简单几何体的表面展开图
小学数学竞赛第六讲 简单几何体的表面积与体积的计算

第六讲简单几何体的表面积与体积的计算一、四种常见几何体的平面展开图1.正方体沿正方体的某些棱将正方体剪开铺平,就可以得到它的平面展开图,这一展开图是由六个全等的正方形组成的,见图6—1。
图6─l只是正方体平面展开图的一种画法,还有别的画法(从略)。
2.长方体沿长方体的某些棱将长方体剪开铺平,就可以得到它的平面展开图。
这一展开图是六个两两彼此全等的长方形组成的,见图6—2。
图6—2只是长方体平面展开图的一种画法,还有别的画法(从略)。
3.(直)圆柱体沿圆柱的一条母线和侧面与上、下底面的交线将圆柱剪开铺平,就得到圆柱体的平面展开图。
它由一个长方形和两个全等的圆组成,这个长方形的长是圆柱底面圆的周长,宽是圆柱体的高。
这个长方形又叫圆柱的侧面展开图。
图6—3就是圆柱的平面展开图。
4.(直)圆锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图。
它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图。
具体图形见图6—4。
二、四种常见几何体表面积与体积公式1.长方体长方体的表面积=2×(a×b+b×c+c×a)长方体的体积=a×b×c(这里a、b、c分别表示长方体的长、宽、高)。
2.正方体正方体的表面积=6×a2正方体的体积=a3(这里a为正方体的棱长)。
3.圆柱体圆柱体的侧面积=2πRh圆柱体的全面积=2πRh+2πR2=2πR(h+R)圆柱体的体积=πR2h(这里R表示圆柱体底面圆的半径,h表示圆柱的高)。
4.圆锥体圆锥体的侧面积=πRl圆锥体的全面积=πRl+πR2母线长与高)。
三、例题选讲例1 图6—5中的几何体是一个正方体,图6—6是这个正方体的一个平面展开图,图6—7(a)、(b)、(c)也是这个正方体的平面展开图,但每一展开图上都有四个面上的图案没画出来,请你给补上。
初中数学精品课件: 三视图与表面展开图

A. 国 C. 中
【答案】 B
图 33-4
B. 的 D. 梦
5.(2019·淄博)下列几何体中,其主视图、左视图和俯视图完
全相同的是
()
A.
B
C.
D.
【答案】 D
题型一 判断物体的三视图
三视图是分别从正面、左面、上面三个方向看同一个物体 所得到的平面图形,判断三视图时应注意尺寸的大小,即三个 视图的特征:主视图体现物体的长和高,左视图体现物体的宽 和高,俯视图体现物体的长和宽.
【典例 2】 (2018·青岛)一个由 16 个完全相同的小立方
体搭成的几何体,其最下面一层摆放了 9 个小立方体,
它的主视图和左视图如图 33-7 所示,则这个几何体的
搭法共有
种.
图 33-7
【解析】 这个几何体的搭法共有 10 种,如解图所示.
【答案】 10
(典例 2 解)
【类题演练 2】 如图 33-8 所示的三视图所对应的几何体是 ( )
图 33-9
A. 25π
B. 24π
C. 20π
D. 15π
【解析】 由主视图可知圆锥的底面直径为 8,
∴底面半径 r=4.
由左视图可知圆锥的高为 3,
∴母线长 l= 32+42=5,
∴S 圆锥侧=πrl=20π.
