湘教版九年级下《第1章二次函数》单元测试(A卷)含答案

合集下载

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、将抛物线()先向下平移1个单位长度,再向左平移2个单位长度后所得到的抛物线为.A. B. C.D.2、已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是()A.k>-B.k - 且k≠0C.k -D.k>- 且k≠03、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①4a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0.其中错误的个数有()A.1个B.2个C.3个D.4个4、对于二次函数的图象与性质,下列说法正确的是()A.对称轴是直线,最大值是2B.对称轴是直线,最小值是2 C.对称轴是直线,最大值是2 D.对称轴是直线,最小值是25、设函数,其图象都经过点和点,且图像又经过点、、、则函数值、、、中,最小的一个不可能是()A. B. C. D.6、已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4xB.y=x 2C.x=D.7、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是A.a>0B.3是方程ax 2+bx+c=0的一个根C.a+b+c=0D.当x <1时,y随x的增大而减小8、抛物线,如图所示,则函数y的最小值和最大值分别是()A.-3和5B.-4和5C.-4和-3D.-1和59、抛物线y=x2向左平移8个单位,再向下平移9个单位后,所得抛物线的表达式是()A.y=(x+8)2﹣9B.y=(x﹣8)2+9C.y=(x﹣8)2﹣9 D.y=(x+8)2+910、如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为m、n(),则,;④.其中正确的命题是()A.①③B.②③C.①②D.①②③④11、一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A. B. C. D.12、一台机器原价50万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,则y与x的函数关系式为()A.y=50(1﹣x)2B.y=50(1﹣2x)C.y=50﹣x 2D.y=50(1+x)213、如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0,其中正确的命题是()A.①②③B.①③C.①④D.①③④14、抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2-2x-3,则b、c的值为()A.b=2,c=2B.b=2,c=0C.b=﹣2,c=﹣1D.b=﹣3,c=215、抛物线y=ax2+bx+c的顶点坐标是(-1,3),且过点(0,5),那么二次函数y=ax2+bx+c的解析式为( )A.y=-2x 2+4x+5B.y=2x 2+4x+5C.y=-2x 2+4x-1 D.y=2x 2+4x+3二、填空题(共10题,共计30分)16、如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为________.17、已知是二次函数,则=________18、函数y=(x﹣1)2+4的对称轴是________,顶点坐标是________,最小值是________.19、已知A(﹣1,y1)、B(﹣2,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:y1________y2.20、如图,在一个与地面垂直的截面中建立直角坐标系(横坐标表示地面位移,纵坐标表示高度),一架无人机的飞行路线为y=ax2+bx+c(a≠0),在直角坐标系中x轴上的线段AB上的某点起飞,途经空中线段EF上的某点,最后在线段CD上的某点降落,其中A(﹣2,0)、B(﹣1,0)、C(3,0)、D(4,0)、E(0,3)、F(0,2),则下列结论正确的有________(填序号)⑴abc<0;⑵从起飞到当x≤1时无人机一直是上升的;⑶2≤a+b+c≤4.5;⑷最大飞行高度不超过4.21、在学完《二次函数》后,老师给小明布置了家庭作业:完成下列表格,再用描点法在同一坐标系中画出y1与y2的函数图象.x …0 1 2=ax2…________ 1 ________y1y=ax2+bx+c … 3 ________ ________2在同一坐标系内画出这两个函数的图象:小明已正确地完成作业(如图中抛物线y2的图象的对称轴为直线x=﹣1),由于不小心表格中的y2的解析式和部分数据被污渍覆盖了,请你根据作业单上的信息求出a,b,y2的解析式.22、若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为________.23、已知二次函数(为常数,)的图象开口向下,对称轴为直线,且与x轴的一个交点在点(-1,0),(0,0)之间,下列结论正确的是________(填写序号).①;②;③(m是一个常数);④若方程(m是一个常数)的根为,则.24、如图,已知抛物线与x轴交于A,B两点,对称轴与抛物线交于点C,与x轴交于点D,⊙C的半径为2,G为⊙C上一动点,P为AG的中点,则线段DP长的最大值为________.25、顶点为P的抛物线与y轴交于Q,则PQ的长为________.