是±1, 故选:C . 【点睛】本题考查了相反数、负整数的概念及求一个数的平方根,正确掌握相关定义是解题的关键.4.D解析:D 【分析】根据平方根的定义求解. 【详解】 ∵2(9)±=81, ∴81的平方根是9±, 故选:D . 【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.5.A解析:A 【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立; ③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】 解:①a b ≥时, a a bb★,b a ab★, ∴=a b b a ★★;a b <时,a b b a ★, b b aa★, ∴=a b b a ★★; ∴①符合题意.②由①,可得:=a b b a ★★, 当a b ≥时,∴()()()()22a b b a a b a a a bb b ba b ====★★★★, ∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b b b b a a a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立, ∴②不符合题意.③当a b ≥时,0a >,0b>,∴1ab≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★,当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A . 【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.D解析:D 【分析】根据二次根式的运算法则一一判断即可. 【详解】AB 、错误,212=(;C ==D ==故选:D . 【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.7.C解析:C 【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题. 【详解】 解||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-, 7a b ∴-=或1, 故选C . 【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.8.B解析:B 【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A错误;B、5的平方根是B错误;C∴23,故C正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.A解析:A【分析】先把被开方数化为完全平方式的形式,再根据a的取值范围去根号再合并即可.【详解】===∵-1<a <0,∴2110a a a a--=>,10a a +<∴原式1111()2a a a a a a a a a⎡⎤=---+=-++=⎢⎥⎣⎦. 故选:A . 【点睛】本题考查了二次根式的化简,能够熟练运用完全平方公式对被开方数进行变形,是解答此题的关键.11.B解析:B 【分析】直接得出89<<,进而得出最接近的整数. 【详解】解:∵<<,∴89<<∵ 28.267.24=∴8.故选B . 【点睛】的取值范围是解题关键.12.C解析:C 【分析】根据平方根,立方根,算术平方根的定义解答即可. 【详解】A .81的平方根为9±,故选项错误;B 2,故选项错误; C,故选项正确; D .64的立方根是4,故选项错误; 故选:C . 【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键.二、填空题13.或【分析】根据平方根的定义求解即可【详解】解:两边开方得或解得或【点睛】本题考查了平方根的意义解题关键是熟练运用平方根的意义准确进行计算解析:3x =或5x =-. 【分析】根据平方根的定义求解即可. 【详解】解:()2116x +=,两边开方得,14x +=或14x +=-, 解得,3x =或5x =-. 【点睛】本题考查了平方根的意义,解题关键是熟练运用平方根的意义,准确进行计算.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3 【分析】先根据非负数的性质列出方程组,求出x 、y 的值,进而可求出x ﹣y 的值. 【详解】解:∵+|2x ﹣y |=0,∴3020x x y -=⎧⎨-=⎩,解得36x y =⎧⎨=⎩.所以x ﹣y =3﹣6=﹣3. 故答案为:-3 【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.15.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可. 【详解】 解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键.16.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:2+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案. 【详解】 解:根据题意,(1)1BC =-=,∴1AB BC ==,∵1AB a =--,∴11a --=,∴2a =-∴22a =-=;故答案为:2+ 【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.17.4【分析】首先根据平方根的定义求出m 值再根据立方根的定义求出n 代入-n+2m 求出这个值的算术平方根即可【详解】解:∵一个正数的两个平方根分别是m+3和2m-15∴m+3+2m-15=0解得:m=4∵解析:4 【分析】首先根据平方根的定义,求出m 值,再根据立方根的定义求出n ,代入-n+2m ,求出这个值的算术平方根即可. 【详解】解:∵一个正数的两个平方根分别是m+3和2m-15,∴m+3+2m-15=0,解得:m=4,∵n的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m、n值,然后再求-n+2m的算术平方根.18.-π右【分析】因为圆从原点沿数轴向左滚动一周可知OA=π再根据数轴的特点及π的值即可解答【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周∴OA之间的距离为圆的周长=πA点在原点的左边∴A解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∵π>3.14,∴-π<-3.14.故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.19.【分析】直接利用的取值范围得出ab的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab的值是解题关键解析:11-【分析】a、b的值,进而求出答案.【详解】<<,解:3134∴=,a3∴=-,3b()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)最小的“6级收缩数”为:1505,最大的“7级收缩数”为:7060;(2)这个“6级收缩数”为:2432、3323或6014【分析】(1)根据“a 级收缩数”的定义可写出所有的可能性,进而即可确定最小的“6级收缩数”以及最大的“7级收缩数”;(2)在第(1)问的基础上,结合条件“一个“6级收缩数”的千位数字与十位数字之积为6”将所拥有的可能性进行分类讨论,即可得到答案.【详解】解:(1)∵千位与百位的数字之和等于6,十位与个位的数字之和等于5∴千位与百位上的数字可能是0和6、1和5、2和4、3和3、4和2、5和1、6和0,十位与个位上的数字可能是0和5、1和4、2和3、3和2、4和1、5和0∴最小的“6级收缩数”为:1505;同理,∵千位与百位的数字之和等于7,十位与个位的数字之和等于6∴最大的“7级收缩数”为:7060.(2)设这个“6级收缩数”千位上的数字为x ,十位上的数字为y ,则这个“6级收缩数”百位上的数字为6x -,个位上的数字为615y y --=-∵09x ≤<,069x ≤-≤,09y ≤≤,059y ≤-≤∴06x ≤<,05y ≤≤∵6xy =∴当1x =时,6y =,不合题意舍去;当2x =时,3y =,符合题意,此时,百位是4,个位是2,为2432;当3x =时,2y =,符合题意,此时,百位是3,个位是3,为3323;当4x =时,32y =,不合题意舍去; 当5x =时,65y =,不合题意舍去; 当6x =时,1y =,符合题意,此时,百位是0,个位是4,为6014∴这个“6级收缩数”为:2432、3323或6014.【点睛】本题考查了新定义问题以及分类讨论的数学思想,认真审题是解题的关键.22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)8+;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-+8=(3)23)(31)+--2(31)=--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.24.(1)5;(2)1【分析】(1)将原式化为最简二次根式,在根据二次根式的加减法则运算即可(2)按平方差公式展开,利用二次根式的性质化简,再进行计算即可【详解】(15=(2)22-=65=-1=【点睛】本题考查了二次根式的混合计算,解题关键是熟练掌握运算法则,准确计算.25.(1)5x =5y =+2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.26【分析】先把二次根式化简、分母有理化、求立方根和乘方,再合并即可.【详解】解:原式32=--2332=+--=【点睛】本题考查了二次根式的运算、分母有理化、立方根,解题关键是明确分母有理化的方法,熟练进行二次根式化简与计算,会求立方根.。