【答案】 C
【类题演练 3】 (2019·甘肃)已知某几何体的三视图如图 33-10 所示,其
的小立方体搭成,下列说法正确的是
()
A. 主视图的面积为 4
B. 左视图的面积为 4
C. 俯视图的面积为 3
D. 三种视图的面积都为 4
【答案】 A
图 33-18
4.若一个几何体的三视图如图 33-19 所示,则该几何 ( ) A. 直三棱柱 B. 长方体 C. 圆锥 D. 立方体
浙教版数学九年级下册《3.4 简单几何体的表面展开图》教案4

浙教版数学九年级下册《3.4 简单几何体的表面展开图》教案4一. 教材分析《3.4 简单几何体的表面展开图》是浙教版数学九年级下册的教学内容。
这部分内容主要让学生了解和掌握简单几何体的表面展开图的特点和绘制方法。
通过学习,学生能够更好地理解几何体的空间结构,提高空间想象能力。
二. 学情分析九年级的学生已经掌握了基本的几何知识,具备一定的学习能力和探究精神。
但部分学生在空间想象力方面还稍显不足,因此需要在教学过程中给予更多的引导和鼓励。
三. 教学目标1.了解简单几何体的表面展开图的特点和绘制方法。
2.提高学生的空间想象能力和动手操作能力。
3.培养学生的合作意识和创新精神。
四. 教学重难点1.重难点:简单几何体的表面展开图的特点和绘制方法。
2.难点:如何培养学生的空间想象能力和动手操作能力。
五. 教学方法1.采用问题驱动法,引导学生主动探究和发现。
2.运用合作学习法,培养学生的团队协作能力。
3.利用动手操作法,提高学生的实践能力。
4.引入案例分析法,帮助学生更好地理解和应用知识。
六. 教学准备1.准备简单几何体的模型,如长方体、正方体、圆柱体等。
2.准备相应的表面展开图,以便进行对比和分析。
3.准备黑板和多媒体设备,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用多媒体展示各种简单几何体的图片,引导学生观察和思考:这些几何体有什么特点?它们在现实生活中的应用有哪些?2.呈现(10分钟)展示简单几何体的模型和表面展开图,让学生直观地感受两者的关系。
引导学生发现和总结几何体的表面展开图的特点。
3.操练(10分钟)学生分组讨论,每组选择一个几何体,尝试绘制其表面展开图。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)挑选几组学生的作品进行展示和点评,让学生互相学习和借鉴。
教师总结几何体表面展开图的绘制方法和注意事项。
5.拓展(10分钟)引导学生思考:如何将一个几何体展开成多个部分?这些部分之间有什么联系?学生分组探讨,教师点评和指导。
九年级数学下册《简单几何体的表面展开图》教学设计

九年级数学下册《简单几何体的表面展开图》教学设计一、教材分析本节课的内容是新版浙教版教材变动幅度较大的一个地方,将原教材中的八上的《直棱柱》、九上的《3.6圆锥的侧面积和全面积》与九下的《投影与三视图》进行整合,并且改变了呈现的顺序,最后整合成的九下第三章《三视图与表面展开图》.这样的修订,使教材更加紧凑,逻辑性更强,符合学生的认知规律,也便于教师教学.本节课内容是在学生已经初步具备空间观念(即三视图的相关知识)的前提下,在学生已熟知圆的周长、面积,弧长、扇形的面积;初步积累直棱柱、圆柱的表面展开图的数学活动经验的基础上,通过类比、操作、实验、观察、猜想、归纳、证明等数学活动,将简单几何体(圆锥)转化为平面图形,进一步帮助学生形成三维空间概念,发展空间想象能力;同时,为学习圆台的侧面展开图做好铺垫,也为高中的立体几何学习打好基础.二、教学目标知识与技能目标:1、知识目标:(1)了解圆锥是怎样的一种旋转体.(2)了解圆锥的表面展开图,并会画圆锥的表面展开图;理解圆锥的侧面积公式,全面积公式,侧面展开图的圆心角公式及其推导过程.(3)会计算圆锥的侧面积和全面积,会计算圆锥侧面展开图的圆心角.2、技能目标:(1)通过动手操作、小组合作来探索圆锥的侧面积公式和侧面展开图的圆心角公式,并画出圆锥的侧面展开图,从而培养学生动手操作、合作交流、归纳概括的能力.(2)通过观察圆锥与侧面展开图的关系培养学生观察、分析和转化的能力,形成三维空间概念,发展空间想象能力.(3)通过运用公式的计算和“用一用”的求解,培养学生应用数学知识解决实际问题的能力.旨在培养学生探究、应用数学和创新的能力.过程与方法目标:(1)类比圆柱的学习,经历圆锥形成、相关概念的发生过程.(2)通过观察、猜想、操作、合作等活动,经历自主探究的认识过程,即从观察、比较、分析、归纳中,体会类比、转化、对应的思想方法.旨在培养学生的科学态度和科学精神.情感态度与价值观目标:(1)通过研究圆锥与侧面展开图的关系,类比圆柱研究圆锥并延伸至圆台,体验客观事物是不断运动发展变化,而事物之间总是互相联系、互相制约的辩证唯物主义观点.(2)通过动手操作、合作探究,激发学生对圆锥知识的好奇心及兴趣,逐步形成积极参与数学活动,主动与他人合作交流的意识.(3)体现数学学习的快乐,体会知识源于实践,又运用于生活.