三、解答题(共5题,共计25分)26、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.27、如图,平行四边形ABCO在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,4),抛物线y=﹣x2+mx+n经过点A和C.(1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO分成两部分,对称轴左侧部分的图形面积记为S1,右侧部分图形的面积记为S2,求S1与S2的比.(3)在y轴上取一点D,坐标是(0,),将直线OC沿x轴平移到O′C′,点D关于直线O′C′的对称点记为D′,当点D′正好在抛物线上时,求出此时点D′坐标并直接写出直线O′C′的函数解析式.28、密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.29、已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:x …﹣1 0 1 3 4 …y …8 0 0 …(1)抛物线的对称轴是多少,点A,B的坐标是什么?(2)求二次函数y=ax2+bx+3的解析式;(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?30、已知实数a,b满足a﹣b=1,a2﹣ab+1>0,当2≤x≤3时,二次函数y=a(x﹣1)2+1(a≠0)的最大值是3,求a的值.参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、A5、B6、B7、B8、B9、A10、A11、C12、A13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、。

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、设二次函数y=2(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(0,﹣4)D.(﹣3,0)2、已知点(1,y1)、(-2,y2)、(-4,y3)都是抛物线y=-2ax2-8ax+3(a<0)图象上的点,则下列各式中正确的是()A. y1<y3<y2B. y3<y2<y1C. y2<y3<y1D. y<y2<y313、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤4、图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线,桥拱与桥墩AC的交点C恰好在水面,有AC⊥轴。

若OA=10米,则桥面离水面的高度AC为()A. 米B. 米C. 米D. 米5、二次函数(a,b,c为常数,且)中的与的部分对应值如表:…-1 0 1 3 ……-1 3 5 3 …下列结论:①;②当时,y的值随x值的增大而减小;③3是方程的一个根;④当时,.其中正确的个数为()A.4个B.3个C.2个D.1个6、对于二次函数 y=﹣x2+x﹣4,下列说法正确的是( )A..当 x>0 时,y 随 x 的增大而增大B.图象的顶点坐标为(﹣2,﹣7) C.当 x=2 时,y 有最大值﹣3 D.图象与 x 轴有两个交点7、若点(2,0),(4,0)在抛物线y=x2+bx+c上,则它的对称轴是()A.x=﹣B.x=1C.x=2D.x=38、原价为100元的某种药品经过连续两次降价后为64元,设平均每次降价的百分率为x,则下面所列方程正确的是()A.100(1﹣x)2=64B.64(1﹣x)2=100C.100(1﹣2x)=64 D.64(1﹣2x)=1009、二次函数y=x2﹣2的图象的顶点是()A.(2,﹣2)B.(﹣1,0)C.(1,9)D.(0,﹣2)10、将抛物线向左平移2个单位,再向上平移2个单位,得到的抛物线解析式为().A. B. C. D.11、如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A. cm 2B. cm 2C. cm 2D. cm 212、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,其中对称轴为:x=1,则下列4个结论中正确的结论有()个①abc<0;②a+c>b;③2a+3b>0;④a+b>am2+bm(m≠1);⑤c<-2a.A.2个B.3个C.4个D.5个13、下列关于二次函数y=x2+2x+3的最小值的描述正确的是()A.有最小值是2B.有最小值是3C.有最大值是2D.有最大值是314、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个15、由二次函数y=2(x-3)2+1,可知()A.其图象的开口向下B.其图象的对称轴为直线x=-3C.其最小值为1 D.当x<3时,y随x的增大而增大二、填空题(共10题,共计30分)16、如图,抛物线y=x2﹣4与x轴交于 A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连接OQ,则线段OQ的最小值是________.17、如图是二次函数图象的一部分,其对称轴为,且过点.下列说法:①;②;③;④若是抛物线上两点,则.其中说法正确的是________18、二次函数用配方法可化成的形式,其中________,________.19、若抛物线y=ax2+bx+c的开口向下,则a的值可能是________.(写一个即可)20、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列由5个结论:①abc<0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1).其中正确的结论有________.21、如图,抛物线y=ax²+c与直线y=mx+n交于A(-1,p),B(3,q)两点,则不等式ax²-mx+c<n的解集是________。