(好题)初中数学八年级数学上册第二单元《实数》测试(含答案解析)

(好题)初中数学八年级数学上册第二单元《实数》测试(含答案解析)

一、选择题1.下列算式中,运算错误的是( )A .632÷=B .3515⨯=C .7310+=D .2(3)-=32.已知数据:3,4,5-,2π,0.其中无理数出现的频率为( ) A .0.2B .0.4C .0.6D .0.8 3.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .144.81的平方根是( )A 81B .9-C .9D .9±5.下列选项中,属于无理数的是( )A .πB .227-C 4D .0 6.下列二次根式中,不能..3合并的是( ) A 12B 8 C 48 D 1087.下列各式计算正确的是( ) A 235+=B .236=() C 824= D 236= 8.1x -x 的取值范围是( )A .0x ≥B .1x ≤C .1x ≥-D .1≥x 9.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或2 10.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7± 11.下列计算正确的是( )A 3=3B 39 3C 235D .222 12.在代数式13x -中,字母x 的取值范围是( )A .x >1B .x ≥1C .x <1D .x 13≤ 二、填空题13.______.14.数轴上A 点表示的数是1-,点B ,C 分别位于点A 的两侧,且到A 的距离相等,若B表示的数是,则点C 表示的数是 ____________.15.计算:23-=______ =______.16.旧知回顾:在七年级学习“平方根”时,我们会直接开方解形如2810x -=的方程(解为129,9x x ==-).解题运用:方程(18)(1)170x x x -++=解为_________.17.已知3y =,则xy 的值为__________.18.10b +=,则20132014a b +=___________.19.已知,a b 为两个连续的整数,且 a b <<,则a b +=_______ 20.已知:15-=m m ,则221m m -=_______. 三、解答题21.计算:(1;(222.已知2a =2b =-a 2+b 2﹣3ab 的值.23.如果n x y =,那么我们记为:(),x y n =.例如239=,则()3,92=.(1)根据上述规定,填空:()2,8=___________,12,4⎛⎫= ⎪⎝⎭__________; (2)若()4,2a =,(),83b =,求(),b a 的值.24.计算:(101122-⎛⎫- ⎪⎝⎭25.计算:(1(8)2-÷;(2)2112(4)1223⎛⎫-÷--⨯- ⎪⎝⎭.26.计算:2016(2019)|52π-⎛⎫--- ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法则,乘法,除法,乘方法则计算判断即可.【详解】解:∵=∴A选项不合题意;∵=∴B选项不合题意;∵∵C选项符合题意;∵﹣2(=3,正确,∴D选项不合题意;故选:C.【点睛】本题考查了二次根式的混合运算,熟记二次根式运算的基本法则是解题的关键. 2.C解析:C【分析】根据无理数的意义和频率意义求解.【详解】=π是无限不循环小数,解:∵2∴π是有理数,∴由30.6=可得无理数出现的频率为0.6,5故选C .【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.3.D解析:D【分析】根据2ndf键是功能转换键列算式,然后解答即可.【详解】14==.故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.4.D解析:D【分析】根据平方根的定义求解.【详解】∵2(9)±=81,∴81的平方根是9±,故选:D.【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.5.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.6.B解析:B【分析】并的二次根式.【详解】解:AB被开方数不相同,不是同类二次根式,不能进行合并,故本选项正确;C 被开方数相同,是同类二次根式,能进行合并,故本选项错误;D 故选B .【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.7.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 8.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:D .【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 9.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去.②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 10.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.11.D解析:D【分析】根据二次根式的化简、立方根的化简、二次根式的加减乘除法则进行判断即可;【详解】A3,故A 错误;B ,故B 错误;C 3=6 ,故C 错误;D 、 ,故D 正确;故选:D .【点睛】本题考查了二次根式的化简、立方根的化简、二次根式的加减乘除,熟练掌握计算法则是解题的关键;12.