初中数学《实数》单元测试试卷(含答案)
新人教版初中数学七年级下册第六章《实数》单元测试题(解析版)(1)

人教版七年级下册数学单元检测卷:第六章实数一、填空题1. (1) 若 a<- 1,化简 a+ |a + 1| = ____________;(2) 将,,这三个数按从小到大的次序用”<”连结起来: ____________ ;(3) 如图是一个简单的数值运算程序,若输入x的值为,则输出的数值为____________;(4) 已知- 1<x<0,请把- x,-,,x2按从大到小的次序用”>”连结起来:____________.答案: (1)- 1(2)(3) 2(4)2.5- 1与 0.5的大小关系:5- 1预计________0.5( 填“ >”“ <”或“=” ) .22答案:>3. 若=0,则 x+ y= _____0_______ .4.如图,数轴上 A, B 两点表示的数分别为和5.1 ,则 A, B 两点之间表示整数的点共有___________ 个.答案: 45. 假如 4 是 5m+ 1 的算术平方根,那么2- 10m= __________.答案: -28二、选择题6. 立方根是- 0.2的数是 (D)A. 0.8B.0.08C.- 0.8D.- 0.0087.与最靠近的整数是(B)A.0B.2C.4D.58. 若一个数的算术平方根等于它的相反数,则这个数是( D )A.0B.1C.0或 1 D .0或±19.假如是实数,则以下必定存心义的是(D )A.B.C.D.10.以下说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个B.2个C.3个D.4个11. 若x- 3 是 4 的平方根,则x 的值为( C )A. 2B.± 2C.1或 5D. 1612.以下说法正确的选项是 ( D )A.- 1 没有立方根B. 0 没有平方根C. 1 的平方根是1D. 1 的算术平方根是113.一个底面是正方形的水池,容积是11.52m3,池深 2m,则水池底边长是( C ) A. 9.25m B. 13.52mC. 2.4mD.4.2m14. 用计算器计算44.86 的值为 ( 精准到 0.01)( C )A. 6.69 B.6.7 C. 6.70 D .± 6.7015. 假如,,则人教版七年级下册第六章实数尖子生培优测试一试卷一、单项选择题(共 10 题;共 30 分)1.如图,在数轴上表示无理数的点落在()A. 线段 AB 上B线.段 BC上C线.段 CD上D线.段 DE 上2.在-,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是( )A.2个B.个3C.个4D5个3.一个自然数的算术平方根是x,则它后边一个数的算术平方根是()2A. x+1B. x+1C.+1D.4.以下命题:①负数没有立方根;② 一个实数的立方根不是正数就是负数;③ 一个正数或负数的立方根与这个数的符号一致;④ 假如一个数的立方根等于它自己,那么它必定是1或0.此中正确有()个.A. 1B. 2C. 3D. 45.以下说法中,不正确的选项是 ( ).A. 3 是(﹣ 3)2的算术平方根B.是(﹣ 3)2的平方±3根C. ﹣ 3 是(﹣ 3)2的算术平方根D﹣.3 是(﹣ 3)3的立方根6.的算术平方根是()A.4B.C.2D.7.如图,数轴上A, B 两点分别对应实数a、 b,则以下结论中正确的选项是()A. a+b> 0B. ab> 0C.D. a+ab-<b 08.已知一个正数的两个平方根分别是a+3 和 2a-15,则这个正数为()A. 4B.C. -7D. 499.晓影设计了一个对于实数运算的程序:输入一个数后,输出的数老是比该数的平方小1,晓影依据此程序输入后,输出的结果应为()A. 2016B. 2017C. 2019D. 202010.,则 a 与 b 的关系是()A. B. a与 b 相等 C. a与 b 互为相反数D无.法判定二、填空题(共 6 题;共 24 分)11.的平方根是 ________,的算术平方根是________,-216的立方根是________.12.是 9 的算术平方根,而的算术平方根是 4,则= ________.13.已知:( x2+y2+1)2﹣ 4=0,则 x2+y2 =________.14.实数 a 在数轴上的地点如图,则 |a ﹣3|=________ .15.若四个有理数同时知足:,,,则这四个数从小到大的次序是________.16.若用初中数学课本上使用的科学计算器进行计算,则以下按键的结果为________.三、计算题(共 1 题;共 6 分)17.计算:四、解答题(共 6 题;共 40 分)18.一个数的算术平方根为2M -6,平方根为± (M- 2),求这个数.19.某公路规定行驶汽车速度不得超出80 千米 / 时,当发生交通事故时,交通警察往常依据刹车后车轮滑过的距离预计车辆的行驶速度,所用的经验公式是,此中v 表示车速(单位:千米/ 时),d 表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经丈量 d=32 米,f=2.请你判断一下,闯事汽车当时能否高出了规定的速度?20. a, b,c 在数轴上的对应点如下图,化简+|c ﹣b| ﹣()3.21.阅读以下资料:∵,即,∴的整数部分为2,小数部分为.请你察看上述的规律后试解下边的问题:假如的小数部分为a,的小数部分为b,求的值.22.规定一种新的运算a△ b=ab﹣ a+1,如3△ 4=3 ×4﹣ 3+1,请比较与的大小.23.求以下 x 的值.(1) 2x3=﹣ 16(2)(x﹣1)2=4.答案一、单项选择题1.C2.B3.D4.A5.C6.C7.C8.D9.B 10.C 二、填空题11. ±;;-612.19 13.1 14.3﹣ a 15.16.﹣5三、计算题17. 解:原式 =5+3-6=2四、解答题18.解:应分两种状况: ① 2M -6= M -2,解得 M= 4,2∴2M - 6=8- 6= 2,2 = 4,② 2M -6=- (M- 2),解得 M=,∴ 2M - 6=-6=(不合题意 ,舍去 ),故这个数是 4.19.解:把 d=32, f=2 代入 v=16,v=16=128(km/h )∵128> 80,∴闯事汽车当时的速度高出了规定的速度20.解:依据数轴上点的地点得:a< b< 0<c,且|a|>|b|>|c|,∴a﹣ b< 0, c﹣ b> 0, a+c< 0,则原式 =|a ﹣ b|+|c ﹣ b| ﹣( a+c) =b﹣ a+c﹣ b﹣ a﹣ c=﹣2a21.解:∵<,<,∴ a=﹣2,b=﹣3,∴=﹣2+﹣ 3﹣=﹣ 522.解:∵ a△ b=a ×b﹣ a+b+1,∴(﹣ 3)△=(﹣ 3)×﹣(﹣ 3)++1=4﹣ 2,△(﹣ 3)=×(﹣ 3)﹣+(﹣ 3) +1=﹣4﹣ 2,∵4﹣ 2>﹣ 4﹣ 2,∴﹣ 3△>△(﹣ 3).23.解:( 1)∵ 2x3=﹣ 16,2∴x =﹣ 8,∴x=﹣ 2.(2)∵(x﹣1)2=4,∴x﹣ 1=±2,∴x=﹣ 1 或 3.人教版数学七年级下册第六章实数单元复习卷人教版七年级数学下册第六章实数单元检测卷一、选择题1. 假如 | x| = 4,那么 5-x的算术平方根是()A.±1 B.±4 C.1或9 D.1或32.27 的立方根与 81 的平方根之和是()A. 0B. 6C.-12或6D.0或-63.预计的值在()A.0和1之间B.1和 2之间C.2和 3之间D. 3和 4之间4.若与的整数部分分别为,,则的立方根是()A. B. C. 3 D.75.一个数的算术平方根的相反数是-3,则这个数是 ()949349A. 7B.3C.49D. 96.若一个数的一个平方根是8,则这个数的立方根是()A.2B.4C. 2D. 47.在实数:﹣,0,π,,,, 3.142中,无理数有()A.2 个 B.3个 C.4 个 D.5 个8.实数 a,b, c, d 在数轴上的对应点的地点如下图,则正确的结论是()A. a>﹣ 4B. bd> 0C. |a| > |d| D . b+c> 09. 以下计算正确的选项是()30.012 5= 0.5 B.3273-A.