旨在让学生体会圆锥在生活中的广泛应用;体验数学学习的乐趣,享受征服困难后获得成功的喜悦感,提高应用数学的意识.三、教学重难点重点:认识圆锥的表面展开图,并会画它们的表面展开图.难点:理解圆锥侧面展开图的形状,以及它与圆锥母线长l,底面圆半径r之间的关系.教学设备或教辅工具:多媒体、希沃授课助手和手机、圆锥模型、圆规、带刻度的直尺、剪刀、胶带、半径为4cm和6cm的圆形纸片.四、教学流程1.类比联想,引入新课教师:上节课我们学习了圆柱的表面展开图,对于圆柱,我们已经有了哪些认识?学生说教师板书:1、形成;2、相关概念;3、表面展开.;4、三视图教师:将矩形绕它的一条边旋转一周,它的其余各边所成的面围成的一个几何体是圆柱,如果把矩形改成直角三角形,将一个直角三角形绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体是什么?(1)先让学生自己猜想.(2.教师再用几何画板演示.(3.类比圆柱的相关概念,学生很自然地能说出圆锥的相关概念.(4.类比圆柱的学习,学生很自然地能说出圆锥的研究路径和方法.2.合作探究,发现新知等学生通过类比圆柱的学习,联想到圆锥的研究途径和方法后,教师:现在我们就来研究圆锥的侧面展开图,想象一下,会是什么图形?学生猜想是扇形后,教师组织学生进行四人小组合作,剪出圆锥模型的展开图,观察剪出图形的特点,再一起合作完成以下问题串:(1.将一个圆锥模型的侧面沿它的一条母线剪开、铺平.观察所得的平面图形是什么图形?(2.圆锥的母线与侧面展开图有什么关系?(3.圆锥的底面周长与侧面展开图有什么关系?(4.圆锥的侧面积与侧面展开图的面积有什么关系?请一个小组上台展示,并把展开图用磁铁挂在黑板上,并进行讲解,教师再用课件动画演示,实物模型演示.通过这些活动后,“圆锥的母线对应扇形的半径;圆锥的底面周长对应扇形的弧长;圆锥的侧面积对应扇形的面积”已经在学生的脑海中自然流淌.教师板书:对应.教师:类比圆柱的侧面积公式,你觉得圆锥的侧面积和哪些量有关?学生回答后,教师:如果已知圆锥的底面半径r和母线l,你能推导出圆锥的侧面积吗?学生自己思考,推导出圆锥的侧面积.全面积公式.教师:我们观察圆锥的侧面积和哪个公式在形式上很相似?学生回答:借助几何画板的演示,学生体悟这些公式之间的联系,加深对侧面积公式的理解.3.多样应用,内化新知3..我来算一算已知一个圆锥的底面半径为3cm,母线长为6cm,则这个圆锥的侧面积为_________,全面积为__________3..我来判一判学生判断这句话不对,并解释了理由.教师提炼:圆锥的高h,底面半径r和母线l的数量关系式..3..我来想一想圆锥形烟囱帽(如图)的母线长为100cm,高为60cm.变“封闭”为“开放”,让学生进行联想,自己编题.教师:做烟囱帽时,往往先在铁皮上画好扇形,然后裁剪下来围成圆锥的形状.这个圆锥形烟囱帽展开图到底是怎么样的一个扇形呢?带着这个问题我们来完成下面的探究活动.4.合作学习,再探新知4..合作学习请一个小组上台展示,教师板书:当母线l一定时,圆心角越大,则r越大;当圆心角一定时,l越大,则r越大.教师:刚才我们从平面图形到空间图形,直观地感受了这三者之间的关系.数学是一门严谨的学科,如果扇形的圆心角记作θ,那么θ,l,r能用怎样的等式来表示呢?引导学生作简要推理:方法一:利用圆锥底面圆的周长等于展开后扇形的弧长:方法二:利用圆锥的侧面积等于展开后扇形的面积:4..我来画一画圆锥形烟囱帽(如图)的母线长为100cm,高为60cm.以1:50的比例画出这个烟囱帽的展开图.借助希沃授课助手和手机,将学生的作品进行展示,并点评.5.实际应用,深化新知在一个底面半径为1m,母线长为6m的圆锥形屋顶内,一蜘蛛在点A处,点A是底面圆周上一点.(1)如图1,试问:蜘蛛从点A出发沿圆锥的侧面爬行一周后回到点A,最近路线如何爬行?追问:最近路线的长度是多少?(2)如图2,一苍蝇在点D处,D是过母线AB的轴截面上另一母线BC的中点,试问:蜘蛛为捉住B处的苍蝇,最近路线又如何爬行?要求学生先独立思考,再相互交流.通过师生交流,达成共识,将圆锥的侧面展开,将立体图形转化为平面图形.6.总结盘点,凸显四基这节课你学到了什么概念?说说你对概念的理解?你有什么学习体验?【设计意图:让学生观察通过上述图示,从基本知识、基本技能、基本数学思想方法和基本活动经验四个维度进行总结,再次体验观察、实验、思考、归纳、猜想、验证(证明)是获取数学知识的重要途径】7.布置作业,拓展联想将一个直角梯形绕它的一条垂直于底边的腰旋转一周,它的其余各边所成的面围成的一个几何体是什么?你能研究这个立体图形的哪些方面?你打算怎么研究.。
3.42 简单几何体的表面展开图(2)——圆柱的侧面积和全面积

• S侧=2πr • =2× π ×1 ×2.5 • =5 π (cm²) • S全=2πr²+ 2πrL • = 2πr×1²+ 2πr×1 ×2.5 • = 7 π (cm²) • 答:这个圆柱的侧面积为5 π cm²,全面积 为 7π cm².