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、将二次函数y=2x2的图象向左平移1个单位,则平移后的函数解析式为( )A.y=2x 2﹣1B.y=2x 2+1C.y=2(x﹣1) 2D.y=2(x+1) 22、如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1, x2,其中-2<x1<-1,0<x2<1,下列结论(1)4a-2b+c<0;(2)2a-b<0;(3)a-3b>0;(4)b2+8a<4ac;其中正确的有( )A.1个B.2个C.3个D.4个3、二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠04、将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2D.y=(x ﹣2)2﹣35、设函数,,若当时,,则()A.当时,B.当时,C.当时, D.当时,6、已知函数①y=5x﹣4,②t= x2﹣6x,③y=2x3﹣8x2+3,④y= x2﹣1,⑤y=+2,其中二次函数的个数为()A.1B.2C.3D.47、二次函数y=x2﹣bx+b﹣2图象与x轴交于点A(x1, 0),B(x2, 0),且0<x1<1,2<x2<3,则满足条件的b的取值范围是()A.b>﹣1B.1<b<2C.D.8、已知二次函数 y=ax2+bx+c,函数 y 与自变量 x 的部分对应值如下表:…—4 —3 —2 —1 0 ……3 —2 —5 —6 —5 …则下列判断中正确的是()A.抛物线开口向下B.抛物线与 y 轴交于正半轴C.方程 ax2+bx+c=0 的正根在1与2之间 D.当 x=-3 时的函数值比 x=1.5 时的函数值大9、如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1B.C.D.10、已知二次函数y=x²-2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1,则a的值为( )A.a=1B.1≤a<2C.1<a≤2D.1≤a≤211、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1.有下列结论:①b2=4ac ②abc>0 ③a>c ④4a+c>2b.其中结论正确的个数是()A.1个B.2个C.3个D.4个12、若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(-3,-6)B.(-3,0)C.(-3,-5)D.(-3,-1)13、已知二次函数的图象如图所示,则下列结论:①;②方程有两个不相等的异号根;随的增大而增大;④,其中正确的个数( )A.4个B.3个C.2个D.1个14、对于抛物线y=−(x+4) +2,下列结论:①抛物线的开口向下;②对称轴为直线x=4;③顶点坐标为(−4,2);④x>4时,y随x的增大而减小,其中正确结论的个数为()A.1个B.2个C.3个D.4个15、下列各式中,y是x的二次函数的是()A. y=3 x﹣1B. y=C. y=3 x2+ x﹣1D. y=2 x2+二、填空题(共10题,共计30分)16、二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有________.17、如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是________ .18、已知抛物线y=ax2﹣4ax与x轴交于点A、B,顶点C的纵坐标是﹣2,那么a=________.19、将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为________.20、一个边长为3厘米的正方形,若它的边长增加x厘米,面积随之增加y平方厘米,则y关于x的函数解析式是________.(不写定义域)21、如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,以下四个结论正确的是(用序号表示)________.( 1 )图象的对称轴是直线x=1(2)当x>1时,y随x的增大而减小(3)一元二次方程ax2+bx+c=0的两个根是﹣1和3(4)当﹣1<x<3时,y<0.22、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是________.(只填序号即可).23、如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述判断中,正确的是________.24、抛物线y=ax2+bx﹣3经过点(1,1),则代数式a+b的值为________25、已知抛物线y=ax2-3x+a2-1经过坐标原点,且开口向下,则实数a的值为________.三、解答题(共5题,共计25分)26、已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.27、已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9).