=644331D 3-82C. 3 = 1.-125=-82510. 假如一个正数的两个平方根为x+1和 x-3,那么 x 的值是() A.4 B.2 C.1 D.±2二、填空题11.16的算术平方根是12.- 64 的立方根是1,-3是的立方根.13.大于- 18而小于13的全部整数的和为 __ .14.17的整数部分是 __________ ,小数部分是 ________.15.若3 (4 k) 3k 4 ,则 k 的值为.16.如图,在数轴上有O, A,B, C, D五点,依据图中各点所表示的数,判断18 在数轴上的地点会落在线段上.三、解答题17. 计算:;18.计算:19.求以下各式的值:(1)1+24;(2) 252- 242;(3) (- 3)2.2520.求 x 的值(1) 8x3+125=0( 2) (x+3) 3+27=021. 已知,是 a 的小数部分,求的值.22.已知 1- 3a与b- 27互为相反数,求ab的算术平方根.23.解答以下应用题:⑴某房间的面积为17.6 m 2,房间地面恰巧由110 块同样的正方形地砖铺成,每块地砖的边长是多少?⑵已知第一个正方体水箱的棱长是60 cm,第二个正方体水箱的体积比第一个水箱的体积的 3 倍还多81 000 cm3,则第二个水箱需要铁皮多少平方米?24. 对于实数a,我们规定:用符号表示不大于的最大整数,称为 a 的根整数,。
第2章 实数 北师大版八年级数学上册单元测试试卷(含答案)

第二章 实数时间:60分钟 满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·四川成都七中育才学校期末)使x+4有意义的x的取值范围是( )A.x≥-4B.x<-4C.x≠-4D.x>-42.下列各数:3.14,π,0.401,16,2.131 331 333 1…(相邻两个1之间3的个数逐次加1),323,3-9,其中无理数有( ) 21A.2个B.3个C.4个D.5个3.若一个数的算术平方根是8,则这个数的立方根是( )A.±2B.±4C.2D.44.(2022·江苏苏州期末)若最简二次根式1+2a与3是同类二次根式,则a的值为( )A.2B.4C.-1D.15.(2022·浙江宁波期末)已知432=1 849,442=1 936,452=2 025,462=2 116.若n为整数且n<2022<n+1,则n的值为( )A.43B.44C.45D.466.(2021·辽宁本溪期中)已知x,y为实数,且x-3+(y+2)2=0,则y x的立方根是( )A.36B.-2C.-8D.±27.(2022·河北石家庄晋州期末)如图是嘉嘉的试卷,答对1题得25分,答错或者不答不得分,则嘉嘉的得分是( )姓名: 嘉嘉 成绩: ①-(-8)2= 8 ;②2 7-5 7= -3 7 ;③27-2 3= 6 ;④(5+2)2= 9+4 5 .A.25分B.50分C.75分D.100分8.(2022·河南郑州三中期末)如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为( ) A.10-1 B.5-1C.2D.5(第8题) (第10题)9.对实数a,b,定义运算a*b=a 2b(a≥b),ab2(a<b),已知3*m=36,则m的值为( )A.4B.±23C.23D.4或±2310.(2021·河北唐山遵化模拟)在一个大正方形中,按如图的方式粘贴面积分别为12,10的两个小正方形,粘贴后,这两个小正方形重合部分的面积为3,则空白部分的面积为( ) A.8B.19C.67D.230-6二、填空题(共6小题,每小题3分,共18分)11.如果x(x-6)=x·x-6,请写出一个满足条件的x的值 .12.如果20n是一个整数,那么最小的正整数n是 .13.若a,b互为相反数,c,d互为倒数,则a2-b2+3cd= .14.(2022·北京平谷区期末)如图,∠AOB=90°,按以下步骤作图:①以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D;②分别以点C,D为圆心,以大于12CD的长为半径作弧,两弧交于点P;③作射线OP.如图,点M在射线OP上,过M作MH⊥OB于点H,若MH=2,则OM= .15.(2022·河北邢台信都区期中)一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是 .16.(2022·福建三明三元区期中)对于任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72第一次→[72]=8第二次→[8]=2第三次→[2]=1.类似地,只需进行3次操作后变为1的所有正整数中,最大的是 .三、解答题(共6小题,共52分)17.(共3小题,每小题3分,共9分)计算:(1)12×3-982;(2)|-38|-214-3(-1)2020;(3)33+(π+3)0-27+|3-2|.18.(6分)求下列各式中x的值.(1)4(x-3)2=9;(2)(x+10)3+125=0.19.(9分)小丽想用一块面积为36 cm2的正方形纸片,如图所示,沿着边的方向裁出一块面积为20 cm2的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?20.(9分)(2022·湖南邵阳期末)如图(1),这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图(2),使得A与-1重合,那么D在数轴上表示的数是 . 图(1) 图(2)21.(9分)(2022·山西太原期中)高空抛物是一种不文明的危险行为.据研究,从高处坠落的物品,其下落的时间t (s)和高度h (m)近似满足公式t=ℎ5(不考虑阻力的影响).(1)求物体从40 m 的高空落到地面的时间.(2)小明说物体从80 m 的高空落到地面的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由.(3)已知从高空坠落的物体所带能量(单位:J)=10×物体质量(kg)×高度(m).某质量为0.05 kg 的鸡蛋经过6 s 落在地上,这个鸡蛋在下落过程中所带能量有多大?你能得到什么启示?22.(10分)(2021·辽宁朝阳期末)在进行二次根式化简时,我们有时会碰上如53,23,23+1一样的式子,这样的式子我们可以将其进一步化简:53=5×33×3=533,23=2×33×3=63,23+1=2(3-1)(3+1)(3-1)=3-1.以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:(1)化简:25+3.(2)若a 是2的小数部分,求3a 的值.(3)化简:13+1+15+3+17+5+…+12023+2021.第二章 实数12345678910ABDDBBBAC D11.7(答案不唯一,大于等于6的数均可)12.513.114.2215.73.5 cm 216.2551.A 使式子4+x 有意义,则4+x ≥0,即x ≥-4,则x 的取值范围是x ≥-4.2.B 在所列的7个数中,无理数是π3,2.131 331 333 1…(相邻两个1之间3的个数逐次加1),3-9,共3个,故选B .3.D 由题意得这个数为64,∴这个数的立方根为364=4.4.D 由题意,得1+2a=3,解得a=1.5.B ∵442=1 936,452=2 025,1 936<2 022<2 025,∴44<2022<45,∵n 为整数且n<2022<n+1,∴n 的值为44.6.B ∵x -3+(y+2)2=0,∴x-3=0,y+2=0,∴x=3,y=-2,∴y x =(-2)3=-8.∵-8的立方根是-2,∴y x 的立方根是-2.7.B序号分析正误①-(-8)2=-8×② 27-5 7=-3 7√③27-2 3=3 3-2 3=3×④(5+2)2=9+4 5√∵答对1题得25分,答错或者不答不得分,∴嘉嘉的得分是25×2=50(分).8.A 由勾股定理,得AC=AB 2+BC 2=10,AM=AC=10,所以M 点的坐标是10-1.9.C ①若m ≤3,则32×m=36,解得m=4>3(舍);②若m>3,则3m 2=36,解得m=±23,∵m=-23<3,应舍去,∴m=23.10.D ∵两个小正方形的面积分别为12,10,∴两个小正方形的边长分别为23,10,∴两个小正方形重合部分的边长为(23+10-大正方形的边长).