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x﹣1≥0,解得x≥1,故选:B.【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;二、填空题13.【分析】直接利用相反数的定义得出答案【详解】解:的相反数是:故答案为【点睛】此题主要考查了相反数正确掌握相反数的定义是解题关键【分析】直接利用相反数的定义得出答案.【详解】解:.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.14.【分析】根据数轴上两点的中点求法即两数和的一半直接求出即可【详解】解:设点C所表示的数为c则解得:故答案为:【点睛】此题主要考查了数轴上两点之间中点求法我们把数和点对应起来也就是把数和形结合起来二者解析:-2【分析】根据数轴上两点的中点求法,即两数和的一半,直接求出即可.【详解】解:设点C所表示的数为c,则1-=解得:2-+故答案为:2-【点睛】此题主要考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.15.-94【分析】分别根据乘方和开方的意义即可求解【详解】解::-9故答案为:-9;4【点睛】本题考查了乘方和开方的意义理解乘方和开方的意义是解题关键注意在计算-32时底数为3解析:-9 4【分析】分别根据乘方和开方的意义即可求解.【详解】解::23-=-94=.故答案为:-9;4.【点睛】本题考查了乘方和开方的意义,理解乘方和开方的意义是解题关键,注意在计算-32时,底数为3.16.【分析】先将原方程化为即可类比题目中解方程的方法求解即可【详解】解:合并同类项得移项得解得故答案为:【点睛】本题考查了利用平方根解方程及整式的乘法运算掌握平方根的定义是解答此题的关键解析:1x =2x =-【分析】先将原方程化为2180x -=,即可类比题目中解方程的方法求解即可.【详解】解:(18)(1)170x x x -++=,21718170x x x --+=,合并同类项,得2180x -=,移项,得218x =,解得1x =,2x =-故答案为:1x =,2x =-.【点睛】本题考查了利用平方根解方程及整式的乘法运算,掌握平方根的定义是解答此题的关键. 17.6【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以236xy =⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.18.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 19.7【分析】由无理数的估算先求出ab 的值再进行计算即可【详解】解:∵∴∵为两个连续的整数∴∴;故答案为:7【点睛】本题考查了无理数的估算解题的关键是正确求出ab 的值从而进行解题解析:7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵<< ∴34<<,∵a、b 为两个连续的整数,a b <<,∴3a =, 4b =,∴ 347a b +=+=;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a 、b 的值,从而进行解题. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m ∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1+;(21. 【分析】(1)先把二次根式化成最简二次根式,后根据混合运算的法则有序计算即可; (2)利用运算律,因式分解,二次根式乘法公式,有序计算即可.【详解】(1=2+;(2=1-2=1.【点睛】本题考查了二次根式的化简计算,熟练掌握化简的技巧,运算的技巧,运算的顺序是解题的关键.22.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵2a =+2b =-∴a+b =4,(2431ab =+=-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.23.(1)3;-2;(2)4【分析】(1)理解题意,根据有理数乘方及负整数指数幂的计算求解;(2)根据题意,由有理数的乘方计算求得a 与b 的值,然后求解【详解】解:(1)∵328=∴()2,8=3 ∵-22112=24=∴12,4⎛⎫= ⎪⎝⎭-2 故答案为:3;-2(2)∵()4,2a =,2416=∴a=16∵(),83b =,328=∴b=2∴()(),=2,16b a又∵4216=∴(),b a 的值为4【点睛】此题主要考查了有理数的乘方及负整数指数幂的运算,正确将原式变形是解题关键.24.3--【分析】先分别计算负指数、二次根式化简、0指数和绝对值,再进行加减即可.【详解】解:原式(212=--- ,212=---+=3-【点睛】本题考查了负指数、二次根式化简、0指数和绝对值有关的实数计算,熟练按照法则进行计算是解题关键.25.(1)0;(2)1-【分析】(1)先进行开方运算,再进行除法运算,然后进行减法运算;(2)先进行乘方运算,再利用乘法的分配律进行计算,再计算除法,最后进行加减运算.【详解】解:(1)原式44=-=0;(2)原式114(4)121223=-÷--⨯+⨯ 14(4)126=-÷--⨯ 164=-+12=-1=-【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.26.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:216(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。