(1)求该二次函数的解析式并写出其对称轴;(2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).28、如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.29、已知一个二次函数的图像经过点(4,1)和(-1,6).(1)求这个二次函数的解析式;(2)求这个二次函数图像的顶点坐标和对称轴.30、工艺商场以每件元购进一批工艺品.若按每件元销售,工艺商场每天可售出该工艺品件.若每件工艺品降价元,则每天可多售出工艺品件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、B5、D6、B7、C8、C9、D10、D11、C12、B13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()A. B. C. D.2、对于抛物线y=﹣,下列说法正确的是()A.开口向上,顶点坐标(-5,3)B.开口向上,顶点坐标(5,3) C.开口向下,顶点坐标(-5,3) D.开口向下,顶点坐标(5,3)3、抛物线(其中,是常数)过点,且抛物线的对称轴与线段有交点,点的坐标为,点的坐标为,则的值不可能是().A.9B.11C.13D.154、将二次函数y=x2﹣4x﹣1化为y=(x﹣h)2+k的形式,结果为()A.y=(x+2)2+5B.y=(x+2)2﹣5C.y=(x﹣2)2+5 D.y=(x﹣2)2﹣55、二次函数y=x2+5x+4,下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣6、抛物线可以由抛物线平移得到,下列平移正确的是()A.先向左平移3个单位长度,然后向上平移1个单位B.先向左平移3个单位长度,然后向下平移1个单位C.先向右平移3个单位长度,然后向上平移1个单位D.先向右平移3个单位长度,然后向下平移1个单位7、在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出以下结论:①abc <0;②c+2a<0;③9a-3b+c=0;④a-b≥m(am+b) (m为实数):⑤4ac-b2<0。

其中错误结论的个数有( )A.1个B.2个C.3个D.4个8、抛物线y=2(x﹣1)2+3的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)9、在□6x□9的空格中,任意填上“+”或“-”,可组成若干个不同的二次函数,其中其图象的顶点在x轴上的概率为( )A. B. C. D.110、二次函数图像如图所示,下列结论:①,②,③,④方程的解是-2和4,⑤不等式ax2+bx+c<0的解集是,其中正确的结论有()A.2个B.3个C.4个D.5个11、二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则正确的结论是()A.abc>0B.3a +c<0C.4a+2b+c<0D.b 2 -4ac<012、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①抛物线的对称轴为x=﹣1;②abc=0;③方程ax2+bx+c+1=0有两个不相等的实数根;④无论x取何值,ax2+bx≤a﹣b.其中,正确的个数为()A.4B.3C.2D.113、已知二次函数(其中是自变量),当时,随的增大而减小,且时,的最小值为15,则的值为()A.1或-2B. 或C.-2D.114、抛物线y=2(x+4)2+3的顶点坐标是()A.(0,1)B.(1,5)C.(4,3)D.(﹣4,3)15、已知抛物线y=ax2+bx+c如图所示,则下列结论中,正确的是()A.a>0B.a-b+c>0C.b 2-4ac<0D.2a+b=0二、填空题(共10题,共计30分)16、如图,小明在校运动会上掷铅球时,铅球的运动路线是抛物线y=﹣(x+1)(x﹣7).铅球落在A点处,则OA长=________米.17、一个边长是5的正方形,当边长增加x时,面积增加y,则y与x之间的函数关系式为________.18、汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=15t﹣6t2,汽车从刹车到停下来所用时间是________秒.19、如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②3a+c=0;③ax2+bx≤a+b;④若M(﹣3,y1)、N(6,y2)为函数图象上的两点,则y1<y2,其中正确的是________.(只要填序号)20、抛物线y=x2-(m+2)x+9的顶点在坐标轴上,则m的值为________.21、如图,抛物线y=﹣x2+bx+c与x轴交于点A、B,与y轴交于点C,点O为坐标原点,点D为抛物线顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF =3,则△ABD的面积为________.22、若抛物线y=ax2+c与y=2x2的形状相同,开口方向相反,且其顶点是(0,-3),则该抛物线的函数解析式是________.23、若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=________.24、已知函数y=ax2+bx+c中,函数值与自变量的部分对应值如表,则方程ax2+bx+c =0的一个解的范围为________.x…… 2.41 2.54 2.67 2.75 ……y……-0.43 -0.17 0.12 0.32 ……25、如图,△ABC是边长为8的等边三角形,F是边BC上的动点,且DF⊥AB,EF⊥AC.则四边形ADFE的面积最大值是________.三、解答题(共5题,共计25分)26、求二次函数y=x2+4x﹣5的最小值.27、已知二次函数的顶点坐标为(3,-1),且其图象经过点(4,1),求此二次函数的解析式.28、一个二次函数的图象顶点坐标为(2,1),形状与抛物线相同,求这个函数解析式。