∴两个小正方形的重合部分是正方形.∵两个小正方形重合部分的面积为3,∴重合部分的边3,∴大正方形的边长是23+10-3=3+10,∴空白部分的面积为(3+10)2-(12+10-3)=230-6.11.7(答案不唯一,大于等于6的数均可) ∵x (x -6)=x ·x -6,∴x ≥0,x -6≥0,解得x ≥6,故写一个满足条件的x 的值即可,例如:7(答案不唯一,大于等于6的数均可).12.5 ∵20n 是一个整数,∴25n 是一个整数,∴最小正整数n 的值为5.13.1 根据题意得a+b=0,cd=1,则原式=(a +b )(a -b )+3cd =0+1=1.14.22 由作图可知,OM 平分∠AOB ,∴∠AOM=∠BOM=45°.∵MH ⊥OB ,∴∠OHM=90°,∴∠HOM=∠HMO=45°,∴OH=MH ,∴OM=2MH=22.15.73.5 cm 2∵正方体木块的体积是343 cm 3,∴正方体木块的棱长为3343=7(cm),要将该正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为7÷2=3.5(cm),∴每个小正方体木块的表面积为6×3.52=73.5(cm 2).16.255 (逆推法)∵[3]=1,[15]=3,[255]=15,∴只需进行3次操作后变为1的所有正整数中,最大的是255.17.【参考答案】(1)原式=12×3-982(1分)=36-49(2分)=6-7=-1.(3分)(2)原式=38-94-31(1分)=2-32-1(2分)=-12.(3分)(3)原式=3+1-33+2-3(2分)=3-33.(3分)18.【参考答案】(1)因为4(x-3)2=9,所以(x-3)2=94,所以x-3=32或x-3=-32,解得x=92或x=32.(3分)(2)因为(x+10)3+125=0,所以(x+10)3=-125,所以x+10=3-125,所以x+10=-5,解得x=-15.(3分)19.【参考答案】不同意,小丽不能裁出符合要求的长方形纸片.(4分)理由如下:因为正方形的面积为36 cm 2,所以正方形的边长为6 cm .根据已知可设长方形的宽为x cm,则长为2x cm .长方形面积=x ·2x=2x 2=20,解得x=10,则2x=210,因为210 cm >6 cm,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.(9分)20.【参考答案】(1)这个魔方的棱长为364=4.(3分)(2)∵魔方的棱长为4,∴小立方体的棱长为2,(4分)∴阴影部分的面积为12×2×2×4=8,(5分)8=22.(6分)(3)-1-22(9分)21.【参考答案】(1)由题意得,当h=40 m 时,t=ℎ5=405=8=22(s).(3分)(2)不正确.(4分)理由:当h=80 m 时,t=805=16=4(s),∵4≠2×22,∴小明的说法不正确.(6分)(3)当t=6 s 时,6=ℎ5,解得h=180(m).该鸡蛋在下落过程中所带能量=10×0.05×180=90(J).(8分)启示:严禁高空抛物.(答案不唯一).(9分)22.【参考答案】(1)25+3=2(5-3)(5+3)(5-3)=2(5-3)2=5-3.(3分)(2)因为a 是2的小数部分,所以a=2-1,所以3a =32-1=3(2+1)(2-1)(2+1)=3(2+1)=32+3.(6分)(3)13+1+15+3+17+5+…+12023+2021=3-12+5-32+7-52+…+2023-20212=-1+3-3+5-5+7-…-2021+20232=-1+20232=2023-12.(10分)。
(必考题)初中数学八年级数学上册第二单元《实数》检测卷(答案解析)(4)

一、选择题1.下列计算正确的是( )A .32221-=B .1025÷=C .325+=D .(4)(2)22-⨯-= 2.16的平方根是( )A .4B .4±C .2±D .-2 3.下列各式计算正确的是( ) A .31-=-1B .38= ±2C .4= ±2D .±9=3 4.下列各式计算正确的是( ) A .235+= B .2236=() C .824+= D .236⨯= 5.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.8 6.一个正方形的面积为29,则它的边长应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 7.计算))202020203232⨯的结果为( ) A .-1 B .0 C .1 D .±18.172178a a b --=+a b - ). A .3± B .3 C .5D .5± 9.已知三角形的三边长a 、b 、c 满足2(2)a +3b -|c 7|=0,则三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定10.下列计算结果,正确的是( ) A 2(3)- 3 B 2+57C .233=1D .2(5)=5 11.在下列数中,是无理数的是( )A .2.1313313331…(两个1之间依次多一个3)B .0.101001-C .227D 364-12.与66最接近的整数是( ) A .9 B .8 C .7 D .6 二、填空题 13.计算:34011|3|(23)2-⎫⎛-+---+-= ⎪⎝⎭____. 14.化简:()()2223x x---=______ 15.计算()()2323-⨯+的结果是_____. 16.若2|1|0++-=a b ,则2020()a b +=_________. 17.如图,设AB 是已知线段,经过点B 作BD AB ⊥,使12BD AB =,连接DA ,在DA 上截取DE DB =;在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.已知线段AB 的长为80cm ,则线段AC 的长为____cm .18.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:43@1232⎛⎫-- ⎪ ⎪⎝⎭(7543)2-=※________. 19.计算1248⨯的结果是________________. 20.已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________三、解答题21.计算:(1)(π﹣2020)0﹣33+-843. (2122733-232.22.计算:3161532272-23.24.计算:(101122-⎛⎫- ⎪⎝⎭25.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.26.计算:21-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】二次根式的混合运算,加减法的基础是同类二次根式;除法运算按照法则进行,二次根式的化简,先乘后化简即可.【详解】 ∵=∴选项A 错误;∵2= ∴选项B 错误; ∵∴选项C 错误; ∵∴选项D 正确.故选D.【点睛】本题考查了二次根式的混合运算,熟记二次根式混合运算的基本法则,特别是同类二次根式是加减运算的基础是解题的关键.2.C解析:C【分析】先计算16的算术平方根a,再计算a的平方根即可.【详解】∵=,4∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.3.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.4.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB、错误,212=(;C==D==故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.5.B解析:B【分析】先根据勾股定理求得A点坐标,再利用二分法估算即可得出比较接近-3.6.