题组层级快练1

合集下载

【2020最新】人教版最新高考数学一轮复习-题组层级快练(含解析)(1)附参考答案

【2020最新】人教版最新高考数学一轮复习-题组层级快练(含解析)(1)附参考答案

教学资料范本【2020最新】人教版最新高考数学一轮复习-题组层级快练(含解析)(1)附参考答案编辑:__________________时间:__________________(附参考答案)1.若椭圆+=1过点(-2,),则其焦距为( )A.2 B.2 3C.4 D.4 3答案D解析∵椭圆过(-2,),则有+=1,b2=4,c2=16-4=12,c=2,2c =4.故选D.2.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是( )A.+=1B.+=1C.+y2=1D.+=1答案A解析圆C的方程可化为(x-1)2+y2=16.知其半径r=4,∴长轴长2a=4,∴a=2.又e==,∴c=1,b2=a2-c2=4-1=3.∴椭圆的标准方程为+=1.3.已知曲线C上的动点M(x,y),向量a=(x+2,y)和b=(x-2,y)满足|a|+|b|=6,则曲线C的离心率是( )A. B. 3C. D.13答案A解析因为|a|+|b|=6表示动点M(x,y)到两点(-2,0)和(2,0)距离的和为6,所以曲线C是椭圆且长轴长2a=6,即a=3.又c=2,∴e=.4.已知椭圆+=1的离心率e=,则m的值为( )A.3 B.3或253C. D.或5153答案B解析若焦点在x轴上,则有∴m=3.若焦点在y轴上,则有∴m=.5.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是( )A.圆B.椭圆C.双曲线D.抛物线答案B解析点P在线段AN的垂直平分线上,故|PA|=|PN|.又AM是圆的半径,∴|PM|+|PN|=|PM|+|PA|=|AM|=6>|MN|.由椭圆的定义知,P的轨迹是椭圆.6.(20xx·广东韶关调研)已知椭圆与双曲线-=1的焦点相同,且椭圆上任意一点到两焦点的距离之和为10,那么椭圆的离心率等于( )A. B.45C. D.34答案B解析因为双曲线的焦点在x轴上,所以设椭圆的方程为+=1(a>b>0),因为椭圆上任意一点到两焦点的距离之和为10,所以根据椭圆的定义可得2a =10⇒a=5,则c==4,e==,故选B.7.(20xx·广东广州二模)设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF1的中点在y轴上,若∠PF1F2=30°,则椭圆的离心率为( )A. B.13C. D.33答案D解析设PF1的中点为M,连接PF2,由于O为F1F2的中点,则OM为△PF1F2的中位线,所以OM∥PF2.所以∠PF2F1=∠MOF1=90°.由于∠PF1F2=30°,所以|PF1|=2|PF2|.由勾股定理,得|F1F2|=|PF1|2-|PF2|2=|PF2|.由椭圆定义,得2a=|PF1|+|PF2|=3|PF2|⇒a=,2c=|F1F2|=|PF2|⇒c=.所以椭圆的离心率为e==·=.故选D.8.(20xx·河北邯郸一模)已知P是椭圆+=1(0<b<5)上除顶点外一点,F1是椭圆的左焦点,若|+|=8,则点P到该椭圆左焦点的距离为( ) A.6 B.4C.2 D.52答案C解析取PF1的中点M,连接OM,+=2,∴|OM|=4.在△F1PF2中,OM 是中位线,∴|PF2|=8.∴|PF1|+|PF2|=2a=10,解得|PF1|=2,故选C.9.(20xx·北京海淀期末练习)已知椭圆C:+=1的左、右焦点分别为F1,F2,椭圆C上的点A满足AF2⊥F1F2,若点P是椭圆C上的动点,则·的最大值为( )A. B.332C. D.154解析由椭圆方程知c==1,所以F1(-1,0),F2(1,0).因为椭圆C上点A满足AF2⊥F1F2,则可设A(1,y0),代入椭圆方程可得y=,所以y0=±.设P(x1,y1),则=(x1+1,y1),=(0,y0),所以·=y1y0.因为点P是椭圆C上的动点,所以-≤y1≤,·的最大值为.故B正确.10.(20xx·河北唐山二模)已知椭圆C1:+=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是( )A.[,1) B.[,]C.[,1) D.[,1)答案C解析在椭圆长轴端点向圆引两条切线P′A,P′B,则两切线形成的角∠AP′B最小,若椭圆C1上存在点P令切线互相垂直,则只需∠AP′B≤90°,即α=∠AP′O≤45°.∴sinα=≤sin45°=,解得a2≤2c2,∴e2≥.即e≥.而0<e<1,∴≤e<1,即e∈[,1).11.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x 轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.答案+=1解析根据椭圆焦点在x轴上,可设椭圆方程为+=1(a>b>0).∵e=,∴=.根据△ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程为+=1.12.椭圆+=1上一点P到左焦点F的距离为6,若点M满足=(+),则||=________.解析设右焦点为F′,由=(+)知M为线段PF中点,∴||=||=(10-6)=2.13.已知动点P(x,y)在椭圆+=1上,若点A坐标为(3,0),||=1,且·=0,则||的最小值是________.答案 3解析∵·=0,∴⊥.∴||2=||2-||2=||2-1.∵椭圆右顶点到右焦点A的距离最小,故||min=2,∴||min=.14.已知点A(4,0)和B(2,2),M是椭圆+=1上一动点,则|MA|+|MB|的最大值为________.答案10+210解析显然A是椭圆的右焦点,如图所示,设椭圆的左焦点为A1(-4,0),连接BA1并延长交椭圆于M1,则M1是使|MA|+|MB|取得最大值的点.事实上,对于椭圆上的任意点M有:|MA|+|MB|=2a-|MA1|+|MB|≤2a+|A1B|(当M1与M重合时取等号),∴|MA|+|MB|的最大值为2a+|A1B|=2×5+=10+2.15.如右图,已知椭圆+=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF2交椭圆于另一点B.(1)若∠F1AB=90°,求椭圆的离心率;(2)若椭圆的焦距为2,且=2,求椭圆的方程.答案(1) (2)+=1解析(1)若∠F1AB=90°,则△AOF2为等腰直角三角形.所以有|OA|=|OF2|,即b=c.所以a=c,e==.(2)由题知A(0,b),F2(1,0),设B(x,y),由=2,解得x=,y=-.代入+=1,得+=1.即+=1,解得a2=3.所以椭圆方程为+=1.16.(20xx·新课标全国Ⅱ)设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.答案(1) (2)a=7,b=27思路本题主要考查椭圆的方程与基本量,考查椭圆的几何性质与离心率的计算,考查直线与椭圆的位置关系,意在考查考生的分析转化能力与运算求解能力.(1)将M,F1的坐标都用椭圆的基本量a,b,c表示,由斜率条件可得到a,b,c的关系式,然后由b2=a2-c2消去b2,再“两边同除以a2”,即得到离心率e的二次方程,由此解出离心率.若能抓住△MF1F2是“焦点三角形”,则可利用△MF1F2的三边比值快速求解,有:|F1F2|=2c,|MF2|=2c×=c,则|MF1|=c,由此可得离心率e==.(2)利用“MF2∥y轴”及“截距为2”,可得yM==4,此为一个方程;再转化条件“|MN|=5|F1N|”为向量形式,可得到N的坐标,代入椭圆得到第二个方程.两方程联立可解得a,b的值.解析(1)根据c=及题设知M,=,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=,=-2(舍去).故C的离心率为.(2)由题意,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点.故=4,即b2=4a.①由|MN|=5|F1N|,得|DF1|=2|F1N|. 设N(x1,y1),由题意知y1<0,则⎩⎨⎧-c -=c ,-2y1=2,即⎩⎨⎧x1=-32c ,y1=-1.代入C 的方程,得+=1.② 将①及c =代入②得+=1. 解得a =7,b2=4a =28. 故a =7,b =2.1.已知椭圆+=1(a>b>0)的焦点分别为F1,F2,b =4,离心率为.过F1的直线交椭圆于A ,B 两点,则△ABF2的周长为( )A .10B .12C .16D .20答案 D解析 如图,由椭圆的定义知△ABF2的周长为4a ,又e ==,即c =a ,∴a2-c2=a2=b2=16. ∴a =5,△ABF2的周长为20.2.椭圆+=1(a>b>0)上任一点到两焦点的距离分别为d1,d2,焦距为2c.若d1,2c ,d2成等差数列,则椭圆的离心率为( )A. B.22C. D.34答案 A解析 由d1+d2=2a =4c ,∴e==.3.设e 是椭圆+=1的离心率,且e∈(,1),则实数k 的取值范围是( )A .(0,3)B .(3,)C .(0,3)∪(,+∞)D .(0,2)答案 C解析 当k>4时,c =,由条件知<<1,解得k>;当0<k<4时,c =, 由条件知<<1,解得0<k<3,综上知选C.4.已知点M(,0),椭圆+y2=1与直线y =k(x +)交于点A ,B ,则△ABM 的周长为______________.答案 8解析 直线y =k(x +)过定点N(-,0),而M ,N 恰为椭圆+y2=1的两个焦点,由椭圆定义知△ABM 的周长为4a =4×2=8.5.已知椭圆C 的中心在原点,一个焦点为F(-2,0),且长轴长与短轴长的比是2∶.(1)求椭圆C 的方程;(2)设点M(m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当||最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.答案 (1)+=1 (2)1≤m≤4解析 (1)由题意知 解之得⎩⎨⎧a2=16,b2=12.∴椭圆方程为+=1.(2)设P(x0,y0),且+=1, ∴||2=(x0-m)2+y 20 =x -2mx0+m2+12(1-) =x -2mx0+m2+12=(x0-4m)2-3m2+12(-4≤x0≤4).∴||2为关于x0的二次函数,开口向上,对称轴为4m.由题意知,当x0=4时,||2最小,∴4m≥4,∴m≥1.又点M(m,0)在椭圆长轴上,∴1≤m≤4.。