九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)

九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)

九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)一、单选题1.二次函数y=(x-3)2+1的最小值是( )A .3B .-3C .1D .-12.将二次函数 2(1)y x =- 的图象向左平移1个单位长度, 再向上平移2个单位后, 所得图象 的函数解析式是( )A .2(2)2y x =-+B .2(2)2y x =--C .22y x =-D .22y x =+3.抛物线y=2(x-1)2-2的对称轴是( ) A .直线 1x =- B .直线 1x = C .直线 2x = D .直线 2x =- 4.已知二次函数 223y x x =-++ ,当x≥2时,y 的取值范围是( )A .y≥3B .y≤3C .y >3D .y <35.如果抛物线 ()22y a x =+ 开口向下,那么 a 的取值范围为( )A .2a >B .2a <C .2a >-D .2a <-6.二次函数y=x 2-2x+2的图象顶点在第( )象限.A .一B .二C .三D .四7.在下列函数中,其图象与x 轴没有交点的是( )A .y=2xB .y=﹣3x+1C .y=x 2D .y= 1x8.如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()20A -,和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a b c->;②241b ac -=;③14a =;④21cb =-.其中正确的有( )A .1个B .2个C .3个D .4个9.函数 2y ax 3ax 1(a 0)=++> 的图象上有三个点分别为 ()1A 3y -, , ()2B 1y -, ,31C y 2⎛⎫ ⎪⎝⎭, ,则 1y , 2y , 3y 的大小关系为( ) A .123y y y <<B .213y y y <<C .321y y y <<D .1y , 2y , 3y 的大小不确定10.已知a ,b 是抛物线y =(x ﹣c )(x ﹣c ﹣d )﹣3与x 轴交点的横坐标,a <b ,则|a ﹣c|+|c ﹣b|化简的结果是( )A .b ﹣aB .a ﹣bC .a+b ﹣2cD .2c ﹣a ﹣b二、填空题11.二次函数 ()2223y x =-+- 的对称轴是直线 .12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度 ()m y 与水平距离 ()m x 之间的关系为 ()215312y x =--+ ,由此可知铅球推出的距离是 m . 13.二次函数()223y mx mx m =+--的图象如图所示,则m 的取值范围是 .14.如图,在△ABC 中,AB=AC=10,点D 是边BC 上一动点(不与B ,C 重合),△ADE=△B=α,DE 交AC 于点E ,且cosα= 45.下列结论: ①△ADE△△ACD ; ②当BD=6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8; ④0<CE≤6.4.其中正确的结论是 .(把你认为正确结论的序号都填上)三、解答题15.如图,在△ABC 中,△B=90°,AB=12,BC=24,动点P 从点A 开始沿边AB 向终点B 以每秒2个单位长度的速度移动,动点Q 从点B 开始沿边BC 以每秒4个单位长度的速度向终点C 移动,如果点P 、Q 分别从点A 、B 同时出发,那么△PBQ 的面积S 随出发时间t (s )如何变化?写出函数关系式及t 的取值范围.16.在一块等腰直角三角形铁皮上截一块矩形铁皮,如图,已有的铁皮是等腰直角三角形ABC,它的底边AB长20厘米.要截得的矩形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,设EF的长为x厘米,矩形EFGD的面积为y平方厘米,试写出y关于x的函数解析式及定义域,并求当EF的长为4厘米时所截得的矩形的面积,17.在平面直角坐标系中,二次函数的图象经过A(-2,0),B(4,0),C(1,3)三点.求这个二次函数的解析式.18.如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1。