【详解】解:∵长方形的长为3,宽为2,∴OA OB ==∴A所表示的数为∵23.612.9613=<,23.713.6913=>, ∴-3.6和-3.7之间,∵23.6513.322513=>, ∴-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.6.C解析:C【分析】一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.C解析:C【分析】利用二次根式的运算法则进行计算,即可得出结论.【详解】解:))2020202022⨯ 202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦ 2020(1)=-1=.故选:C .【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.8.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a ≥0,∴a=17,∴b+8=0,解得b=-8, ∴5==,故选:C .【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键. 9.C解析:C【分析】根据非负数的性质可知a ,b ,c 的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:()220a c -+-=∴ 0a =,30b -= , 0c =∴a =,3b = ,c =又∵ 222279a c b +=+==∴该三角形为直角三角形故选C .【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a ,b ,c 的值,并正确运用勾股定理的逆定理.10.D解析:D【分析】利用二次根式的性质对A 、D 进行判断;根据二次根式的加减法对B 、C 进行判断.【详解】解:A、原式=3,所以A选项错误;B B选项错误;C、原式C选项错误;D、原式=5,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.A解析:A【分析】根据无理数的定义判断即可.【详解】解:A. 2.1313313331…(两个1之间依次多一个3)是无理数,符合题意;B. 0.101001-是有限小数,不是无理数,不符合题意;C. 227是分数,不是无理数,不符合题意;D. 4=-,是整数,不是无理数,不符合题意;故选:A.【点睛】本题考查了无理数的定义,解题关键是熟记无理数是无限不循环小数.12.B解析:B【分析】直接得出89<<,进而得出最接近的整数.【详解】解:∵<<,∴89<<∵28.267.24=∴8.故选B.【点睛】的取值范围是解题关键.二、填空题13.【分析】原式第一项利用有理数的乘方运算法则第二项利用绝对值的代数意义第三项利用负整数指数幂的法则第四项利用零指数幂的运算法则分别化简各项后再进行加减运算即可【详解】解:=-1+3+8+1=11故答案解析:11【分析】原式第一项利用有理数的乘方运算法则,第二项利用绝对值的代数意义,第三项利用负整数指数幂的法则,第四项利用零指数幂的运算法则分别化简各项后,再进行加减运算即可.【详解】解:34011|3|(22-⎛⎫-+---+ ⎪⎝⎭=-1+3+8+1=11.故答案为:11.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.14.-1【分析】根据二次根式有意义的条件求出的范围再根据二次根式的性质和绝对值的性质化简即可得到答案【详解】由可知故答案为:【点睛】本题考查了二次根式化简求值正确掌握二次根式有意义的条件二次根式的性质绝 解析:-1【分析】根据二次根式有意义的条件,求出x 的范围,再根据二次根式的性质和绝对值的性质化简,即可得到答案.【详解】20x -≥,∴2x ≤,30x ∴-<223x x -=---,∴()2323231x x x x x x ---=---=--+=-故答案为:1-.【点睛】本题考查了二次根式化简求值,正确掌握二次根式有意义的条件,二次根式的性质,绝对值的性质是解题关键.15.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.16.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及解析:1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可.【详解】 ∵|1|0-=b 0,|1|0b -≥,∴a+2=0,b-1=0,∴a=-2,b=1,∴202020201()(21)a b +-+==,故答案为:1.【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.17.【分析】根据通过勾股定理计算得AD ;结合计算得AE 从而得到AC 的值即可得到答案【详解】∵∴∵的长为80cm ∴cm ∴cm ∵∴cm ∴cm ∴cm 故答案为:【点睛】本题考查了勾股定理二次根式线段和与差的知识解析:)401 【分析】 根据BD AB ⊥、12BD AB =,通过勾股定理计算得AD ;结合DE DB =,计算得AE ,从而得到AC 的值,即可得到答案.【详解】∵BD AB ⊥ ∴90ABD ∠= ∵12BD AB =,AB 的长为80cm∴40BD=cm∴AD==cm=∵DE DBDE=cm∴40∴)=-=cmAE AD DE401∴)AC AE==cm401401.故答案为:)【点睛】本题考查了勾股定理、二次根式、线段和与差的知识;解题的关键是熟练掌握勾股定理和二次根式的性质,从而完成求解.18.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】-※解:2=2-=2=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.19.【分析】利用二次根式的乘法运算法则进行计算即可【详解】解:=故答案为:【点睛】本题考查二次根式的乘法熟练掌握二次根式的乘法运算法则是解答的关键【分析】利用二次根式的乘法运算法则进行计算即可.【详解】=【点睛】本题考查二次根式的乘法,熟练掌握二次根式的乘法运算法则是解答的关键.20.【分析】先根据数轴的定义可得从而可得再化简绝对值和二次根式然后计算整式的加减即可得【详解】由数轴的定义得:则因此故答案为:【点睛】本题考查了数轴绝对值二次根式整式的加减熟练掌握数轴的定义是解题关键 解析:2a -【分析】先根据数轴的定义可得0a b <<,从而可得0,0a b a b -<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b <<,则0,0a b a b -<+<,因此()a b b a a b -=-+--,b a a b =---,2a =-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.三、解答题21.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()12212-⨯+-+=121+=2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键.22.【分析】根据二次根式的性值计算即可;【详解】原式66=--⨯+,+6,;【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.23.-4【分析】利用立方根的定义、二次根式的乘法法则及二次根式的性质进行化简,再合并化简结果即可.【详解】1342=-+--4=-.【点睛】此题考查了实数的混合运算,掌握立方根的定义、二次根式的乘法法则以及二次根式的性质是解题的关键.24.3--【分析】先分别计算负指数、二次根式化简、0指数和绝对值,再进行加减即可.【详解】解:原式(212=--- ,212=---+=3-【点睛】本题考查了负指数、二次根式化简、0指数和绝对值有关的实数计算,熟练按照法则进行计算是解题关键.25.(1)5x =5y =+2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.26.1.【分析】按照二次根式性质,立方根的定义,绝对值的意义,化简即可.【详解】解:原式12412=-⨯=1.【点睛】本题考查了二次根式的性质,立方根的定义,绝对值的化简,熟记性质是解题的关键.。