①铝皮: S侧=ch =π×6×2.6 =π×15.6 =15.6π(dm²)
②羊皮: 2S底=πr²×2 =π×3²×2 =π×18 =18π(cm²)
• 3.如图,把一个圆柱形木块沿它的轴剖开 ,得矩形ABCD。已知AD=18cm,AB= 30cm,求这个圆柱形木块的表面积(精 确到1cm2)
2cm
.
2cm
.
小组合作计算出圆柱的表面积:
①S侧=ch =π×2×2 =4π(cm²) ③S表= S侧+ 2S底 ②S底=πr² =4π+2×π =π×1² =4π+2π =π(cm²) =6π(cm²)
判断:(对的画“√”,错的画“×”) 1、圆柱的侧面展开可以得到一个矩形,这个矩形的长等于 圆柱的底面直径,ห้องสมุดไป่ตู้等于圆柱的高。 ( )
×
2、给大厅的圆柱刷油漆,刷油漆的部分面积是圆柱的侧 面积。
(√
)
3、圆柱形通风管的表面积等于它的侧面积。(
√
)
4、一个圆柱的侧面展开是正方形,它的底面周长和高 相等。 ( )
√
• 例3.如图为一个圆柱的三视图.以相同的比 例画出它的表面展开图,并计算它的侧面 积和全面积. (结果保留π)
2.5
1
分析:由图知,圆柱底面 的半径r为1cm,母线长L为 2.5cm 。因此圆柱的表面 展开图中两个底面应画成 半径为1cm 的圆,侧面展 开图应画成2πr=2π×1=2π (cm),宽为2.5cm的长方 形。
正方体的表面展开图

出展开图纸样。如图给出的三种
纸样1 ,它们2都正确吗?3
4
A甲
B
C
乙
丙D
全体总动员:
下面几个图形是一些常见几何体的展开图, 你能正确说出这些几何体的名字么?
圆锥
四棱锥 长方体 三棱柱
三棱锥 三棱柱
正方体
圆柱
如果“你”在前面,那么谁在后面?
了! 太棒 你们
KEY: 棒
长
方
长方体的展开图
体
底面
侧侧 侧 面面 面
可是当他们画出了如图1 后,
却为接下去应该怎么画争吵
图1
起来,你能为他们解决接下
去该怎么画的问题吗?
教材回顾
1.很多简单立体图形都按一定的方式 展成平面图形。 2、多面体是由平面图形围成的立体图 形,沿着多面体的一些棱将它剪开,可以 把多面体展开成一个平面图形.
你还记得他们的展开图是什么吗?
下列立体图形的平面展开图 是什么?
掌握此规律,运用定自如。
红 蓝
黄
等你来挑战!
比一比,看谁认得快
下列图形是哪些多面体的展开图?
(1)
长方体
(2) (3)
三棱柱 五棱锥
下面的图形那些是立方体的展开图?