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如果二次函数的图像如图所示,那么一次函数的图像经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限 D.第二、三、四象限2、二次函数y=-2x2+4x+1的对称轴和顶点坐标分别是()A.x=-1,(1,3)B.x=-1,(-1,3)C.x=1,(-1,3) D.x=1,(1,3)3、二次函数y=x2﹣2x﹣3的最小值为()A.5B.0C.﹣3D.﹣44、对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象过点(0,﹣3)B.图象与x轴的交点为(1,0),(﹣3,0) C.此函数有最小值为﹣6 D.当x<1时,y随x的增大而减小5、如图,已知二次函数的部分图象与坐标轴交于A(3,0)和C(0,2)两点,对称轴为直线,当函数值>0时,自变量的取值范围是( )A. <3B.0≤<3C.-2<<3D.-1<<36、已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是()A. B. C. D.7、函数中,当时,函数值的取值范围是()A. B. C. D.8、已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x 轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a >0,则当x≥1时,y随x的增大而增大9、代数式的最小值是()A. B. C. D.-110、如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )A.1个B.2个C.3个D.411、若抛物线y=(m﹣1)x 开口向下,则m的取值是()A.﹣1或2B.1或﹣2C.2D.﹣112、下列函数中不是二次函数的有()A.y=x(x﹣1)B.y= ﹣1C.y=﹣x 2D.y=(x+4)2﹣x 213、如图坐标平面上有一透明片,透明片上有一拋物线及一点P,且拋物线为二次函数y=x2的图形,P的坐标(2,4)。

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A.c>0B.2a+b=0C.b 2﹣4ac>0D.a﹣b+c>02、已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x 轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a >0,则当x≥1时,y随x的增大而增大3、抛物线与y轴的交点坐标为()A.(7,0)B.(-7,0)C.(0,7)D.(0,-7)4、抛物线的对称轴是()A.直线B.直线C.直线D.直线5、直角坐标平面上将二次函数y=x2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,-1)C.(0,-1)D.(-1,-1)6、已知y=bx﹣c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()A. B. C.D.7、二次函数图像的顶点坐标是()A. B. C. D.8、二次函数y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)9、已知抛物线和直线l在同一直角坐标系中的图像如图所示,抛物线的对称轴为直线x=﹣1,P1(x1, y1),P2(x2, y2)是抛物线上的点,P3(x3, y3)是直线l上的点,且x3<﹣1<x1<x2,则y1, y2, y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y310、已知关于x的方程|x2+ax|=4有四个不相等的实数根,则a的取值范围是()A. 或B. 或C.D.11、二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b+c,N=a-b+c,P=4a+2b则()A.M>0,N>0,P>0B.M>0,N<0,P>0C.M<0,N>0,P>0 D.M<0,N>0,P<012、若抛物线y=x2-4x-12与x轴交于点A,B,与y轴交于点C,则△ABC的面积为()A.24B.36C.48D.9613、下列函数关系中,满足二次函数关系的是()A.距离一定时,汽车行驶的速度与时间之间的关系B.在弹性限度内,弹簧的长度与所挂物体的质量之间的关系C.等边三角形的周长与边长之间的关系D.圆心角为100°的扇形面积与半径之间的关系14、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2-4ac>0,其中正确的个数是( )A.1B.2C.3D.415、将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能够成等边三角形,那么平移的距离为()A.1个单位B. 个单位C. 个单位D. 个单位二、填空题(共10题,共计30分)16、已知函数y= (m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为________.17、如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为________.18、抛物线y=2(x﹣1)2﹣1与y轴的交点坐标是________19、二次函数y=x2+(k+4)x+k的图象与x轴两个交点间的最短距离为________。