初二实数测试题及答案

初二实数测试题及答案

初二实数测试题及答案一、选择题(每题3分,共30分)1. 下列选项中,哪一个是无理数?A. 3.14159B. -2C. √2D. 02. 计算下列式子的结果,哪个是正确的?A. (-3) × (-3) = 6B. (-3) × (-3) = 9C. (-3) × (-3) = -9D. (-3) × (-3) = -63. 以下哪个数是实数?A. 3iB. √-1C. 2+3iD. 44. 计算√16的值是多少?A. 4B. -4C. ±4D. 25. 以下哪个数是实数集中的有理数?A. πB. √3C. 0.5D. √26. 计算下列式子的结果,哪个是正确的?A. (-2)³ = -8B. (-2)³ = 8C. (-2)³ = -6D. (-2)³ = 67. 以下哪个数是实数集中的无理数?A. 1/3B. √4C. 2πD. 28. 计算√9的值是多少?A. 3B. -3C. ±3D. 09. 以下哪个数是实数集中的整数?A. √2B. 0.5C. -2D. π10. 计算下列式子的结果,哪个是正确的?A. √(-1)² = -1B. √(-1)² = 1C. √(-1)² = 0D. √(-1)² = ±1二、填空题(每题3分,共30分)1. √9的值是______。

2. √(-4)²的值是______。

3. 无理数π的近似值是______。

4. 有理数-5的相反数是______。

5. √16的值是______。

6. √(-3)²的值是______。

7. 无理数e的近似值是______。

8. √25的值是______。

9. 有理数1/2的倒数是______。

10. √(-2)²的值是______。

三、解答题(每题10分,共40分)1. 计算并化简:√(-5)²。

(典型题)初中数学八年级数学上册第二单元《实数》检测题(包含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》检测题(包含答案解析)