(1)
(2)
(3)
(4)
如图是一个立方体纸盒的展开图,使 展开图沿虚线折叠成正方体后相对面上的两 个数互为相反数,求:
a _-_2_,b _-_7_,c __1__
圆 柱
展开
圆锥
展开
长方体
展开
下面图形都是由4个三边都相等的三角形组成 的,哪一个可以折叠成多面体呢?动手做做看。
(1)
(2)
浙教版数学九年级下册《3.4 简单几何体的表面展开图》教案2

浙教版数学九年级下册《3.4 简单几何体的表面展开图》教案2一. 教材分析《浙教版数学九年级下册》中的《3.4 简单几何体的表面展开图》是学生在学习了立体几何的基础知识后,进一步探究几何体的表面展开图的特点和规律。
这一章节通过具体的几何体模型,让学生了解和掌握球的表面展开图、圆柱的表面展开图、圆锥的表面展开图等几种基本几何体的表面展开图,培养学生空间想象能力和动手操作能力。
二. 学情分析九年级的学生已经掌握了立体几何的基本知识,对于平面图形的变换和组合有一定的理解。
但是,对于几何体的表面展开图的理解还有待提高,需要通过具体的操作和实践活动,来加深对几何体表面展开图的认识。
三. 教学目标1.知识与技能:使学生了解和掌握球的表面展开图、圆柱的表面展开图、圆锥的表面展开图等几种基本几何体的表面展开图,培养学生空间想象能力和动手操作能力。
2.过程与方法:通过观察、操作、猜想、验证等方法,让学生体验探究的过程,培养学生的合作意识和创新精神。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极向上的学习态度,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:球的表面展开图、圆柱的表面展开图、圆锥的表面展开图的特点和规律。
2.难点:如何引导学生自己发现和总结几何体表面展开图的特点和规律。
五. 教学方法采用问题驱动法、实践活动法、合作交流法等方法,引导学生通过观察、操作、猜想、验证等过程,发现和总结几何体表面展开图的特点和规律。
六. 教学准备1.准备各种几何体的模型和图片,如球、圆柱、圆锥等。
2.准备几何体表面展开图的挂图和幻灯片。
3.准备剪刀、胶水等手工操作工具。
七. 教学过程导入(5分钟)教师通过展示各种几何体的模型和图片,引导学生回顾和巩固立体几何的基本知识。
然后提出问题:“你们知道这些几何体的表面展开图是什么样的吗?它们有什么特点和规律呢?”激发学生的学习兴趣和探究欲望。
呈现(10分钟)教师通过挂图和幻灯片,展示球的表面展开图、圆柱的表面展开图、圆锥的表面展开图等几种基本几何体的表面展开图。
三视图与表面展开图—知识讲解

三视图与表面展开图—知识讲解责编:康红梅【学习目标】1.了解平行投影和中心投影的基本概念及主要特征,会在简单情况下画出投影示意图;2.了解三视图的概念,会画直棱柱、圆柱、圆锥等简单几何体的三视图,并会根据视图描述简单的几何体;3.了解直棱柱、圆柱和圆锥的表面展开图,会计算直棱柱、圆柱和圆锥的侧面积和全面积,能根据展开图想象和制作实物模型;4.了解直棱柱、圆柱和圆锥的三视图和表面展开图在现实生活中的应用.【要点梳理】要点一、平行投影1.基本概念物体在光线的照射下,在某个平面内形成的影子叫做投影.这时,光线叫做投射线,投影所在的平面叫做投影面.由平行的投射线所形成的投影叫做平行投影. 例如,太阳光线、探照灯的光线都可以看成平行光线,由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1 所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2 所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2.物高与影长的关系( 1)在不同时刻,同一物体的影子的方向和大小可能不同. 不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:. 利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长. 要点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的. 利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.要点二、中心投影由同一点出发的投射线所形成的投影叫做中心投影.这个“点”就是中心,相当于物理上学习的“点光源” . 生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等. 相应地,我们会得到两个结论:(1) 等高的物体垂直地面放置时,如图 1 所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长越远,影子越短,但不会比物体本身的长度还短在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点 在同一条直线上,根据其中两个点,就可以求出第三个点的位置 要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方 向也发生变化,但光源、物体的影子始终分离在物体的两侧 . 要点三、中心投影与平行投影的区别与联系1. 