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,抛物线=与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③>0;④当时,随的增大而增大;⑤≤(m为实数),其中正确的结论有()A.2个B.3个C.4个D.5个2、抛物线y=2(x-1)2-3的顶点、对称轴分别是( )A.(-1,-3),x=-1B.(1,-3), x=-1C.(1,-3), x =1D.(-1,-3),x=13、如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是()A. B. C. D.4、已知抛物线的顶点坐标是(-3,-5),且开口向下,则此抛物线对应的二次函数有()A.最小值-3B.最大值-3C.最小值-5D.最大值-55、函数y=(x﹣1)2﹣2的图象可看作由函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度6、将抛物线向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A. B. C. D.7、方程x2+4x﹣+1=0的正数根的取值范围是()A.0<x<1B.1<x<2C.2<x<3D.3<x<48、函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A. B. C.D.9、把函数图象向右平移1个单位长度,平移后图象的函数解析式为()A. B. C. D.10、抛物线的顶点坐标是()A.(1,﹣3)B.(1,3)C.(﹣1,3)D.(﹣1,﹣3)11、已知抛物线(是常数,)的顶点坐标是,与x轴的一个交点在点和点之间,其部分图象如图所示.有下列结论:①;②关于x的方程有两个不相等的实数根;③.其中,正确结论的个数是()A.0B.1C.2D.312、已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A. B. C. 或 D. 或13、自由落体公式h=gt2(g为常量),h与t之间的关系是()A.正比例函数B.一次函数C.二次函数D.以上答案都不对14、下列函数图象经过变换后,过原点的是()A. 向右平移3个单位B. 向左平移3个单位C. 向上平移1个单位D. 关于x 轴作轴对称变换15、二次函数的图象如图所示,下列结论:①;②;③m为任意实数,则;④;⑤若且,则.其中正确的有()A.①④B.③④C.②⑤D.②③⑤二、填空题(共10题,共计30分)16、二次函数的图象经过原点,则m=________.17、如图,在平面直角坐标系中,正方形ABCD的顶点A、B的坐标分别为(0,2)、(1,0),顶点C在函数y=x2+bx-1的图象上,将正方形ABCD沿x轴正方向平移后得到正方形A′B′C′D′,点D的对应点D′落在抛物线上,则点D与其对应点D′之间的距离为 ________.18、二次函数y=﹣x2﹣4x+k的最大值是9,则k=________.19、已知A(﹣1,y1),B(,y2),C(2,y3)三点都在二次函数y=ax2﹣1(a>0)的图象上,那么y1, y2, y3的大小关系是________.(用“<”连接)20、二次函数与y轴交点的坐标为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(一) 二次函数(A 卷) (时间:45分钟 满分:100分)
一、选择题(每小题3分,共30分)
1.下列各式中,y 是x 的二次函数的是(B)
A .xy +x 2=1
B .x 2
-y +2=0 C .y =1
x
2
D .y 2
-4x =3
2.抛物线y =(x -1)2
+1的顶点坐标为(A) A .(1,1) B .(1,-1) C .(-1,1) D .(-1,-1)
3.将二次函数y =x 2-4x -4化为y =a(x -h)2
+k 的形式,正确的是(D)
A .y =(x -2)2
B .y =(x +2)2
-8
C .y =(x +2)2
D .y =(x -2)2
-8
4.抛物线y =2x 2
向右平移3个单位长度,再向下平移5个单位长度,得到的抛物线的表达式为(A)
A .y =2(x -3)2-5
B .y =2(x +3)2
+5
C .y =2(x -3)2+5
D .y =2(x +3)2
-5
5.关于函数y =3x 2
的性质的叙述,错误的是(B) A .顶点是原点 B .y 有最大值
C .当x >0时,y 随x 的增大而增大
D .当x<0时,y 随x 的增大而减小
6.在平面直角坐标系中,二次函数y =a(x -h)2
(a≠0)的图象可能是(D)
A B C D
7.小颖用计算器探索方程ax 2
+bx +c =0的根,作出如图所示的图象,并求得一个近似根x =-3.4,则方程的另一个近似根为(精确到0.1)(D)
A .4.4
B .3.4
C .2.4
D .1.4
8.如图,某运动员在10 m 跳台跳水比赛时估测身体(看成一点)在空中的运动路线是抛物线y =-256x 2+10
3x(图中
标出的数据为已知条件),运动员在空中运动的最大高度距离水面(D) A .10 m
B .102
5
m
C .91
3
m
D .1023
m
9.二次函数y =ax 2
+bx +c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b ;④b 2
-4ac >0,其中正确的个数是(C)
A .1
B .2
C .3
D .4
10.如图,一段抛物线:y =-x(x -2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1.将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…,如此进行下去,得到C n .若点P(2 019,m)在抛物线C n 上,则m 为(A)
A .-1
B .1
C .2
D .3
二、填空题(每小题4分,共24分)
11.抛物线y =(x -1)2
+5与y 轴交点的坐标是(0,6).