2021《高考调研》生物人教版大一轮复习题组层级快练1走近细胞 Word版含答案

2021《高考调研》生物人教版大一轮复习题组层级快练1走近细胞 Word版含答案

题组层级快练(一)一、选择题1.生命活动离不开细胞,对此理解不正确的是()A.没有细胞结构的病毒也要寄生在活细胞内增殖B.单细胞生物也具有生命的基本特征——新陈代谢、应激性、繁殖等C.多细胞生物体的生命活动由不同的细胞亲密合作完成D.细胞是一切生物体结构和功能的基本单位解析病毒是没有细胞结构的,除病毒外,细胞是生物体结构和功能的基本单位;病毒没有自身的代谢体系,只能寄生在活细胞内增殖;单细胞生物能完成生物体的全部生命活动;多细胞生物体的单个细胞只能完成该细胞特定的功能,不同的细胞亲密合作才能完成生物体的生命活动。

答案 D2.下列哪一项不属于“细胞学说”的主要内容()A.全部的生物都是由细胞构成的B.全部植物和动物都是由细胞构成的C.细胞是生物体结构和功能的基本单位D.细胞只能由细胞分裂而来解析细胞学说是德国科学家施莱登和施旺分别于1838年和1839年发表的争辩成果。

这个学说告知人们全部的植物和动物都是由细胞构成的,但并不包括全部的生物,例如病毒就没有细胞结构。

细胞是一个相对独立的单位,细胞是生物体结构和功能的基本单位。

新细胞可以从老细胞中产生,即是说细胞只能由细胞分裂而来。

答案 A3.(多选)(2021·广东)下图为四种不同细胞的比较结果,正确的是()解析蓝藻为原核生物,DNA暴露,无染色质,细胞具有全能性,A项错误;洋葱根尖细胞无叶绿体不能进行光合作用,有细胞壁和染色质,具有全能性,B项正确;兔为哺乳动物,其成熟红细胞无细胞核,因此没有染色质,无全能性,C 项错误;蛙受精卵是动物细胞,无细胞壁,不能进行光合作用,有染色质,具有细胞全能性,D项正确,因此答案为B、D项。

答案BD4.(2021·江苏)下列关于生命科学争辩方法与进展过程的叙述,正确的是() A.细胞学说从一个方面揭示了生物界的统一性B.标志重捕法解决了活动性不强的动物取样方法上的难题C.格里菲斯的肺炎双球菌转化试验直接证明白DNA是遗传物质D.按孟德尔方法做杂交试验得到的不同结果证明孟德尔定律不具有普遍性解析生物界具有统一性,而细胞学说提到动物和植物都是由细胞构成的,从结构和功能的基础这一个方面揭示了生物界具有统一性,A项正确;标志重捕法适用于活动力量强、活动范围大的动物,B项错误;格里菲斯的肺炎双球菌转化试验,证明白存在转化因子,但不能证明遗传物质是什么,C项错误;基因与性状的关系格外简单,孟德尔定律有其适用条件,按孟德尔的方法做杂交试验没有得到相同结果,不能说明孟德尔定律不具有普遍性,D项错误。