联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投 影,通常的平行光线有太阳光线、 月光等, 而中心投影是从一点发出的光线所形成的投影, 通常状况下, 灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线 .(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中, 同一灯光下,改变物体的位置和方向,其投影也跟着发生变化 . 在中心投影中,固定物体的位置和方向, 改变灯光的位置,物体投影的方向和位置也要发生变化 .2. 区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的 影子与物体高度不一定成比例 .(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能 在不同方向 . 要点诠释:在解决有关投影的问题时必须先判断准是平行投影还是中心投影,然后再根据它们的具体特点进一 步解决问题 .要点四、正投影正投影的定义:如图所示,图 (1) 中的投影线集中于一点,形成中心投影;图 (2)(3) 中,投影线互相平行,形成平 行投影;图 (2) 中,投影线斜着照射投影面;图 (3) 中投影线垂直照射投影面 ( 即投影线正对着投影面 ), 我们也称这种情形为投影线垂直于投影面 .像图(3) 这样,如果投射线垂直于投影面,那么这种投影就称为 正投影.(2) 等长的物体平行于地面放置时,如图2 所示 . 般情况下,离点光源越近,影子越长;离点光源(1) 线段的正投影分为三种情况: 如图所示 .(2) 平面图形正投影也分三种情况,如图所示Q 时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与 Q 时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会 Q 时,它的正投影是直线或直线的一部分 .物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且 过立体图形的最大截面全等 要点诠释:(1) 正投影是特殊的平行投影,它不可能是中心投影 .(2) 由线段、平面图形和立体图形的正投影规律,可以识别或画出物体的正投影 .(3) 由于正投影的投影线垂直于投影面,一个物体的正投影与我们沿投影线方向观察这个物体看到 的图象之间是有联系的 .要点五、简单几何体的三视图1. 三视图的概念(1)视图 从某一角度观察一个物体时,所看到的图象叫做物体的一个视图 .(2)正面、水平面和侧面 用三个互相垂直的平面作为投影面,其中正对我们的面叫做正面,正面下面的面叫做水平面,右边 的面叫做侧面 .(3)三视图物体在正投影面上的正投影叫做 主视图 ;在水平投影面上的正投影叫做 俯视图 ;在侧投影面上的正 投影叫做 左视图 . 产生主视图的投射线方向也叫做主视方向 . 主视图、左视图、俯视图叫做物体的三视 图.2. 三视图之间的关系①线段 AB 平行于投影面②线段 AB 倾斜于投影面P 时,它的正投影是线段 P 时,它的正投影是线段A 1B 1,与线段 AB 的长相等; A 2B 2,长小于线段 AB 的长;③线段 AB 垂直于投影面 P 时,它的正投影是一个点①当平面图形平行于投影面 这个平面图形全等;②当平面图形倾斜于投影面 缩小,是类似图形但不一定相似③当平面图形垂直于投影面(3) 立体图形的正投影 .1)位置关系三视图的位置是有规定的,主视图要在左边,它的下方应是俯视图,左视图在其右边,如图(2)大小关系 三视图之间的大小是相互联系的, 遵循主视图与俯视图的 “长对正”,主视图与左视图的 “高平齐”, 左视图与俯视图的“宽相等”的原则 . 如图 (2) 所示 .要点诠释:物体的三视图的位置是有严格规定的,不能随意乱放 . 三视图把物体的长、宽、高三个方面反映到 各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和 宽,抓住这些特征能为画物体的三视图打下坚实的基础 .3. 画几何体的三视图 画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:(1) 确定主视图的位置,画出主视图;(2) 在主视图的正下方画出俯视图,注意与主视图“ 长对正 ”;(3) 在主视图的正右方画出左视图,注意与主视图“高平齐 ”,与俯视图“ 宽相等 ” .几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线 .要点诠释: 画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以, 首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线 表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图 的位置和大小要求从整体上画出几何体的三视图 . 要点六、由三视图描述几何体 由三视图描述几何体,一般先根据各视图想象从各个方向看到的几何体形状,然后综合起来确定几 何体的形状,再根据三个视图“长对正、高平齐、宽相等”的关系,确定轮廓线的位置以及各个方向的 尺寸 .