一、选择题1.下列算式中,运算错误的是( )A .632÷=B .3515⨯=C .7310+=D .2(3)-=32.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .2 3.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7± 4.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③3323)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个5.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③B .①②④C .①③④D .②③④ 6.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9B .3C .1D .81 7.下列说法正确的是( ) A 5B .55C .25 3D 5的点 8.在下列数中,是无理数的是( )A .2.1313313331…(两个1之间依次多一个3)B .0.101001-C .227D 364-9.已知x 5,则代数式x 2﹣x ﹣2的值为( )A .9+55B .9+35C .5+55D .5+35 10.下列各计算正确的是( )A .382-=B .842=C .235+=D .236⨯= 11.下列说法中正确的是( )A .使式子3x +有意义的是x >﹣3B .使12n 是正整数的最小整数n 是3C .若正方形的边长为310cm ,则面积为30cm 2D .计算3÷3×13的结果是3 12.实数227,2-,21+,2π,()333,3-中,无理数的个数是( )个. A .2 B .3 C .4 D .5二、填空题13.已知21a -的平方根是3±,31a b --的算术平方根是4,那么2a b -的平方根是__________.14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.如图,设AB 是已知线段,经过点B 作BD AB ⊥,使12BD AB =,连接DA ,在DA 上截取DE DB =;在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.已知线段AB 的长为80cm ,则线段AC 的长为____cm .16.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)17.在实数π,8754,0中,无理数的个数是________个. 18.若代数式2x x+有意义,则实数x 的取值范围是_________. 19.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.20.=_______.三、解答题212111211-====--=2232===--(1;用含有n(n是正整)的等式表示上述变化规律;(2)利用上述变化规律计算:...+++的值.22.规定一种新运算a bad bcc d=-,如213(2)23218=⨯-⨯-=-.(1)若1xy=-,则2363xy-=________;(2)当1x=-时,求223213222x xx x-++--+--的值.23.(1(2)计算:.24.已知;a=b=(1)ab;(2)223a ab b-+;25.在数轴上点A为原点,点B表示的数为b,点C表示的数c,且已知b、c满足b1+=0,(1)直接写出b、c的值:b=______,c=_______;(2)若BC的中点为D,则点D表示的数为________;(3)若B、C两点同时以每秒1个单位长度的速度向左移动,则运动几秒时,恰好有AB=AC?26.计算下列各题:(1(2)()(3)(2【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法则,乘法,除法,乘方法则计算判断即可.【详解】÷=,正确,解:∵632∴A选项不合题意;∵3515⨯=,正确,∴B选项不合题意;∵73+,无法计算,∵C选项符合题意;∵﹣2(3)-=3,正确,∴D选项不合题意;故选:C.【点睛】本题考查了二次根式的混合运算,熟记二次根式运算的基本法则是解题的关键.2.B解析:B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【详解】解:连接DB,DF,在△FDB中,DF+BF>DB,由折叠的性质可知,FB=CB=4,∴当F在线段DB上时,点D到点F的距离最短,在Rt △DCB 中,8BD =,此时DF=8-4=4,故选:B .【点睛】 本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 3.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.4.