(压轴题)初中数学八年级数学上册第二单元《实数》测试(答案解析)(4)

一、选择题1.下列计算正确的是( )A .1=B 2=C =D 2.下面是一个按某种规律排列的数表,那么第7行的第2个数是:( )A B C D .3.,2π,0.其中无理数出现的频率为( )A .0.2B .0.4C .0.6D .0.8 4.若制作的一个长方体底面积为24,长、宽、高的比为4:2:1,则此长方体的体积为( )A .216B .C .D .5.81的平方根是( )A B .9- C .9 D .9± 6)A .3B .﹣3C .±3D .6 7.一个正方体的水晶砖,体积为380cm ,它的棱长大约在( ) A .45cm cm -之间 B .67cm cm -之间 C .78cm cm -之间 D .89cm cm -之间8.x 的取值范围是( )A .0x ≥B .1x ≤C .1x ≥-D .1≥x 9.下列说法中不正确的是( )A .0是绝对值最小的实数B 2=C .3是9的一个平方根D .负数没有立方根 10.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmBCD .3dm11.实数a 、b 在数轴上的位置如图所示,那么a b -+的结果是( )A .2aB .2bC .2a -D .2b -12.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( ) A .①② B .①②③ C .②③ D .③二、填空题13.计算:23-=______ ;364=______. 14.面积为2的正方形的边长是__________. 15.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 16.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.17.比较大小:22-_____________1(填“>”、“=”或“<”). 18.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________. 19.如图所示,在数轴上点A 所表示的数为a ,则a 的值为____________________.20.3a ++|b ﹣2|=0,则(a+b )2020的值为______.三、解答题21.已知2x +3的算术平方根是5,5x +y +2的立方根是3,求x ﹣2y +10的平方根. 22.已知23a =23b =-a 2+b 2﹣3ab 的值.23.(1)计算:﹣2020159(2)求x 的值:23x ﹣10=6.24.规定一种新运算a b ad bc c d =-,如213(2)23218=⨯-⨯-=-. (1)若1xy =-,则2363x y -=________;(2)当1x =-时,求223213222x x x x -++--+--的值. 25.化简(1)+(226.计算:2016(2019)|52π-⎛⎫--- ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】二次根式的混合运算,加减法的基础是同类二次根式;除法运算按照法则进行,二次根式的化简,先乘后化简即可.【详解】 ∵=∴选项A 错误;∵22=, ∴选项B 错误; ∵∴选项C 错误; ∵∴选项D 正确.故选D.【点睛】本题考查了二次根式的混合运算,熟记二次根式混合运算的基本法则,特别是同类二次根式是加减运算的基础是解题的关键.2.B解析:B【分析】根据观察,可得规律(n-1)最后一个数是(n-1),可得第n 行的第二个数的算术平方根【详解】……第n第7行的第2故答案为:B.【点睛】本题是通过算术平方根的变化探究数字变化规律,观察得出规律是解题关键.3.C解析:C【分析】根据无理数的意义和频率意义求解.【详解】=π是无限不循环小数,解:∵2∴π是有理数,∴由30.6=可得无理数出现的频率为0.6,5故选C .【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.4.C解析:C【分析】设出长宽高,利用底面积,求出高,最后再求出体积【详解】设长方体的高为x,则长为4x,宽为2x,由题意得:4x×2x=24解得x x=(舍去)长方体的体积为故答案选:C【点睛】主要考查的是平方根的定义及算术平方根意义,,熟练掌握定义是解题的关键. 5.D解析:D【分析】根据平方根的定义求解.【详解】∵2(9)±=81,∴81的平方根是9±,故选:D.【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.6.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】.7.A解析:A【分析】【详解】解:∵正方体的水晶砖,体积为380cm,∴3,∵<<∴45<<,故选:A.【点睛】本题考查了立方根的估算,找到两个连续整数的立方,一个大于80,一个小于80是解题关键.8.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:D.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.9.D解析:D【分析】根据实数,平方根和立方根的概念逐一判断即可.【详解】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A正确;2,故B正确;9的平方根是3±,故C正确;任何数都有立方根,故D错误;故选D.【点睛】本题考查了实数的概念,求一个数的平方根或立方根,熟练掌握平方根和立方根的概念是本题的关键.10.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a=,解得:a=∴dm.故选:B.【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键.11.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.12.D解析:D【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.【详解】解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误; ②∵42=16,∴4是16的算术平方根,故②错误,③平方根等于它本身的数只有0,故③正确,④8的立方根是2,故④错误.故选:D .【点睛】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.二、填空题13.-94【分析】分别根据乘方和开方的意义即可求解【详解】解::-9故答案为:-9;4【点睛】本题考查了乘方和开方的意义理解乘方和开方的意义是解题关键注意在计算-32时底数为3解析:-9 4【分析】分别根据乘方和开方的意义即可求解.【详解】解::23-=-94=.故答案为:-9;4.【点睛】本题考查了乘方和开方的意义,理解乘方和开方的意义是解题关键,注意在计算-32时,底数为3.14.【分析】设正方形的边长为x根据题意得求解即可【详解】解:设正方形的边长为x由题意得∴x=(负值舍去)故答案为:【点睛】此题考查平方根的实际应用正确求一个数的平方根是解题的关键【分析】设正方形的边长为x,根据题意得22x=,求解即可.【详解】解:设正方形的边长为x,由题意得22x=,∴(负值舍去),【点睛】此题考查平方根的实际应用,正确求一个数的平方根是解题的关键.15.