要点诠释:由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析: (1) 根据主视图、俯 视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2) 根据实线和虚线想象几何体看得见和看不见的轮廓线; (3) 熟记一些简单的几何体的三视图会对复杂几何体的想象有帮 助; (4) 利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法 . 要点七、简单几何体的表面展开图1. 表面展开图将几何体沿着某些棱“剪开” ,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展 开图 .示.(1) 所2. 圆柱的表面展开图如下左图,圆柱可以看做由一个矩形绕它的一条边(BC)旋转一周,其余各边所成的面围成的几何体.AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆.AD 旋转所成的面就是圆柱的侧面,AD不论旋转到哪个位置,都是圆柱的母线.如果沿着圆柱的任意一条母线把圆柱的侧面“剪开”,铺平,那么就得到圆柱的侧面展开图. 一般地,一个底面半径为r ,母线长为l 的圆柱的表面展开图如上右图所示.由图可知,圆柱的侧面积公式为:S侧=2 rl . 全面积公式为:S全=2 r2+2 rl .3.圆锥的表面展开图圆锥可以看做将一个直角三角形绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体.直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面.斜边AB 不论旋转到哪一个位置,都叫做圆锥的母线.一般地,一个底面半径为r ,母线长为l 的圆锥的侧面展开图是一个半径为母线长l ,弧长为底面圆周长2π r 的扇形,如图,由此我们可以得到圆锥的侧面积和全面积公式:S侧= rl .2S全= r 2+ rl .l若设圆锥的侧面展开图扇形的圆心角为,则由0 2 r ,得到圆锥侧面展开图扇形的圆心角1800度数的计算公式:类型一、投影的作图问题1.如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等,试画图说明.答案与解析】(1) 如图所示.可在同一方向上画出与原长相等的影长,此时为平行投影.(2) 如图所示,可在两树外侧不同方向上画出与原长相等的影子,连结影子的顶点与树的顶点.相交于点P.此时为中心投影,P 点即为光源位置.总结升华】连结物体顶点与其影长的顶点,如果得到的是平行线,即为平行投影;如果得到相交直线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本做法.但若中心投影光源在两树同侧时,图中的两棵树的影长不可能同时与原长相等,所以点光源可以选在两树之间.特别提醒:易错认为只有平行投影才能使两棵树在同一时刻的影长分别 与它们的原长相等,从而漏掉上图这一情形.举一反三:【 变式】 与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花 CD 和一棵树 AB .晚上,幕墙反射路灯,灯光形成那盆花的影子 DF ,树影 BE 是路灯灯光直接形成的,如图所示,你能确定此时路灯光源的位置吗 ?思路点拨】1)连结 AC ,过 D 点作 DG ∥AC 交 BC 于 G 点,则 GE 为所求; 2)先证明 Rt △ABC ∽△ RtDEG ,然后利用相似比计算DE 的长.答案与解析】 解:( 1)影子 EG 如图所示;2)∵DG ∥AC ,∴∠ G=∠C ,∴Rt △ABC ∽△RtDEG ,= ,即 = ,解得 DE=,答案】 作法如下:① 连结 FC 并延长交玻璃幕墙于 O 点; ② 过点 O 作直线 OG 垂直于玻璃幕墙面;③ 在 OC 另一侧作∠ POG =∠ FOG 且交 EA 延长线于点 P 点即此时路灯光源位置,如图所示.类型二、投影的应用2015·盐城校级模拟)如图,小明与同学合作利用太阳光线测量旗杆的高度,身高明落在地面上的影长为 BC=2.4m .1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子 EG ;2)若小明测得此刻旗杆落在地面的影长EG=16m ,请求出旗杆 DE 的高度.P .类型三、由三视图描述几何体位置小立方体的个数,请画出这个几何体的主视图和左视图.思路点拨】由已知条件可知,主视图有3 列,每列小正方数形数目分别为每列小正方形数目分别为1,3,2.据此可画出图形.如图所示:总结升华】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.类型四、三视图的有关计算4.(2016春?潮南区月考)如图所示的是某个几何体的三视图.1)说出这个立体图形的名称;2)根据图中的有关数据,求这个几何体的表面积.3.(2015·惠州校级月考)如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示该2,2,3,左视图有3 列,∴旗杆的高度为m.总结升华】本题考查了平行投影,也考查了相似三角形的判定与性质.