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;③=17322+=,故错误; ④如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.5.D解析:D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确; ∵116的算术平方根是14,∴④正确; 正确的是②③④,故选:D .【点睛】 本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.第II 卷(非选择题)请点击修改第II 卷的文字说明6.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 7.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D 错误;故选:C .【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.8.A解析:A【分析】根据无理数的定义判断即可.【详解】解:A. 2.1313313331…(两个1之间依次多一个3)是无理数,符合题意;B. 0.101001-是有限小数,不是无理数,不符合题意;C. 227是分数,不是无理数,不符合题意;D. 4=-,是整数,不是无理数,不符合题意;故选:A.【点睛】本题考查了无理数的定义,解题关键是熟记无理数是无限不循环小数.9.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.10.D解析:D【分析】分别计算即可.【详解】解:2=-,原式错误,不符合题意;B. 2=≠D. =故选:D .【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.11.B解析:B【分析】直接利用二次根式有意义的条件以及二次根式的乘除运算法则分别计算得出答案.【详解】A 有意义的是x≥﹣3,故此选项错误;B n 是3,故此选项正确;C 、若正方形的边长为cm ,则面积为90cm 2,故此选项错误;D 、的结果是1,故此选项错误;故选:B .【点睛】本题考查了二次根式有意义的条件以及二次根式的乘除运算,正确掌握相关定义是解题的关键; 12.B解析:B【分析】根据实数分类、无理数的性质,对各个实数逐个分析,即可得到答案.【详解】实数227,1,2π,3,3-中,无理数为:1、2π,共3个;故答案为:B .【点睛】 本题考查了实数分类的知识;解题的关键是熟练掌握实数分类、无理数的性质,从而完成求解.二、填空题13.±1【分析】首先根据2a-1的平方根是±3可得:2a-1=9据此求出a的值是多少;然后根据3a+b-1的算术平方根是4可得:3a+b-1=16据此求出b的值是多少进而求出a-2b的平方根是多少即可【解析:±1【分析】首先根据2a-1的平方根是±3,可得:2a-1=9,据此求出a的值是多少;然后根据3a+b-1的算术平方根是4,可得:3a+b-1=16,据此求出b的值是多少,进而求出a-2b的平方根是多少即可.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得a=5;∵3a+b-1的算术平方根是4,∴3a+b-1=16,∴3×5+b-1=16,解得b=2,∴a-2b=5-2×2=1,∴a-2b的平方根是:=±.1故答案为:±1.【点睛】此题主要考查了平方根、算术平方根的性质和应用.要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.14.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案【详解】解:由数轴可得:a<﹣0<b<故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b ﹣a﹣﹣a=﹣2a﹣b故答案为:﹣2a﹣b【解析:﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a0<b,故﹣b|+|ab﹣(a)﹣ab﹣a﹣a=﹣2a﹣b.故答案为:﹣2a﹣b.【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.【分析】根据通过勾股定理计算得AD ;结合计算得AE 从而得到AC 的值即可得到答案【详解】∵∴∵的长为80cm ∴cm ∴cm ∵∴cm ∴cm ∴cm 故答案为:【点睛】本题考查了勾股定理二次根式线段和与差的知识解析:)401 【分析】 根据BD AB ⊥、12BD AB =,通过勾股定理计算得AD ;结合DE DB =,计算得AE ,从而得到AC 的值,即可得到答案.【详解】∵BD AB ⊥ ∴90ABD ∠= ∵12BD AB =,AB 的长为80cm ∴40BD =cm∴AD ==cm∵DE DB =∴40DE =cm∴)401AE AD DE =-=cm∴)401AC AE ==cm故答案为:)401. 【点睛】本题考查了勾股定理、二次根式、线段和与差的知识;解题的关键是熟练掌握勾股定理和二次根式的性质,从而完成求解. 16.