2021高考物理大一轮复习题组层级快练:第五单元 机械能 作业21 功和功率Word版含答案

2021高考物理大一轮复习题组层级快练:第五单元 机械能 作业21 功和功率Word版含答案

题组层级快练(二十一) 功和功率一、选择题1.如图所示,木块B 上表面是水平的,当木块A 置于B 上,并与B 保持相对静止,一起沿固定的光滑斜面由静止开始下滑,在下滑过程中( ) A .A 所受的合力对A 不做功 B .B 对A 的弹力做正功 C .B 对A 的摩擦力做正功 D .A 对B 做正功 答案 C解析 A 、B 一起沿固定的光滑斜面由静止开始下滑,加速度为gsin θ.由于A 速度增大,由动能定理可知,A 所受的合力对A 做功,B 对A 的摩擦力做正功,B 对A 的弹力做负功,选项A 、B 项错误,C 项正确;A 对B 不做功,D 项错误.2.某汽车以恒定功率P 、初速度v 0冲上倾角一定的斜坡时,汽车受到的阻力恒定不变,则汽车上坡过程的v­t 图像不可能是下图中的( )答案 A解析 根据P =Fv ,若a >0,则物体加速运动,加速度会减小,当加速度减为零时,速度达到最大,故C 项正确,A 项错误;若a =0,则物体速度不变,做匀速运动,故B 项正确;若a <0,即加速度沿斜面向下,物体减速,故加速度会减小,故D 项正确;本题选不可能的,故选A 项.3.质量为5×103kg 的汽车在水平路面上由静止开始以加速度a =2 m/s 2开始做匀加速直线运动,所受阻力是1.0×103N ,则汽车匀加速起动过程中( ) A .第1 s 内汽车所受牵引力做功为1.0×104J B .第1 s 内汽车所受合力的平均功率20 kW C .第1 s 末汽车所受合力的瞬时功率为22 kW D .第1 s 末汽车所受牵引力的瞬时功率为22 kW 答案 D解析 据牛顿第二定律F -f =ma 得牵引力F =f +ma =1.1×104N .第1 s 内汽车位移x =12at 2=1 m ,第1 s 末汽车速度v =at =2 m/s ,汽车合力F 合=ma =1×104N ,则第1 s 内汽车牵引力做功:W F =Fx =1.1×104J ,故A 项错;第1 s 内合力做功:W =F 合x =1×104J ,平均功率P =W t=1×104W ,故B 项错;1 s 末合力的瞬时功率P 合=F合v =2×104W ,故C项错;1 s 末牵引力瞬时功率P =Fv =2.2×104W =22 kW ,故D 项正确.4.汽车从静止匀加速启动,最后做匀速运动,其速度随时间及加速度、牵引力和功率随速度变化的图像如图所示,其中正确的是( )答案 ACD解析 汽车启动时,由P =Fv 和F -F f =ma 可知,匀加速启动过程,牵引力F 、加速度a 恒定不变,速度和功率均匀增大,当功率增大到额定功率后保持不变,牵引力逐渐减小到与阻力相等,加速度逐渐减小到零,速度逐渐增大到最大速度,故A 、C 、D 项正确. 5.在9.3阅兵中,20架直升机在空中组成数字“70”字样,而领头的直升机悬挂的国旗让人心潮澎湃.如图所示,为了使国旗能悬在直升机下不致漂起来,在国旗下端还悬挂了重物,假设国旗与悬挂物的质量为m ,直升机质量为M ,并以速度v 匀速直线飞行,飞行过程中,悬挂国旗的细线与竖直方向夹角为α,那么以下说法不正确的是( ) A .国旗与悬挂物受到3个力的作用 B .细线的张力做功的功率为mgvcos αC .国旗与悬挂物所受合力做的功为零D .国旗与悬挂物克服阻力做功的功率为mgvtan α 答案 B解析 国旗与悬挂物受3个力,重力、细线的拉力、空气阻力,如图:有F =mgcos α,则F 的功率为P F =Fvsin α=mgvtan α,克服阻力做功的功率P f =fv =mgvtan α,由于国旗与悬挂物匀速,故合力做功为零,A 、C 、D 三项正确,B 项错误,故选B 项.6.如图所示,卡车通过定滑轮以恒定的功率P 0拉绳,牵引河中的小船沿水面运动,已知小船的质量为m ,沿水面运动时所受的阻力为f 且保持不变,当绳AO 段与水面的夹角为θ时,小船的速度为v ,不计绳子与滑轮的摩擦,则此时小船的加速度等于( )A.P 0mv -fm B.P 0mv cos 2θ-f m C.f m D.P 0mv答案 A解析 设绳子的拉力为F ,功率P 0=Fvcos θ,对小船,由牛顿第二定律得加速度a =Fcos θ-f m =P 0mv -fm,选项A 正确. 7.质量为m 的汽车发动机额定输出功率为P ,当它在平直的公路上以加速度a 由静止开始匀加速启动时,其保持匀加速运动的最长时间为t ,汽车运动中所受的阻力大小恒定,则( )A .若汽车在该平直的路面上从静止开始以加速度2a 匀加速启动,其保持匀加速运动的最长时间为t 2B .若汽车以加速度a 由静止开始匀加速启动,经过时间t 2发动机输出功率为12PC .汽车保持功率P 在该路面上运动可以达到的最大速度为PatP -ma 2tD .汽车运动中所受的阻力大小为P at答案 BC解析 当以加速度a 加速运动时有:F -f =ma ,F =f +ma ,匀加速达到的最大速度为:v =P f +ma ,故所需时间为:t =v a =P a (f +ma ),当加速度为2a 时,匀加速达到最大速度为:v ′=P f +2ma ,所需时间为:t ′=P 2a (f +2ma ),故A 项错误;t 2时刻速度为v ′=a·t 2,故功率为:P ′=(f +ma)·at2,汽车的额定功率为:P =(f +ma)at ,故B 项正确;根据P =(f +ma)at ,得f =P at -ma ,当牵引力等于阻力时速度最大为:v =P f =PatP -ma 2t ,故C 项正确,D 项错误.8.如图所示,木板可绕固定水平轴O 转动.木板从水平位置OA 缓慢转到OB 位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2 J .用F N 表示物块受到的支持力,用F f 表示物块受到的摩擦力.在此过程中,以下判断正确的是( )A .F N 和F f 对物块都不做功B .F N 对物块做功为2 J ,F f 对物块不做功C .F N 对物块不做功,F f 对物块做功为2 JD .F N 和F f 对物块所做功的代数和为0 答案 B解析 由做功的条件可知:只要有力,并且物块沿力的方向有位移,那么该力就对物块做功.由受力分析知,支持力F N 做正功,但摩擦力F f 方向始终和速度方向垂直,所以摩擦力不做功.由动能定理W -mgh =0,故支持力F N 做功为mgh ,B 项正确.9.(2014·课标全国Ⅱ)一物体静止在粗糙水平地面上,现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度为v ,若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v ,对于上述两个过程,用W F1、W F2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( ) A .W F2>4 W F1,W f2>2 W f1 B .W F2>4 W F1,W f2=2 W f1 C .W F2<4 W F1,W f2=2 W f1 D .W F2<4 W F1,W f2<2W f1答案 C解析 由题意可知,两次物体均做匀加速运动,则在同样的时间内,它们的位移之比为x 1:x 2=v 2t ∶2v2t =1∶2;两次物体所受的摩擦力不变,根据功的公式,则有滑动摩擦力做功之比W f1:W f2=fx 1∶fx 2=1∶2;再由动能定理,则有W F1-W f1=12mv 2-0,W F2-W f2=4×12mv 2-0;由上两式可解得:W F2=4W F1-2W f1,C 项正确,A 、B 、D 项错误.10.