12.已知抛物线y =ax 2
-3x +c(a≠0)经过点(-2,4),则4a +c -1=-3.
13.如图,已知二次函数y =x 2
-4x -5与x 轴交于A ,B 两点,则AB 的长度为6.
14.已知点A(x 1,y 1),B(x 2,y 2)在二次函数y =-x 2
-2x 的图象上.若x 1>x 2>-1,则y 1<y 2.(填“>”“<”或“=”)
15.出售某种文具盒,若每个获利x 元,一天可售出(6-x)个,则当x =3元时,一天出售该种文具盒的总利润最大.
16.某学习小组为了探究函数y =x 2
-|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些
三、解答题(共46分)
17.(10分)已知抛物线y =3x 2
-2x +4.
(1)通过配方,将抛物线的表达式写成y =a(x -h)2
+k 的形式; (2)写出抛物线的开口方向和对称轴.
解:(1)y =3x 2-2x +4=3[x 2
-23x +(13)2-(13)2]+4=3(x -13)2-13+4=3(x -13)2+113.
(2)开口向上,对称轴是直线x =1
3
.
18.(10分)已知抛物线y =-x 2
+2(m -1)x +m +1.
(1)求证:无论m 取何值,抛物线与x 轴总有两个不同的交点;
(2)若抛物线与x 轴交于A ,B 两点,且A 点在原点的右边,B 点在原点的左边,求m 的取值范围.
解:(1)证明:∵b 2-4ac =[2(m -1)]2-4×(-1)×(m+1)=(2m -1)2
+7>0, ∴抛物线与x 轴总有两个不同的交点.
(2)设A(x 1,0),B(x 2,0),则x 1>0,x 2<0, ∴x 1x 2=-(m +1)<0. ∴m>-1.
19.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m ,平行于墙的边的费用为200元/m ,垂直于墙的边的费用为150元/m ,设平行于墙的边长为x m. (1)设垂直于墙的一边长为y m ,直接写出y 与x 之间的函数关系式;
(2)若菜园面积为384 m 2
,求x 的值; (3)求菜园的最大面积.
解:(1)根据题意知,y =10 000-200x 2×150=-23x +100
3.
(2)根据题意,得(-23x +100
3)x =384,
解得x =18或x =32.
∵墙的长度为24 m ,∴x=18.
(3)设菜园的面积是S ,则S =(-23x +1003)x =-23(x -25)2
+1 2503.
∵-2
3<0,∴当x <25时,S 随x 的增大而增大.
∵x≤24,
∴当x =24时,S 取得最大值,最大值为416.
答:菜园的最大面积为416 m 2
.
20.(14分)如图,顶点为(12,-94
)的抛物线y =ax 2
+bx +c 过点M(2,0).
(1)求抛物线的表达式;
(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =k
x
(k >0)图象上一点,若以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.
解:(1)依题意可设抛物线为y =a(x -12)2-9
4,将点M(2,0)代入,得
a(2-12)2-9
4=0,解得a =1.
∴抛物线的表达式为y =(x -12)2-94
.
(2)当y =0时,(x -12)2-9
4=0,
解得x 1=-1,x 2=2,∴A(-1,0).
当x =0时,y =(x -12)2-9
4=-2,∴B(0,-2).
在Rt△OAB 中,OA =1,OB =2,∴AB= 5.
设直线y =x +1与y 轴的交点为G ,易求G(0,1), ∴Rt△AOG 为等腰直角三角形.∴∠AGO=45°.
∵点C 在y =x +1上且在x 轴下方,而k >0,所以y =k
x 的图象位于第一、第三象限,故点D 只能在第一、第三象
限,因而符合条件的菱形中有如下两种情况:
①此菱形以AB 为边且AC 也为边,如图1所示,k =5
2+10.
②此菱形以AB 为对角线,如图2所示,k =5
4
.
图1 图2。

相关文档
最新文档