②【分析】根据有理数近似数字平方根立方根等概念即可判断【详解】解:①正有理数负有理数和零统称为有理数故原说法错误;②根据四舍五入可知近似数170所表示的准确数的范围是说法正确;③的平方根是原说法错误 解析:②【分析】根据有理数、近似数字、平方根、立方根等概念即可判断.【详解】解:①正有理数、负有理数和零统称为有理数,故原说法错误;②根据四舍五入可知,近似数1.70所表示的准确数a 的范围是1.695 1.705a <,说法正确;4=的平方根是2±,原说法错误;④立方根是它本身的数是0和±1,原说法错误;故答案为:②.【点睛】本题考查学生对概念的理解,解题的关键是正确理解有理数、近似数字、平方根、立方根等概念,本题属于基础题型.17.【分析】无理数就是无限不循环小数理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称即有限小数和无限循环小数是有理数而无限不循环小数是无理数由此即可判定选择项【详解】由无理数的定义可知 解析:2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】由无理数的定义可知,π故答案为:2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.19.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4-解析:12或4【分析】根据平方和立方的意义求出a与b的值,然后代入原式即可求出答案.【详解】解:∵a2=64,b3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.20.【分析】设将等式的两边平方然后根据完全平方公式和二次根式的性质化简即可得出结论【详解】解:设由算术平方根的非负性可得t≥0则故答案为:【点睛】此题考查的是二次根式的化简掌握完全平方公式和二次根式的性【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+88=+=+81)=+62=1)∴=.t1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.三、解答题21.(1)212)9【分析】(1)按照题中给出的形式直接求解即可;(2)结合(1)中总结出的规律,逐项化简,再求和即可.【详解】解:(12243===-,=22-=--故答案为:21-(2)原式1)...=++++11019==-=【点睛】本题主要考查二次根式分母有理化,能够根据题目所给出的方法进行二次根式的分母有理化是解题关键.22.(1)12;(2)7-【分析】(1)利用新定义的运算得到618xy+,将xy的值代入即可求解(2)先将x的值代入求解,再利用新定义的运算求解即可【详解】(1)2363xy-=618xy+1xy=-∴原式=()618611812xy+=⨯-+=(2)当1x=-时,223321222x xx x--++--+-=4352----=()()()()42357-⨯---⨯-=-【点睛】本题考查了新定义的计算,解题关键是能熟练运用新定义中的计算规律结合实数的运算法则求解.23.(1)5;(2)1【分析】(1)将原式化为最简二次根式,在根据二次根式的加减法则运算即可(2)按平方差公式展开,利用二次根式的性质化简,再进行计算即可【详解】(15=(2)22-=65=-1=【点睛】本题考查了二次根式的混合计算,解题关键是熟练掌握运算法则,准确计算. 24.(1)2;(2)10.【分析】(1)根据二次根式的乘法法则求出ab 即可;(2)根据二次根式的减法法则求出-a b ,根据二次根式的乘法法则求出ab ,把原式化简,把a b ab -、代入计算即可.【详解】解:5a =+b =532ab ∴==-=,a b -==∴ (1)ab =2(2)()(22223210a ab b a b ab -+=--=-=. 【点睛】本题是一道求代数式值的问题,考查了的是二次根式的减法和乘法和整式的完全平方公式,掌握二次根式的减法法则、乘法法则是解题的关键.25.(1)-1;7;(2)3;(3)运动3秒时,恰好有AB=AC .【分析】(1)根据非负数的和为零,可知绝对值和根号下的式子同时为零,可得答案; (2)根据中点坐标公式,可得答案;(3)设第x 秒时,AB=AC ,可得关于x 的方程,解方程,可得答案. 【详解】解:(1)b 1+=0,∴b+1=0,c−7=0,∴b=−1,c=7,故答案为:−1,7.(2)由中点坐标公式,得173 2-+=,∴D点表示的数为3,故答案为:3.(3)设第x秒时,AB=AC,由题意,得x+1=7−x,解得x=3,∴第3秒时,恰好有AB=AC.【点睛】本题主要考查实数与数轴,难度一般,熟练掌握绝对值和二次根式的非负性以及数轴的基础知识是解题的关键.26.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8题图 北八上第二章《实数》水平测试(A )
一、选择题(每小题3分,共30分)
1.下列说法中不正确的是( ).
(A )9的算术平方根是3 (B