如图甲所示,滑轮质量、摩擦均不计,质量为2 kg 的物体在F 作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知( )A .物体加速度大小为2 m/s 2B .F 的大小为21 NC .4 s 末F 的功率大小为42 WD .4 s 内F 做功的平均功率为42 W 答案 C解析 由图乙可知,物体的加速度a =0.5 m/s 2,由2F -mg =ma 可得:F =10.5 N ,A 、B 两项均错误;4 s 末力F 的作用点的速度大小为v F =2×2 m/s =4 m/s ,故4 s 末拉力F 做功的功率为P =F·v F =42 W ,C 项正确;4 s 内物体上升的高度h =4 m ,力F 的作用点的位移l =2h =8 m ,拉力F 所做的功W =F·l=84 J ,4 s 内拉力F 做功的平均功率P =Wt =21 W ,D 项错误.11.质量为2×103kg 的汽车由静止开始沿平直公路行驶,行驶过程中牵引力F 和车速倒数1v 的关系图像如图所示.已知行驶过程中最大车速为30 m/s ,设阻力恒定,则( ) A .汽车所受阻力为6×103NB .汽车在车速为5 m/s 时,加速度为3 m/s 2C .汽车在车速为15 m/s 时,加速度为1 m/s 2D .汽车在行驶过程中的最大功率为6×104W 答案 CD解析 当牵引力等于阻力时,速度最大,由图线可知阻力大小F f =2 000 N ,故A 项错误.倾斜图线的斜率表示功率,可知P =F f v =2 000×30 W =60 000 W ,车速为5 m/s 时,汽车的加速度a =6 000-2 0002 000 m/s 2=2 m/s 2,故B 项错误;当车速为15 m/s 时,牵引力F =P v =60 00015 N =4 000 N ,则加速度a =F -F f m =4 000-2 0002 000 m/s 2=1 m/s 2,故C 项正确;汽车的最大功率等于额定功率,等于60 000 W ,故D 项正确.12.(2017·山西监测)(多选)在倾角为θ的光滑斜面上有两个用轻弹簧连接的物块A 和B ,它们的质量分别为m 和2m ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态.现用一沿斜面方向的恒力拉物块A 使之沿斜面向上运动,当B 刚离开C 时,A 的速度为v ,加速度方向沿斜面向上、大小为a ,则( ) A .从静止到B 刚离开C 的过程中,A 发生的位移为3mgsin θkB .从静止到B 刚离开C 的过程中,重力对A 做的功为-3m 2g 2sin θkC .B 刚离开C 时,恒力对A 做功的功率为(mgsin θ+ma)vD .当A 的速度达到最大时,B 的加速度大小为a2答案 AD解析 开始系统静止时,设弹簧压缩量为x ,由平衡条件有:kx =mgsin θ,解得:x =mgsin θk .当B 刚离开挡板时,设弹簧伸长量为x ′,对B 受力分析,kx ′=2mgsin θ,解得:x ′=2mgsin θk ,所以从静止到B 刚离开C 过程中,A 的位移为x +x ′=3mgsin θk,A 项正确;重力对A 做功W G =-mgh =-3m 2g 2sin 2θk ,B 项错;B 刚离开C 时,对A 、B 及弹簧组成的整体,由牛顿第二定律有:F -3mgsin θ=ma ⇒F =3mgsin θ+ma ,所以拉力做功功率P =Fv =(3mgsin θ+ma)v ,C 项错;当A 的速度达到最大时,A 所受合外力为零,对A 根据平衡条件有:F 弹+mgsin θ=F ,解得:F 弹=2mgsin θ+ma ,对B ,根据牛顿第二定律有:F 弹-2mgsin θ=2ma ′,解两式得:a ′=a2,D 项正确.二、非选择题13.(2017·广东肇庆二模)某兴趣小组对一辆自制遥控小车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v —t 图像,图像如下图所示(除2 s —10 s 时间段图像为曲线外,其余时间段图像均为直线).已知在小车运动的过程中,2 s —14 s 时间段内小车的功率保持不变,在14 s 末通过遥控使发动机停止工作而让小车自由滑行,小车的质量为1.0 kg ,可认为在整个运动过程中小车所受到的阻力大小不变.求:(1)14 s -18 s 时间段小车的加速度大小; (2)小车匀速行驶阶段的功率; (3)小车在2 s -10 s 内位移的大小.解析 (1)在14 s -18 s 时间段,由图像可得加速度大小为: a =v 14-v 18Δt①将数据代入①式,解得a =1.5(m/s 2)(2)在14 s -18 s ,小车在阻力f 作用下做匀减速运动: f =ma② 代入数据,解②式,得f =1.5(N) ③在10 s -14 s ,小车做匀速直线运动: 牵引力 F =f =1.5 N小车匀速行驶阶段的功率:P =Fv ④ 将数据代入④式,解得P =9(W) (3)2 s -10 s ,根据动能定理,可得 Pt -fs 2=12mv 2-12mv 22⑤ 其中:v =6 m/s ,v 2=3 m/s由⑤解得小车在2 s -10 s 内位移s 2=39(m)14.在一次抗洪抢险活动中,解放军某部利用直升机抢救一重要落水物体,静止在空中的直升机上的电动机通过悬绳将物体从离飞机90 m 处的洪水中吊到机舱里.已知物体的质量为80 kg ,吊绳的拉力不能超过1 200 N ,电动机的最大输出功率为12 kW.为尽快把物体安全救起,操作人员采取的办法是:先让吊绳以最大的拉力工作一段时间,达到最大功率后电动机就以最大功率工作,当物体到达机舱时恰好达到最大速度.(g 取10 m/s 2)求: (1)落水物体刚到达机舱时的速度; (2)这一过程所用的时间.解析 (1)第一阶段绳以最大拉力拉着物体匀加速上升,当电动机达到最大功率时,功率保持不变,物体变加速上升,速度增大,拉力减小,当拉力与重力相等时,速度达到最大.由P m =Fv m ,得v m =P m mg =12×10380×10 m/s =15 m/s此即物体刚到机舱时的速度.(2)匀加速上升的加速度为a 1=F m -mg m =1 200-80×1080 m/s 2=5 m/s 2匀加速阶段的末速度v 1=P m F m =12 0001 200 m/s =10 m/s匀加速上升时间t 1=v 1a 1=105 s =2 s匀加速上升的高度h 1=v 12t 1=102×2 m =10 m以最大功率上升过程由动能定理得 P m t 2-mg(h -h 1)=12mv m 2-12mv 12解得t 2=5.75 s所以吊起落水物体所用总时间为 t =t 1+t 2=(2+5.75) s =7.75 s。