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键解析:2021 2022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=111111112021 11223342021202220222022 -+-+-++-=-=.故答案为:2021 2022.【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键.16.>【分析】根据勾股定理求出OB长确定点A表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.17.【分析】先估算出无理数的大小再进行比较即可【详解】解:∵1<2<4∴1<<2∴0<<1故答案为:<【点睛】此题考查实数的大小比较关键是估算出无理数的大小解析:<【分析】的大小,再进行比较即可.【详解】解:∵1<2<4,∴1<2,∴0<21,故答案为:<【点睛】的大小.18.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.19.【分析】根据图示得到圆的半径为所以A点表示的数为【详解】∵圆的半径为∴A点表示的数为故答案为【点睛】此题主要考查了实数与数轴之间的对应关系关键是要判断出圆的半径然后根据实数计算法则求解即可解析:1-【分析】A点表示的数为1--【详解】∵圆的半径为,∴A点表示的数为1--故答案为1【点睛】此题主要考查了实数与数轴之间的对应关系,关键是要判断出圆的半径,然后根据实数计算法则求解即可.20.1【分析】首先根据非负数的性质可求出ab的值进而可求出ab的和【详解】∵∴a+3=0b﹣2=0∴a=﹣3b=2;因此a+b=﹣3+2=﹣1则(a+b)2020=(﹣1)2020=1故答案为:1【点睛解析:1【分析】首先根据非负数的性质可求出a、b的值,进而可求出a、b的和.【详解】b-=∵20∴a+3=0,b﹣2=0,∴a=﹣3,b=2;因此a+b=﹣3+2=﹣1.则(a+b)2020=(﹣1)2020=1.故答案为:1.【点睛】本题主要考查算术平方根与绝对值的非负性及乘方,熟练掌握算术平方根与绝对值的非负性及乘方是解题的关键.三、解答题21.±9【分析】根据立方根与算术平方根的定义得到5x +y +2=27,2x +3=25,则可计算出x =11,y =﹣30,然后计算x ﹣2y +10后利用平方根的定义求解.【详解】解:因为2x +3的算术平方根是5,5x +y +2的立方根是3,∴23255227x x y +=⎧⎨++=⎩解得:1130x y =⎧⎨=-⎩, ∴x ﹣2y +10=81,∴x﹣2y +10的平方根为:9=±.【点睛】本题主要考查了算术平方根,平方根与立方根,熟记相关定义是解答本题的关键. 22.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵2a =+2b =-∴a +b =4,(2431ab =+=-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.23.(1)2)x=2.【分析】(1)根据实数的混合运算的基本顺序依次计算即可;(2)根据立方根的定义求解即可.【详解】(1)原式(2)∵23x ﹣10=6,∴23x =16,∴3x =8,∴x=2.【点睛】本台考查了实数的混合运算和立方根的定义,熟练掌握混合运算的基本顺序和立方根的定义是解题的关键.24.(1)12;(2)7-【分析】(1)利用新定义的运算得到618xy +,将xy 的值代入即可求解(2)先将x 的值代入求解,再利用新定义的运算求解即可【详解】(1)2363x y -=618xy +1xy =-∴原式=()618611812xy +=⨯-+=(2)当1x =-时,223321222x x x x --++--+-=4352----=()()()()42357-⨯---⨯-=- 【点睛】本题考查了新定义的计算,解题关键是能熟练运用新定义中的计算规律结合实数的运算法则求解.25.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.26.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2016(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54⨯+---3=+-154=-2【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.。
《第六章 实数》单元检测试卷及答案(共四套)

《第六章 实数》单元检测试卷一一、选择题 (每题3分,共24分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)1. 下列运算正确的是( )A .39±= B .33-=- C .39-=- D .932=- 2. 下列各组数中互为相反数的是( )A.-2 -2 C.-2 与12- D.2与2- 3. 下列实数317,π-,14159.3,21中无理数有( ) A.2个 B.3个 C.4个 D.5个4. 实数a,b 在数轴上的位置如图所示,则下列结论正确的是( ) A. 0a b +> B. 0a b ->C. 0>abD .0>ba5. 有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0。
其中错误的是( )A .①②③B .①②④C .②③④D .①③④ 6. 若a 为实数,则下列式子中一定是负数的是( )A .2a -B .2)1(+-aC .2a -D .)1(+--a 7. a =-,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧 8. 请你观察、思考下列计算过程: 因为112=121,所以121=11 ; 因为1112=12321,所以11112321=;……,由此猜想76543211234567898= ( ) A .111111 B .1111111 C .11111111 D .1111111111-二、填空题(每题3分,共30) 9.81的平方根是 。
10. _________。
11. 化简:332-= 。
12. 写出1到2之间的一个无理数___________。
13. 计算:3201389)1(+-- =____________。
14. 当x ≤0时,化简1x --的结果是 。
湘教版八年级数学上册第3章《实数》单元试卷(含答案)

第3章检测卷一、选择题(每小题3分,共30分)1.-3的绝对值是( )A. 3 B .- 3C .±33 D .-332.下列实数是无理数的是( )A .5B .0 C.13 D. 23.下列各数中,最大的数是( )A .5 B. 3 C .π D .-84.下列式子中,正确的是( ) A.3-7=-37 B.36=±6C .- 3.6=-0.6;D.(-8)2=-85.如图,数轴上点P 表示的数可能是( )A .-7 B.7C .-10 D.106.若x 2=16,那么-4+x 的立方根为( )A .0B .-2C .0或-2D .0或±27.设面积为7的正方形的边长为x ,那么关于x 的说法正确的是() A .x 是有理数 B .x =±7C .x 不存在D .x 是在2和3之间的实数8.已知x +2+||y -2=0,则⎝⎛⎭⎫x y 2017的值为( )A .0B .1C .-1D .29.设a =3,b =3-1,c =3-5,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a10.如图,在数轴上表示2,5的对应点分别为C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .- 5B .2- 5C .4- 5 D.5-2二、填空题(每小题3分,共24分)11.-0.064的立方根是________,0.64的平方根是________.12.计算:9+38-||-2=________.13.