(C )27的立方根是3± (D )立方根等于-1的实数是-1
2.在下列实数中,是无理数的为( )
(A )0 (B )-3.5 (C
(D
3.设a 是实数,则||a a -的值( ).
(A )可以是负数 (B )不可能是负数 (C )必是正数 (D )可以是正数也可以是负数
4.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( ).
(A )1x + (B )21x + (C
1 (D
5. 大家知道5是一个无理数,那么5-1在哪两个整数之间( ).
(A )1与2 (B )2与3 (C )3与4 (D )4与5
6. 下列计算正确的是( )
=
1==
(C)(21=
= 7.

(A )
(B ) 3 (C )
(D ) 9
8. 有一个数值转换器,原来如下:当输入的x 为64时,输出的y 是( )
(A )8 (B )22
(C )32 (D )23
9.已知x ,y
2690y y -+=,则xy 的值是( ). (A )4 (B )-4 (C )94 (D )-94
10. 用计算器计算,12122--,13132--,1
4142--,15152--…,根据你发现的规律,判断
,112--=n n P 与,1)1(1)1(2-+-+=n n Q (n 为大于1的整数)的值的大小关系为( ). (A) P <Q (B)P =Q (C)P >Q (D)与n 的取值有关
二、填空题(每小题3分,24分)
11. 用计算器计算: ≈41 . (保留4个有效数字)
12. 写出一个3到4之间的无理数 .
13. 有四个实数分别为23,
22
,-32,8,请你计算其中有理数的和与无理数的积的差,其计算后的结果为______.
14. 用计算器比较大小:317-6 0(填“>”、“=”、“<”).
15. 在如图的数轴上,用点A 大致表示40.
-5-4-3-2-10-654321
16. 计算:(2-3)2006·(2+3)2007=______.
17. 若x 、y 都是实数,且y =3-x +x -3+8,则x +3y 的立方根是_________..
18. 如图:在6×6的网格(小正方形的边长为1)中有一个三 角形ABC ,则三角形ABC 的周长是 (精确到0.001)
三、解答题(每小题8分,共40分)
19. 将下列实数填在相应的集合中:
0,3-, 43.0&&,2)5(-,π,320--,7
13-,31,0.7171171117… 整数集合{ ……}
正无理数集合{ ……}
有理数集合{ ……}
20. (1)计算: 1131850452
.
(2)计算:
223496411||()()92734
-
-++
21. 在下面两个集合中各有一些实数, 请你分别从中选出2个有理数和2个无理数, 再用 “+,-,×,÷” 中的3种符号将选出的4个数进行3次运算, 使得运算的结果是一个正整数.
22. 如图,已知正方形ABCD 的面积是64 cm 2,依次连接正方形的四边中点E 、F 、G 、H 得到小正方形EFGH.求这个小正方形EFGH 的边长(结果保留两个有效数字).
23. 自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.92
t .有一学生不慎让一个玻璃杯从19.6米高的楼上自由下落, 刚好另有一学生站在与下落的玻璃杯同一直线的地面上, 在玻璃杯下落的同时楼上的学生惊叫一声. 问这时楼下的学生能躲开吗? (声音的速度为340米/秒)
有理数 3、-6、3
2、0.17 21.5、34-、0 2、π、12-、51- 8-、π
3、3 无理数 第21题图
四、综合探索(共26分)
24.(12分)如图,数轴上点A 对应的数为1,
(1
的对应点B.(只保留作图痕迹,不写已知、求作、作法和证明);
(2
)能不能用尺规作图作出.若不能,请说明理由;若能,请简要说明作法.
25.(14分)阅读下面的解题过程:
解法一:原式
=
=
11=
=.
解法二:设x
=0x >.
所以24x =+
4+
-8=+84=+=12.
所以x =即原式
=请你用上面给出的方法(任选一种)解答下面的问题:
0 A
参考答案:
一、选择题(每小题3分,共30分)
1.C ;
2.B ;
3.D ;
4.A ;
5.A ;
6.A ;
7.A ;
8.B ;
9.B ;10.C ;
二、填空题(煤小题3分,24分)
11. 6.043;12. π等;13. -1;14.>;15.略;16. 32+;17.3;18. 8.606.
三、解答题
19. 整数集合{ 0, 2)5(- ……}
正无理数集合{ π , 320-- , 31
, 0.7171171117…

……} 有理数集合{ 0 ,43.0&&, 2)5(-,713
-, ……}
20. (1);(2).17
12;
21. 本题答案不唯一:例如,可以取:π、π3、-6、3
4-;
进行下面的运算:(π×π3)+[-6×(3
4-)]=3+8=11.
5.7 cm ;
23.根据题意,得219.6 4.9t =,2t =,即玻璃杯下落的时间为2s ,
声音传播的时间为19.6÷340≈0.06(s ),由于2>0.06,
所以楼下学生能躲开.
四、综合探索
24. (1)略;
(2.
作法:
①过点B 作DB ⊥OB ,垂足B ,
②在DB 上截取点C ,使BC = 1,
③以O 为圆心,以OC 为半径作弧交x 轴的正半轴于点M.
则M 的点.
25..。

相关文档
最新文档