2025高考数学一轮复习题组层级快练60含答案

2025高考数学一轮复习题组层级快练60含答案

题组层级快练(六十)一、单项选择题1.抛物线y =2x 2的焦点到准线的距离是( ) A .2 B .1 C.12 D.14答案 D解析 抛物线标准方程x 2=2py (p >0)中p 的几何意义为抛物线的焦点到准线的距离,又p =14,故选D.2.过点F (0,3)且与直线y +3=0相切的动圆圆心的轨迹方程为( ) A .y 2=12x B .y 2=-12x C .x 2=-12y D .x 2=12y 答案 D解析 由题意,得动圆的圆心到直线y =-3的距离与到点F (0,3)的距离相等,所以动圆的圆心是以点F (0,3)为焦点、直线y =-3为准线的抛物线,其方程为x 2=12y .3.已知抛物线x 2=2py (p >0)上的一点M (x 0,1)到其焦点的距离为2,则该抛物线的焦点到其准线的距离为( ) A .6 B .4 C .3 D .2 答案 D解析 由题可知,1+p2=2,解得p =2,所以该抛物线的焦点到其准线的距离为p =2.4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ) A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y 答案 D 解析 由e 2=1+b 2a 2=4得b a=3,则双曲线的渐近线方程为y =±3x ,即3x ±y =0, 抛物线C 2的焦点坐标为⎝⎛⎭⎫0,p2,则有p 22=2,解得p =8,故抛物线C 2的方程为x 2=16y . 5.已知抛物线y 2=4x 的焦点为F ,准线l 与x 轴的交点为K ,P 是抛物线上一点,若|PF |=5,则△PKF 的面积为( ) A .4 B .5 C .8 D .10答案 A解析 由抛物线y 2=4x ,知p 2=1,则焦点F (1,0).设点P ⎝⎛⎭⎫y 024,y 0,则由|PF |=5,得⎝⎛⎭⎫y 024-12+y 02=5,解得y 0=±4,所以S △PKF =12×p ×|y 0|=12×2×4=4.故选A.6.已知抛物线y 2=16x 的焦点为F ,P 点在抛物线上,Q 点在圆C :(x -6)2+(y -2)2=4上,则|PQ |+|PF |的最小值为( ) A .4 B .6 C .8 D .10答案 C解析 如图,过点P 向准线作垂线,垂足为A ,连接PC ,则|PF |=|P A |,当CP 垂直于抛物线的准线时,|CP |+|P A |最小,此时线段CP 与圆C 的交点为Q ,因为准线方程为x =-4,C (6,2),半径为2,所以|PQ |+|PF |的最小值为|AQ |=|CA |-2=10-2=8.7. 中国古代桥梁的建筑艺术,有不少是世界桥梁史上的创举,充分显示了中国劳动人民的非凡智慧.如图为一个抛物线形拱桥,当水面离拱顶2 m 时,水面宽8 m .若水面下降1 m ,则水面宽度为( )A .2 6 mB .4 6 mC .4 2 mD .12 m答案 B解析 根据题意,以拱顶为原点,拱顶所在水平直线为x 轴,拱顶所在竖直直线为y 轴建系,设该抛物线的方程为x 2=-2py (p >0),又由当水面离拱顶2 m 时,水面宽8 m ,即点(4,-2)和(-4,-2)在抛物线上,则有16=-2p (-2),解得p =4,故抛物线的方程为x 2=-8y ,若水面下降1 m ,即y =-3,则有x 2=24,解得x =±26,此时水面宽度为26-(-26)=46(m).故选B.8.已知抛物线C :y =18x 2,点P 为抛物线C 上一动点,A (0,2),B (4,5),O 为坐标原点,当|P A |+|PB |取得最小值时,四边形OABP 的面积为( ) A .18 B .14 C .10 D .6答案 C解析 由题意,抛物线C :x 2=8y ,可得点A (0,2)为其焦点,准线方程为y =-2,易知点B 在抛物线内,设点P 到准线的距离为d ,作BM 垂直于准线,垂足为M ,则|P A |+|PB |=|PB |+d ≥|BM |=7,即当P ,B ,M 三点共线时,|P A |+|PB |取得最小值,此时点P 的横坐标为4,将x =4代入y =18x 2,可得点P 坐标为(4,2),OA ∥BP ,四边形OABP 的面积为(2+3)×42=10.故选C.9.(2024·西安四校联考)已知点F 是抛物线E :y 2=2px (p >0)的焦点,O 为坐标原点,A ,B 是抛物线E 上的两点,满足|F A |+|FB |=10,F A →+FB →+FO →=0,则p =( ) A .1 B .2 C .3 D .4答案 D解析 本题考查抛物线的定义及性质.方法一:由题意得F ⎝⎛⎭⎫p 2,0,设A (x 1,y 1),B (x 2,y 2),则|F A |+|FB |=x 1+p 2+x 2+p 2=x 1+x 2+p =10①,由F A →+FB →+FO →=0,知F A →+FB →+FO →=⎝⎛⎭⎫x 1+x 2-3p 2,y 1+y 2=0,所以x 1+x 2=3p 2②,联立①②,解得p =4.故选D. 方法二:不妨设A (x 0,y 0)在第一象限,连接AB ,OA ,OB .由于F A →+FB →+FO →=0,则F 为△ABO 的重心,根据抛物线的对称性可知A ,B 两点关于x 轴对称,则2x 03=p 2,即x 0=3p 4.所以|F A |=|FB |=5,所以x 0+p 2=3p 4+p2=5,解得p =4.故选D. 二、多项选择题10.已知点O 为坐标原点,直线y =x -1与抛物线C :y 2=4x 相交于A ,B 两点,则( ) A .|AB |=8 B .OA ⊥OBC .△AOB 的面积为2 2D .线段AB 的中点到直线x =0的距离为2 答案 AC解析 设A (x 1,y 1),B (x 2,y 2),抛物线C :y 2=4x ,则p =2,焦点为(1,0),则直线y =x -1过焦点.联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,消去y 得x 2-6x +1=0,易得Δ>0,则x 1+x 2=6,x 1x 2=1,所以|AB |=x 1+x 2+p =6+2=8,故A 正确;y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=-4,由OA →·OB →=x 1x 2+y 1y 2=1-4=-3≠0,所以OA 与OB 不垂直,故B 错误;原点到直线y =x -1的距离为d =|1|2=12,所以△AOB 的面积为S =12×d ×|AB |=12×12×8=22,故C 正确;因为线段AB 的中点到直线x =0的距离为x 1+x 22=62=3,故D 错误.11.(2024·南京市模拟)已知抛物线y 2=4x 的焦点为F ,过原点O 的动直线l 交抛物线于另一点P ,交抛物线的准线于点Q ,下列说法正确的是( ) A .若O 为线段PQ 中点,则|PF |=2 B .若|PF |=4,则|OP |=2 5 C .存在直线l ,使得PF ⊥QF D .△PFQ 面积的最小值为2答案 AD解析 若O 为PQ 中点,则x P =1,所以|PF |=x P +1=2,A 正确;若|PF |=4,则x P =4-1=3,所以|OP |=x P 2+y P 2=x P 2+4x P =21,B 错误;设P (a 2,2a )(a ≠0),则Q ⎝⎛⎭⎫-1,-2a ,所以FP →=(a 2-1,2a ),QF →=⎝⎛⎭⎫2,2a ,所以FP →·QF →=2a 2-2+4=2a 2+2>0,所以FP 与FQ 不垂直,即C 错误;易知S △PFQ =12×1×⎪⎪⎪⎪2a +2a =⎪⎪⎪⎪a +1a ≥2,当a =±1时取等号,即D 正确. 三、填空题与解答题12.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作P A ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF |=________. 答案 43解析 设l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB |=233.设P (x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,从而|PF |=|P A |=y 0+1=43.13.已知抛物线y 2=ax 上的点M (1,m )到其焦点的距离为2.则该抛物线的标准方程为________. 答案 y 2=4x解析 ∵抛物线y 2=ax 的准线方程为x =-a4,且抛物线y 2=ax 上的点M (1,m )到其焦点的距离为2,∴a >0,且1+a4=2,∴a =4.即抛物线的标准方程为y 2=4x .14.(2021·北京)已知抛物线C :y 2=4x ,焦点为F ,点M 为抛物线C 上的点,且|FM |=6,则M 的横坐标是________;作MN ⊥x 轴于N ,则S △FMN =________. 答案 5 4 5解析 抛物线C :y 2=4x ,则焦点F (1,0),准线l 方程为x =-1,过点M 作ME ⊥l ,垂足为E ,设M (x 0,y 0),则|MF |=|ME |=6,所以x 0+1=6,则x 0=5,所以M 的点横坐标为5,又点M 在抛物线上,故y 02=4×5=20,所以|y 0|=25,即|MN |=25,所以S △FMN =12×|FN |×|MN |=12×(5-1)×25=4 5.15.抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程. 答案 y 2=4x解析 设抛物线y 2=2px (p >0)的内接直角三角形为Rt △AOB ,直角边OA 所在直线方程为y =2x ,则另一直角边OB 所在直线方程为y =-12x .解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p . 解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p ). ∵|OA |2+|OB |2=|AB |2,∴p 24+p 2+64p 2+16p 2=325.∴p =2,∴所求的抛物线方程为y 2=4x .16.【多选题】已知抛物线E :x 2=4y 的焦点为F ,圆C :x 2+(y -1)2=16与抛物线E 交于A ,B 两点,点P 为劣弧AB 上不同于A ,B 的一个动点,过点P 作平行于y 轴的直线l 交抛物线E 于点N ,则以下结论正确的是( ) A .点P 的纵坐标的取值范围是(3,5) B .圆C 的圆心到抛物线准线的距离为1 C .|PN |+|NF |等于点P 到抛物线准线的距离 D .△PFN 周长的取值范围是(8,10)答案 ACD 解析对于A ,圆C :x 2+(y -1)2=16的圆心为(0,1),半径r =4,与y 的正半轴交点为(0,5),由⎩⎪⎨⎪⎧x 2=4y ,x 2+(y -1)2=16,解得y =3(负值舍去),所以点P 的纵坐标的取值范围是(3,5),故正确;对于B ,因为圆C 的圆心为抛物线的焦点,所以圆C 的圆心到抛物线准线的距离为p =2,故错误;对于C ,由抛物线的定义得|PN |+|NF |等于点P 到抛物线准线的距离,故正确;对于D ,△PFN 的周长为|PF |+|PN |+|NF |=r +y P +1=y P +5∈(8,10),故正确.故选ACD.。