在-52,π3,2,-116,3.14,0,2-1,52,|4-1|中,整数有________________;无理数有________________________. 14.小于10的正整数有________.15.若a <6<b ,且a ,b 是两个连续的整数,则a b 的立方根是________.16.根据如图所示的程序计算,若输入x 的值为64,则输出结果为________.17.有大、小两个正方体纸盒,已知小正方体纸盒的棱长是5cm ,大正方体纸盒的体积比小正方体纸盒的体积大91cm 3,则大正方体纸盒的棱长为________cm. 18.观察并分析下列数据,按规律填空:31,4,327,16,3125,________.三、解答题(共66分)19.(12分)计算:(1)38+0-14; (2)81+3-27+(1-5)0; (3)(-2)2+|1-3|+⎝⎛⎭⎫-13-1.20.(8分)比较大小,并说明理由.(1)35与6;-5+1与-2 2.21.(6分)若一个正数的平方根分别为3a-5和4-2a,求这个正数.22.(7分)已知a-17+|b+8|=0.(1)求a,b的值;(2)求a2-b2的平方根.23.(8分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+6)0的值.24.(8分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.25.(8分)已知实数a,b,c在数轴上的对应点如图所示,化简a2-|a-b|+|c-a|+(b-c)2.26.(9分)阅读理解:大家知道:2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,因为2的整数部分是1,所以我们可以用2-1来表示2的小数部分.请你解答:已知:x是10+3的整数部分,y是10+3的小数部分,求x-y+3的值.参考答案与解析1.A 2.D 3.A 4.A 5.A 6.C 7.D 8.C9.B 解析:通过近似值进行比较,3≈1.732,3-1≈0.732,3-5≈3-2.236=0.764,∴a >c >b .故选B.10.C 解析:依题意有AC =BC ,所以5-2=2-x A ,所以x A =4- 5.故选C.11.-0.4 ±0.8 12.3 13.0,|4-1| π3,2,2-1,5214.1,2,3 15.2 16.-5217.6 18.36 19.解:(1)原式=32.(4分) (2)原式=9-3+1=7.(8分)(3)原式=2+3-1-3=-2+ 3.(12分)20.解:(1)∵35<36,∴35<6.(4分)(2)∵-3<-5<-2,∴-2<-5+1<-1.又∵-2<-2<-1,∴-1<-22<-12,∴-5+1<-22.(8分)21.解:由题意得(3a -5)+(4-2a )=0,解得a =1.(3分)所以这个正数的平方根为-2和2,(5分)所以这个正数为22=4.(6分)22.解:(1)由题意知a -17=0,b +8=0,∴a =17,b =-8.(4分)(2)由(1)知a 2-b 2=172-(-8)2=225,∴±a 2-b 2=±15.(7分)23.解:(1)由题意可得m =2- 2.(4分)(2)由(1)得|m -1|+(m +6)0=|2-2-1|+1=|1-2|+1=2-1+1= 2.(8分)24.解:(1)设魔方的棱长为x cm ,由题意得x 3=216,解得x =6.(3分)答:该魔方的棱长为6cm.(4分)(2)设该长方体纸盒的长为y cm ,由题意得6y 2=600,解得y =10.(7分)答:该长方体纸盒的长为10cm.(8分)25.解:由数轴可知a <b <0,c >0,∴a -b <0,c -a >0,b -c <0,(3分)∴a 2-|a -b |+|c -a |+(b -c )2=-a -(b -a )+(c -a )+(c -b )=-a -b +a +c -a +c -b =2c -2b -a .(8分)26.解:∵11<10+3<12,(2分)∴x =11,y =10+3-11=3-1,(6分)∴x -y +3=11-3+1+3=12.(9分)。
第2章《实数》(完整版)单元检测题试卷及答案(4)

精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
2019新版北师大版八年级数学上册第2章《实数》单元测试试卷及答案(4)考试时间 90分钟一、选择题(每小题3分,共24分)1. 如果a 有算术平方根,那么a 一定是( )A. 正数B. 0C. 非负数D. 非正数2. 下列各组数中互为相反数的是( )A. 2-与2)2(-B. 2-与38-C. 2-与21-D. 2与2- 3. 下列说法正确的是( )A. 7是49的算术平方根,即749±=B. 7是2)7(-的平方根,即7)7(2=-C. 7±是49的平方根,即749=±D. 7±是49的平方根,即749±= 4. 若将三个数3-,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . 3-B . 7C . 11D . 无法确定5. 下列说法中,错误的是( )A .4的算术平方根是2B .81的平方根是±3C .121的平方根是±11D .-1的平方根是±16.若73-x 有意义,则x 的取值范围是( )A .x >37-B .x ≥ 37- C .x >37 D .x ≥37 7. 下列命题中:①有限小数是有理数;②无限小数都是无理数;③任意两个无理数的和还是无理数;④开方开不尽的数是无理数;⑤一个数的算术平方根一定是正数;⑥一个数的立方根一定比这个数小;⑦任意两个有理数之间都有有理数,任意两个无理数之间都有无理数.其中正确的有( )A . 3个 B. 4个 C. 5个 D. 6个8. a 、b 在数轴上的位置如图所示,那么化简2a b a --的结果是 ( ) A. b a -2 B. b C. b - D. b a +-2二、填空题(每小题3分,共30分)1.16的算术平方根是__________.2.320夹在整数_______和_______之间.3.若 a a -=2,则a ______0.4. 若x ,y 都是实数,且42112=+-+-y x x , 则xy 的值是_______.5. 已知数轴上点A 表示的数是2-,点B 表示的数是1-,那么数轴上到点B 的距离与点A 到点B 的距离相等的另一点C 表示的数是 .6. 化简:21428213+⨯-= . 7. 立方根等于它本身的数是 .8. 若55=-+x x 成立,则x 的值是 .9. 若115+的小数部分为a ,117-的小数部分为b ,则a +b 的值是 . 10.已知:5=a ,72=b ,且b a b a +=+,则b a -的值为 .三、解答题1.(每小题2分,共4分)把下列小数化成分数:(1)0.16= ;(2) 43.0 = . 2.(每小题2分,共4分)比较下面各组数的大小:(1) 32 23; (2)330 3.2.3.(每小题3分,共24分)计算:(1)326⨯(2) 327⨯-4(3) (3-1)2 (4)326⨯(5)1615 (6) 322127261213---(7)()27523110-+⎪⎪⎭⎫ ⎝⎛+--π(8) ()()220122011)21(814322322----+4.(3分)已知数a 、b 在数轴上的位置如图所示,化简:1a +5.(3分)已知23,23-=+=y x ,求)(22y x yx y xy x +-+++的值.6.(4分)已知a ,b ,c 都是实数,且满足(2-a )2+82++++c c b a =0,且ax 2+bx +c =0,求代数式3x 2+6x +1的值.7.(4分)作图题:如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出ABC ∆,使得AB=5,AC=10,BC=17.并注明点A 、B 、C.参考答案:一、1 C 2 A 3 B 4 B 5 D 6 D 7 A 8 C二、1.2 2. 2 3 3.≤ 4.2 5.22- 6.2 7. 0,±1 8. 5 9. 110. -2或-12三、1.⑴ 425 ⑵ 34992.⑴ < ⑵ < 3.⑴ 2 ⑵ 5 ⑶ 423- ⑷ 2 ⑸ 94 ⑹ 163 ⑺ 11343- ⑻ 442- 4.2a - 5. xy x y-+ 3- 6. 2a = 4b = 8c =- 13 7.以下为赠送内容别想一下造出大海,必须先由小河川开始。