答案与解析】解:【思路点拨】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个直三棱柱;(2)根据直三棱柱的表面积公式计算即可.【答案与解析】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3× 4× 2+15× 3+15× 4+15×5=192 .【总结升华】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,考查学生的空间想象能力.举一反三:高清课程名称:投影与视图高清ID 号:398414 关联的位置名称(播放点名称):课题学习】变式】某工厂要加工一批密封罐,设计者给出了密封罐的三视图作每个密封罐所需钢板的面积(单位:mm).(如图所示),请你按照三视图确定制密封罐的高为50mm,底面正六边形的对角线为100mm,边长为50 mm,如图(2) 所示.由展开图可知,制作一个密封罐所需钢板的面积为1S=6× 50×50+2×6× ×50×50×sin60 °2=6× 50°× 1 3≈27990(mm2).2类型五、简单几何体的表面展开图5.小红为了迎接圣诞节而准备做一顶圣诞帽.如图所示,圆锥的母线长为26cm,高24cm,求它的底面半径及做这样一顶帽子需要的布料面积(接缝忽略不计) .答案与解析】如图所示,在Rt △ SOA中,r SA2 SO2262 242cm 10cm .即圆锥底面半径为10cm,做这样的圣诞帽需布料πRr=260 πcm2.点评】本题考查的是圆锥母线R,高h,底面半径r 三者的关系,及利用圆锥侧面积解决实际问题的方法.根据圆锥母线R,高h,底面半径r 的关系,可求r R2 h2,所需布料即为圆锥侧面积π Rr.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情感态度与价值观:通过实例教学,让学生真正体会到数学的生活化,通过动手操作,让学生认识到知识的可操作性,激发学生的数学兴趣
2.学习内容与重难点分析
在本节课之前,学生已经熟悉了平面几何图形以及立体图形的三视图,这对本节课的帮助非常大,让学生已经了解到立体几何的特殊性。要认识圆柱的相关知识,还是得从圆柱的形成说起,可以借助实物让学生能更具体的体验知识的过程,这样也有助于侧面张开图的知识形成。对学生而言,圆柱的相关概念和表面展开图都比较抽象,教学中借助实物可以很形象的让学生了解展开图的形成。讲解时也要讲清楚上下底面的周长和侧面展开图的长之间的关系。
项目
内容
应对措施
教学重点
圆柱的表面积展开图的有关概念和画法
借助实物教学
教学难点
圆柱的侧面积展开图不容易想象
借助实物教学
二、学习者特征分析(说明学生的已有知识基础、学习习惯等信息)
学生在八九年级时,已经接触了圆和长方形的相关知识,这对本节课的表面展开图的面积计算非常的重要。另外,这章学生也已经学习了立体图形的三视图和长方体发的表面展开图,这对圆柱的相关概念的学习也起了铺垫作用。由于,立体几何的学习对学生的空间想象能力要求较高,部分学生不能很好的构造圆柱的立体图形,所以借助实物,让学生了解圆柱的相关概念以及表面展开图会有较大帮助,所以教学中可借助实物帮助学生学习。
《3.42简单几何体的表面展开图》教学设计
基本信息
姓名
徐敏明
学段学科
初中数学
区县
余姚市
学校名称
陆埠初级中学
教学题目
浙江教育出版社九年级下册第3单元第4节第2课时
所选教材
(如:人民教育出版社版小学语文第3册第2单元第1节)
一、学习内容分析
1.学习目标描述(知识与技能、过程与方法、情感态度与价值观)
知识与技能:了解元的形成过程及相关概念,了解圆柱表面展开图及其画法,并计算相关面积
学案
问题引导,突破题中关键
计算圆柱展开图的面积计算
通过练习题,巩固本节课的知识
课堂小结
圆柱概念和展开图面积计算的总结
图片
问题形式
回答教师问题,回忆本节课内容让Βιβλιοθήκη 生对本节课的内容右一个系统的回忆与归纳
五、评价方案设计
1.评价形式与工具(B)可多选
A.课堂提问B.书面练习C.制作作品D.测验E.其他
2.评价量表内容(测试题、作业描述等)
引入
圆柱的形成
实物操作
展示圆柱的形成
动手操作,经历圆柱的形成过程
让学生亲生体验知识的发生过程
知识探究
圆柱的相关概念和展开图的面积计算
实物教学和图片
以多媒体为主,讲解圆柱相关概念
学生动手操作探究圆柱展开图以及相关的面积计算
让学生亲生探究知识的发生和关联性,帮助他们真正学好知识
知识巩固
练习题的形式巩固圆柱的展开图面积计算
1.如图为一个圆柱的三视图.根据三视图的尺寸,画出这个圆柱的表面展开图.
2.已知圆柱的全面积为150πcm2,母线长为10 cm.求这个圆柱的底面半径.
2.已知一个圆柱的底面半径r与母线长l的比为2:3,圆柱的全面积为500πcm2.选取适当的比例画出这个圆柱的表面展开图.
六、备注
以实物教学为主,不依赖多媒体,如遇特殊问题,还是让学生自己实物学习为主。
三、学习环境选择
1.学习环境选择(B)
A.简易多媒体教室B.交互式电子白板C.网络教室D.移动学习环境
四、流程规划与活动设计(描述整体教学环节规划,按顺序说明每一环节中教学内容、呈现方式、教师活动、学生活动以及设计意图等)
教学环节
知识点与教学内容
呈现方式(如图片/视频等)
教师活动
学生活动
设计意图与效果