2025高考数学一轮复习题组层级快练1含答案7777

2025高考数学一轮复习题组层级快练1含答案7777

题组层级快练(一)一、单项选择题1.下列说法正确的是( )A .M ={(2,3)}与N ={(3,2)}表示同一集合B .M ={(x ,y )|x +y =1}与N ={y |x +y =1}表示同一集合C .M ={x ∈N |x (x +2)≤0}有2个子集D .设U =R ,A ={x |lg x <1},则∁U A ={x |lg x ≥1}={x |x ≥10}答案 C2.若A =⎩⎨⎧⎭⎬⎫x |x 2∈Z ,B =⎩⎨⎧⎭⎬⎫y |y +12∈Z ,则A ∪B 等于( ) A .BB .AC .∅D .Z答案 D 解析 A ={x |x =2n ,n ∈Z }为偶数集,B ={y |y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z .3.(2023·全国甲卷,理)设集合A ={x |x =3k +1,k ∈Z },B ={x |x =3k +2,k ∈Z },U 为整数集,∁U (A ∪B )=( )A .{x |x =3k ,k ∈Z }B .{x |x =3k -1,k ∈Z }C .{x |x =3k -2,k ∈Z }D .∅答案 A解析 因为整数集Z ={x |x =3k ,k ∈Z }∪{x |x =3k +1,k ∈Z }∪{x |x =3k +2,k ∈Z },U =Z ,所以∁U (A ∪B )={x |x =3k ,k ∈Z }.故选A.4.已知集合A ={(x ,y )|xy =1},B ={(x ,y )|x ∈Z ,y ∈Z },则A ∩B 有________个真子集.( )A .3B .16C .15D .4 答案 A解析 A ={(x ,y )|xy =1},B ={(x ,y )|x ∈Z ,y ∈Z },则A ∩B ={(1,1),(-1,-1)},真子集个数为22-1=3.故选A.5.(2023·山东济宁检测)设全集U ={-3,-2,-1,0,1,2,3},集合A ={-2,-1,0,1},B ={x |x 2-x -2=0},则下列四个图中的阴影部分所表示的集合为{-2,0,1}的是( )答案 C解析因为A={-2,-1,0,1},B={x|x2-x-2=0}={-1,2},所以A∩B={-1},A∪B={-2,-1,0,1,2}.则A中的阴影部分所表示的集合为{-2,0,1,2};B中的阴影部分所表示的集合为{2};C中的阴影部分所表示的集合为{-2,0,1};D中的阴影部分所表示的集合为{-1}.故选C.6.(2022·石家庄二中模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]答案 A解析集合M={0,1},集合N={x|0<x≤1},M∪N={x|0≤x≤1},所以M∪N=[0,1].7.(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.SC.T D.Z答案 C解析当n=2k,k∈Z时,S={s|s=4k+1,k∈Z};当n=2k+1,k∈Z时,S={s|s=4k+3,k∈Z}.所以T S,S∩T=T.故选C.8.(2024·河北辛集中学模拟)已知集合A={1,3,a2-2a},B={3,2a-3},C={x|x<0},若B⊆A且A∩C=∅,则a=()A.1 B.2C.3 D.2或3答案 B解析方法一:由题得2a-3=1或2a-3=a2-2a.若2a-3=1,则a=2,故A={0,1,3},B={1,3},此时满足B⊆A,A∩C=∅.若2a-3=a2-2a,则a=1或a=3,当a=1时,A={-1,1,3},B={-1,3},此时A∩C ={-1},不符合题意;当a=3时,a2-2a=3,不符合题意.故a=2,选B.方法二:因为A∩C=∅,故集合A中的元素均为非负数,从而a2-2a≥0,得a≤0或a≥2,故排除A;由集合中元素的互异性得2a-3≠3,即a≠3,排除C、D.故选B.9.若非空且互不相等的集合M,N,P满足:M∩N=M,N∪P=P,则M∪P=()A.M B.NC.P D.∅答案 C解析∵M∩N=M,∴M⊆N,∵N∪P=P,∴N⊆P,∵M,N,P非空且互不相等,∴M N P,∴M∪P =P.故选C.10.(2018·课标全国Ⅱ,理)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9 B.8C.5 D.4答案 A解析方法一:由x2+y2≤3知,-3≤x≤3,-3≤y≤ 3.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为C31C31=9,故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.二、多项选择题11.已知集合M ={y |y =x -|x |,x ∈R },N =⎩⎨⎧⎭⎬⎫y |y =⎝⎛⎭⎫13x ,x ∈R ,则下列选项正确的是( ) A .M =NB .N ⊆MC .M ∩N =∅D .M =∁R N答案 CD 解析 由题意得M ={y |y ≤0},N ={y |y >0},∴∁R N ={y |y ≤0},∴M =∁R N ,M ∩N =∅.12.(2024·重庆八中适应性考试)已知全集U 的两个非空真子集A ,B 满足(∁U A )∪B =B ,则下列关系一定正确的是( )A .A ∩B =∅B .A ∩B =BC .A ∪B =UD .(∁U B )∪A =A答案 CD解析 令U ={1,2,3,4},A ={2,3,4},B ={1,2},满足(∁U A )∪B =B ,但A ∩B ≠∅,A ∩B ≠B ,故A 、B 均不正确;由(∁U A )∪B =B ,知∁U A ⊆B ,∴U =[A ∪(∁U A )]⊆(A ∪B ),∴A ∪B =U ,由∁U A ⊆B ,知∁U B ⊆A ,∴(∁U B )∪A =A ,故C 、D 均正确.13.1872年,德国数学家戴德金用有理数的“分割”来定义无理数(史称“戴德金分割”).所谓“戴德金分割”,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N =Q ,M ∩N =∅,M 中每一个元素均小于N 中的每一个元素,则称(M ,N )为“戴德金分割”.试判断下列选项中,可能成立的是( )A .M ={x ∈Q |x <0},N ={x ∈Q |x >0}是一个戴德金分割B .M 没有最大元素,N 有一个最小元素C .M 有一个最大元素,N 有一个最小元素D .M 没有最大元素,N 也没有最小元素答案 BD解析 对于A ,因为M ∪N ={x ∈Q |x ≠0}≠Q ,故A 错误;对于B ,设M ={x ∈Q |x <0},N ={x ∈Q |x ≥0},满足“戴德金分割”,故B 正确;对于C ,不能同时满足M ∪N =Q ,M ∩N =∅,故C 错误;对于D ,设M ={x ∈Q |x <2},N ={x ∈Q |x ≥2},满足“戴德金分割”,此时M 没有最大元素,N 也没有最小元素,故D 正确.三、填空题与解答题14.集合A ={0,|x |},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________. 答案 {0,1} {1,0,-1} {-1}解析因为A⊆B,所以|x|∈B,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A={0,1},则A∩B={0,1},A∪B={1,0,-1},∁B A={-1}.15.已知集合A={x|log2x<1},B={x|0<x<c},c>0.若A∪B=B,则c的取值范围是________.答案[2,+∞)解析A={x|0<x<2},由数轴分析可得c≥2.16.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+a2-5=0}.(1)若A∩B={2},求a的值;(2)若A∪B=A,求a的取值范围;(3)若U=R,A∩(∁U B)=A,求a的取值范围.答案(1)-1或-3(2)(-∞,-3](3){a|a≠-1±3且a≠-1且a≠-3}解析A={1,2}.(1)由A∩B={2},得2∈B,则4+4a+4+a2-5=0,得a=-1或-3.当a=-1时,B={x|x2-4=0}={2,-2},符合题意;当a=-3时,B={x|x2-4x+4=0}={2},符合题意.综上,a=-1或-3.(2)由A∪B=A,得B⊆A.①若B=∅,则Δ=4(a+1)2-4(a2-5)<0,得a<-3;②若B={1},则1+2a+2+a2-5=0且Δ=0,此时无解;③若B={2},则4+4a+4+a2-5=0且Δ=0,得a=-3;④若B={1,2},则1+2a+2+a2-5=0且4+4a+4+a2-5=0,此时无解.综上,a的取值范围为(-∞,-3].(3)由A∩(∁U B)=A,得A∩B=∅,所以1+2a+2+a2-5≠0且4+4a+4+a2-5≠0,解得a≠-1±3且a≠-1且a≠-3.故a的取值范围为{a|a≠-1±3且a≠-1且a≠-3}.17.(2024·成都七中月考)已知非空集合A,B满足A∪B={1,2,3,4},A∩B=∅,且A的元素个数不是A中的元素,B的元素个数不是B中的元素,则集合A,B的所有可能情况种数为()A.1 B.2C.3 D.4答案 B解析易知A的元素个数不能为2,否则A,B中必然有一个含有元素2,且集合中元素个数为2,不合题意.所以A的元素个数为1或3,所以可能情况有A={3},B={1,2,4}或A={1,2,4},B={3},共2种.故选B. 18.【多选题】设集合X是实数集R的子集,如果x0∈R满足对任意的a>0,都存在x∈X,使得0<|x-x0|<a,则称x0为集合X的聚点.则下列集合中是以0为聚点的集合有()A .{x |x ∈R ,x ≠0}B .{x |x ∈Z ,x ≠0} C.⎩⎨⎧⎭⎬⎫x |x =1n ,n ∈N *D.⎩⎨⎧⎭⎬⎫x |x =n n +1,n ∈N *答案 AC解析 对于A ,对任意的a >0,都存在x =a 2使得0<|x -0|=a 2<a ,故0是集合{x |x ∈R ,x ≠0}的聚点. 对于B ,对于某个实数a >0,比如取a =12,此时对任意的x ∈{x |x ∈Z ,x ≠0},都有|x -0|≥1,也就是说0<|x -0|<12不可能成立,从而0不是集合{x |x ∈Z ,x ≠0}的聚点. 对于C ,对任意的a >0,都存在n >1a ,即1n <a ,0<|x -0|=1n <a ,故0是集合{x |x =1n,n ∈N *}的聚点. 对于D ,n n +1=1-1n +1,故n n +1随着n 的增大而增大,故n n +1的最小值为11+1=12,即x ≥12,故对任意的0<a <12,不存在x ,使得0<|x -0|<a ,故0不是集合⎩⎨⎧⎭⎬⎫x |x =n n +1,n ∈N *的聚点.故选AC.。