(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数
一、选择题
1、在下列各数3.14…、0、2.0 、π-、35、7
22、27无理数的个数是 ( )A 、 1 ;B 、2 ;C 、 3 ;D 、 4。
2、一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( )
A 、整数;
B 、分数 ;
C 、有理数 ;
D 、无理数
3、下列六种说法正确的个数是 ( )A 、1 ;B 、2;C 、3;D 、4
○
1无限小数都是无理 ○2正数、负数统称有理数 ○3无理数的相反数还是无理数 ○4无理数与无理数的和一定还是无理数 ○
5无理数与有理数的和一定是无理数 ○6 无理数与有理数的积一定仍是无理数 4、下列语句中正确的是 ( )A 、3-没有意义;B 、负数没有立方根;
C 、平方根是它本身的数是0,1;
D 、数轴上的点只可以表示有理数。
5、下列运算中,错误的是( ) ①125
114425
1=,②4)4(2±=-,③22222-=-=-,④209
5141251161=+=+
A 、1个 ;
B 、2个;
C 、3个 ;
D 、4个。
6、2)5(-的平方根是( )A 、5± ;B 、5;C 、5-;D 、5±。
7、下列运算正确的是( )
A 、3311--=-;
B 、 3333=- ;
C 、 3311-=- ;
D 、3311-=- 。
8、若a 、b 为实数,且47112
2++-+-=a a a b ,则b a +的值为 ( )
A 、1± ;
B 、;
C 、3或5 ;
D 、5。
9、下列说法错误的是( )
A 、2是2的平方根;
B 、两个无理数的和,差,积,商仍为无理数;
C 、—27的立方根是—3;
D 、无限不循环小数是无理数。
10、若9,422==b a ,且0<ab ,则b a -的值为 ( )
A 、2-;
B 、5± ;
C 、5;
D 、5-。
11、数 032032032.123是 ( )
A 、有限小数 ;
B 、无限不循环小数 ;
C 、无理数 ;
D 、有理数
12、下列说法中不正确的是( )
A 、1-的立方根是1-,1-的平方是1 ;
B 、两个有理之间必定存在着无数个无理数;
C 、在1和2之间的有理数有无数个,但无理数却没有;
D 、如果62=x ,则x 一定不是有理数。
13、若51
=+m m ,则m m 1
-的平方根是( )
A 、 2± ;
B 、1± ;
C 、 1 ;
D 、 2。
14、下列关于12的说法中,错误..的是( )
A 、12是无理数;
B 、3<12<4;
C 、12是12的算术平方根;
D 、12不能再化简。
二.填空题
1、如右图:以直角三角形斜边为边的正方形面积是 ;
2、请你举出三个无理数: ;
3、9的算术平方根是 , 0)5(-的立方根是
4、在棱长为5
5、210-的算术平方根是 ,16的平方根是 ; )5(-的平方根是
6、化简:348-= ; 3164
37-= ;=-2)4( ;=-33)6( ;2)10(-= ;)—()(23322332⨯+= ;
7、如果a 的平方根等于2±,那么_____=a ;若一个正数的平方根是2x-1和-x+2,则x= ,这个正数是 ;
8、计算2·8-(2-π)0-(2
1)-1 = ; 9、已知032=++-b a ,则______)(2=-b a ;
10、计算:______1112=-+-+-x x x ;
11、若a 、b 互为相反数,c 、d 互为负倒数,则______3=++cd b a ;
12、已知x 、y 满足024242
2=+-++y x y x ,则_______16522=+y x ; 三.解答题
1、:103.14⎛⎫ ⎪⎝⎭
-1+(-π)2 2、)32)(32(-+ 3、2)52
5(- 4、2224145- 5、 )81()64(-⨯-
6、
200320042525)()(+⨯- 7、(21)-1-2--121-+(-1-2)2; 8、(-2)3+21(2004-3)0-|-2
1|; 9、210(2)(1--- 9、求x (1)
4)12=-x ( (2) 8)12(3-=-x 10、、一个长方形的长与宽的比是5:3,它的对角线长为68,求这个长方形的长与宽(结果保留两个有效数字) 。
11、先阅读下列的解答过程,然后再解答:
形如n m 2±的化简,只要我们找到两个数a 、b ,使m b a =+,n ab =,使得m b a =+22)()(,
n b a =⋅,那么便有:
例如:化简347+ 解:首先把347+化为1227+,这里7=m ,12=n ,由于4+3=7,1234=⨯ 即7)3()4(22=+,1234=⨯ ∴347+=1227+=32)34(2
+=+ 由上述例题的方法化简:42213-;
12、两位同学在打羽毛球, 一不小心球落在离地面高为6米的树上. 其中一位同学赶快搬来一架长为7米的梯子, 架在树干上, 梯子底端离树干2米远, 另一位同学爬上梯子去拿羽毛球. 问这位同学能拿到球吗?(5分)。
13、已知0)2(12=-+-ab a , 求)
2004)(2004(1)2)(2(1)1)(1(11
++++++++++b a b a b a ab 的值 14、已知a a a =-+-20052004,求22004-a 的值;
15、观察下面式子,根据你得到的规律回答:
=____;=____;=____;…… ……
求的值(要有过程)。
16、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;
①,使三角形的三边长分别为2,3,13(在图①中画出一个既可);
②,使三角形为钝角三角形且面积为4(在图②中画出一个既可),并计算你所画三角形的三边的长。
① ②
答案:
一 、1-5 D D B A D
6-10 D D C B B
11-14 D C C B
二、1.5 2. 3;π;-π(答案不唯一)
3. 3 1
4.35
5.1/10 ±4 ±1
6. 33 -3/4 4 -6 10 -6
7. 16 -1 9 8. -1 9. 25
10. 0 11. 1 12. 3
三、1. 0
2. 1
3. 9/5
4. 143
5. 72
6. 2-5
7. 4
8. -8
9. 3
9. (1)x=3或x=-1
(2)x=-1/2
10.长≈5.2 宽≈3.1
11. 解:42213-这里13=m ,42=n ,由于6+7=13,4276=⨯ 即13)7()6(22=+,4276=⨯ ∴422-13=6-7)7-
6(2= ∴42213-=6-7
12.能拿到球。
∵452-722=
又45>6,∴能拿到球 13.∵0)2(12=-+-ab a
∴1-a =0,2)2(-ab =0
∴a=1,ab=2 ∴a=1,b=2 ∴)2004)(2004(1)2)(2(1)1)(1(11
++++++++++b a b a b a ab =2006
200514313211⨯++⨯+⨯+ =)2006
1-20051()41-31()31-21(1++++ =2006
1-211+ =1003
1504 14. ∵ a a a =-+-
20052004中根据二次根式的定义,须a-2005≥0
∴a ≥2005
∴a -
2004=a-2004 ∴a a a =-+-20052004 可化为:2005-a =a-(a-2004)
即220042005=-a
∴2
2004-a =2005 15. ∵=3 (1为2位,2为1位时,3为1位)
=33
(1为4位,2为2位时,3为2位)
=333
(1为6位,2为3位时,3为3位) …… ……
∴ 位
n 位2n 222-111 =
位n 333 (1为2n 位,2为n 位时,3为n 位) 16.略。