高一高考调研题组层级快练数学答案

高一高考调研题组层级快练数学答案

高一高考调研题组层级快练数学答案
题组层级快练(一)
1.下列各组集合中表示同一集合的是()A.M=[(3.221:M=((9.3)1
B.y={2,3},A=8,2}
C.-{(x,)Ix+y=1},N=(ylx+y=1}
D.y=[2,3},={(2,3)}
答案B
2.集合=xlx=llf,aey,p=lxlx=d-4al5.aeNj.则下列关系山止确的是()
A.P
B.Py
C.=P
D.MgPH厚
答案A解析P=(xlx=1+(a-2),acN',当a=2时,x=1,而中无元素1.P 比M多一个元素。

3.(2014?四川文)已知集合4=[xl(x+1)(x-2)≤0},集合B为整数集,则AnB=()C.(一2,-1,0,1}D.{-1,0,1,2}
答案D解析由二次函数y=(x+1)(x一2)的图像可以得到不等式(x+1)(x一2)≤0的解集A=[-1,2],属于A的整数只有一1,0,1,2,所以AnB=(-1,0,1,2},故选D.
4.(2015?《高考调研》原创题)已知i为虚数单位,集合P={-1,1},0=(i,i3,若Pno=(zi),则复数2等于()答案C解析因为0={i,i),所以0={i,-1}.又P={-1,1},所以png={-1l,所以2i=一1,所以2=i,故选C.
5.集合A一{0,2,al,B-1,,若AUB={0,1,2,4,16},则a的值为()
答案D解析由UB-{0,1,2,a,},知a-4.
6.设P-{riy=-+1,x=R},Q-{yly=2",x=R},则()A.sQB.QEP C.[aFs 0D.QFciP 答案C解析依题意得集合P={rlr≤1],0=[yly>0],。

2022年高考物理大一轮复习训练:4-5 题组层级快练

2022年高考物理大一轮复习训练:4-5 题组层级快练

题组层级快练说明:1题只有一项符合题目要求,2-5题有多项符合题目要求.1.(2015·浙江温州)安装实验装置的过程中,斜槽装置的末端的切线必须是水平的,这样的目的是() A.保证小球飞出时,速度既不太大也不太小B.保证小球飞出时,初速度水平C.保证小球在空中运动的时间每次都相等D.保证小球运动的轨道是一条抛物线解析安装斜槽时一定要使其末端的切线水平,只有这样才能保证飞出的小球做平抛运动.否则做斜抛运动,故只有选项B正确,选项A、C、D错误.答案 B设置目的考查平抛实验的条件2.(2015·四川绵阳)如图所示.在做“研究平抛物体的运动”的实验时,让小球多次沿同一轨道运动,通过描点法画小球做平抛运动的轨迹.为了能较准确地描绘运动轨迹,下面列出了一些操作要求,你认为正确的选项是()A.通过调节使斜槽的末端保持水平B.每次释放小球的位置可以不同C.每次必须由静止释放小球D.将小球的位置记录在纸上后,取下纸,用直尺将各点直线连接解析通过调节使斜槽末端保持水平,是为了保证小球做平抛运动,故A项正确;因为要画同一运动的轨迹,必须每次释放小球的位置相同,且由静止释放,以保证获得相同的初速度,故B项错误;根据对B选项的论述可知,C项正确;用描点法描绘运动轨迹时,应将各点连成平滑的曲线,不能连成折线或者直线,故D项错误.答案AC设置目的考查平抛实验轨迹的描绘3.在做“研究平抛物体的运动”实验时,除了木板、小球、斜槽、铅笔、图钉之外,下列器材中还需要的是()A.游标卡尺B.秒表C.坐标纸D.天平E.弹簧秤F.重锤线解析在做“研究平抛物体的运动”实验时,除了木板、小球、斜槽、铅笔、图钉之外,下列器材中还需要重锤线,确保小球抛出是在竖直面内运动,还需要坐标纸,便于确定小球间的距离.故选项C、F正确.答案CF设置目的考查实验仪器的选取4.在做“研究平抛物体的运动”实验中,下列说法正确的是()A.应使小球每次从斜槽上相同的位置自由滑下B.斜槽轨道必须光滑C.斜槽轨道末端可以不水平D.为使描出的轨迹更好地反映真实运动,记录的点应适当多一点E.为了比较准确地找出小球运动的轨迹,应该用一条曲线把所有的点连接起来解析做平抛运动的实验时,斜槽末端必须水平,以保证小球做平抛运动,C选项错误;为使小球运动轨迹相同,应使小球每次从斜槽上相同的位置无初速滚下,即可获得相同速度,轨道光滑与否对实验结果无影响,B选项错误,A选项正确;描点法画物体运动的轨迹时,应用平滑的曲线连点,偏离轨迹较远的点应舍去,D选项正确,E选项错误.答案AD设置目的考查对斜槽的要求5.(经典题)在做“研究平抛运动”的实验时,让小球多次沿同一轨道运动,通过描点法画出小球做平抛运动的轨迹.为了能较准确地描绘运动轨迹,下面列出了一些操作要求.将你认为正确的选项前面的字母填在横线上________.A.通过调节使斜槽末端保持水平B.每次释放小球的位置必须不同C.每次必须由静止开始释放小球D.记录小球位置用的木条(或凹槽)每次必须严格地等距离下降E.小球运动时不应与木板上的白纸(或方格纸)相接触F.将球的位置记录在纸上后,取下纸,用直尺将点连成折线解析通过调节使斜槽末端保持水平,是为了保证小球做平抛运动.故A项正确;因为要画同一运动的轨迹,必须每次释放小球的位置相同,且由静止释放,以保证获得相同的初速度,故B项错误,C项正确;记录小球经过不同高度的位置时,每次不必严格地等距离下降,故D项错误;做平抛运动的物体在同一竖直面内运动,固定白纸的木板必须调节成竖直,小球运动时不应与木板上的白纸相接触,以免有阻力的影响,故E项正确;将球经过不同高度的位置记录在纸上后,取下纸,平滑的曲线把各点连接起来,故F项错误.答案ACE设置目的考查轨迹的描绘取点的理解6.(2014·安徽)如图是某同学根据实验画出的平抛小球的运动轨迹,O为平抛的起点,在轨迹上任取三点A、B、C,测得A、B两点竖直坐标y1为5.0 cm,y2为45.0 cm,A、B两点水平间距Δx为40.0 cm,则平抛小球的初速度v0为________m/s,若C点的竖直坐标y3为60.0 cm,则小球在C点的速度v C为________m/s(结果保留两位有效数字,g 取10 m/s 2).解析 由y 1=12gt 21,y 2=12gt 22,代入y 1=5.0 cm ,y 2=45.0 cm ,得t 1=0.1 s ,t 2=0.3 s ,v 0=Δx Δt =Δxt 2-t 1=40×10-20.3-0.1m/s =2.0 m/s ;由v 2Cy -0=2gy 3,得v Cy =2 3 m/s ,v C =v 20+v 2Cy =4.0 m/s. 答案 2.0 4.0设置目的 利用平抛水平和竖直方向的分量解决平抛的初速度、合速度7.(经典题)试根据平抛运动的原理设计测量弹射器弹丸出射初速度的实验方法.提供实验器材:弹射器(含弹丸,如图所示)、铁架台(带夹具)、米尺.(1)画出实验示意图.(2)在安装弹射器时应注意:________.(3)实验中需要测量的量(并在示意图中用字母标出):________.(4)由于弹射器每次射出的弹丸初速度不可能完全相等,在实验中应采取的方法是: ________________________________________________________________________ ________________________________________________________________________. (5)计算公式:________.解析 (1)实验的示意图如下图所示.(2)为了使小球做平抛运动,弹射器必须水平.(3)为了测量初速度,需测量弹丸平抛落体的高度h ,弹丸的水平射程的长度s .(4)在落点处铺一张白纸,上面铺一张复写纸,将几次弹射的落点用一个最小的圆圈圈上,找出圆心,圆心即为平均落点位置.(5)根据y =h =12gt 2,x =s =v 0t 联立以上两式解得v 0=sg 2h. 答案 (1)如图所示(见解析); (2)弹射器必须水平(3)需测量弹丸平抛落体的高度h ,弹丸的水平射程的长度s(4)在落点处铺一张白纸,上面铺一张复写纸,将几次弹射的落点用一个最小的圆圈圈上,找出圆心,圆心即为平均落点位置(5)v 0=sg 2h设置目的 创新能力的考查.创新设计型实验是近几年高考实验出题的一个大方向.创新能力来源于对课本实验的深刻理解与灵活应用,理解实验基本原理和所用器材的各种用途,然后要根据题目中所给的器材达到实验的目的8.(2015·河北承德)如图所示,A 、B 、C 、D 为物体做平抛运动过程中依次通过的四个点,通过某种方法把四个点记录在了图纸上,图中的网格区域是由许多个正方形小方框构成(实验时,纸张竖直放置.网格竖直线和重锤线平行),每个正方形小方框的边长均为L =5 cm.由于保存不当,纸张被污染了,导致C 点的位置无法确定.现在想要用该实验图纸来研究平抛运动,(g =10 m/s 2)请回答以下问题:(1)判断A 点是否为平抛的起始点________;(填“是”或“不是”) (2)从A 运动到B 所用的时间为________s ; (3)该平抛运动的初速度为________m/s.解析 根据图像可知,y AB =2L ,y BD =y BC +y CD =10L ,而y BC -y AB =y CD -y BC ,解得y BC =4L ,y CD =6L ,在竖直方向上Δy =gT 2,T =Δyg=4L -2Lg=2L g=0.110s =0.1 s ,所以从A 运动到B 所用的时间为0.1 s ;B 点在竖直方向上的分速度v By =y AC 2T =0.150.1 m/s =1.5 m/s ,则从抛出到运动到B 点所用的时间t =v By g =1.510s =0.15 s>0.1 s ,所以A 点不是平抛的起始点. 小球平抛运动的初速度v 0=x t =4L T =0.20.1 m/s =2 m/s.答案 (1)不是 (2)0.1 (3)2设置目的 考查识别图像的意义、求解初始抛点位置、利用Δy =gT 2求抛体时间间隔9.(2014·广东佛山)在研究平抛物体运动的实验中,用一张印有小方格的纸记录轨迹,小方格的边长L =1.25 cm ,若小球在平抛运动途中的几个位置如图中a 、b 、c 、d 所示,则(1)求小球平抛运动的初速度的计算式(用L 、g 表示),其值是多少?(2)如果以a 点作为坐标原点,水平向右方向为x 轴,竖直向下为y 轴,请表达出抛出点的坐标. 解析 (1)平抛运动的竖直分运动是自由落体运动,即初速度为零的匀加速直线运动,水平分运动是匀速直线运动,由水平方向ab =bc =cd ,知相邻两点的时间间隔相等,设为T ,竖直方向相邻两点间位移之差相等,Δy =L ,由Δy =gT 2,得L =gT 2,时间T 内,水平位移为x =2L ,可得v 0=x T =2LLg =2Lg =2× 1.25×10-2×9.8 m/s =0.70 m/s(2)由于ab 、bc 、cd 间竖直位移之比不满足1∶3∶5的关系,所以a 点不是抛出点.设小球运动到b 点时竖直方向上的分速度为v b ,则有v b =3L 2T =3gL 2=32×9.8×1.25×10-2 m/s =0.525 m/s小球从抛出点运动到b 点所用时间为t b =v bg则抛出点到b 点的水平距离为 x b =v 0·t b =v 0·v b g =0.70×0.5259.8m =0.037 5 m =3.75 cm 抛出点到b 点的竖直距离为y b =v 2b2g =0.52522×9.8 m =0.014 1 m =1.41 cm则抛出点的坐标为(-1.25 cm ,-0.16 cm) 答案 (1)v 0=2Lg 、0.70 m/s ; (2)(-1.25 cm ,-0.16 cm)设置目的 考查抛出点的求解方法、初速度的表达与计算10.某同学设计了一个研究平抛运动的实验.实验装置示意图如图所示,A 是一块平面木板,在其上等间隔地开凿出一组平行的插槽(图中P 0P ′0、P 1P ′1…),槽间距离均为d .把覆盖复写纸的白纸铺贴在硬板上,实验时依次将B 板插入A 板的各插槽中,每次让小球从斜轨的同一位置由静止释放,每打完一点后,把B 板插入后一槽中并同时向纸面内侧平移距离d .实验得到小球在白纸上打下的若干痕迹点,如图所示.(1)实验前应对实验装置反复调节,直到________.每次让小球从同一位置由静止释放,是为了________.(2)每次将B 板向内侧平移距离d ,是为了________. (3)在图中绘出小球做平抛运动的轨迹.解析(1)实验前应对实验装置反复调节,直到斜槽末端水平,保证做平抛运动,初速度水平,每次让小球从同一位置由静止释放,是为了保持小球水平抛出的初速度相同.(2)平抛运动在水平方向上做匀速直线运动,每次将B板向内侧平移距离d,是为了保持相邻痕迹点的水平距离大小相同.(3)如图所示答案(1)斜槽末端水平保持小球水平抛出的初速度相同(2)保持相邻痕迹点的水平距离大小相同(3)如解析图.设置目的练习一种新的描点的方法,考查新情景的物理情景的审题能力。

2021高考物理大一轮复习题组层级快练:第八单元 恒定电流 作业35实验:测定金属的电阻率 Word版含答案

2021高考物理大一轮复习题组层级快练:第八单元 恒定电流 作业35实验:测定金属的电阻率 Word版含答案

题组层级快练(三十五) 实验:测定金属的电阻率一、选择题1.现有一合金制成的圆柱体,为测量该合金的电阻率,现用伏安法测圆柱体两端之间的电阻,用螺旋测微器测量该圆柱体的直径,用游标卡尺测量该圆柱体的长度.螺旋测微器和游标卡尺的示数如图a 和b 所示.(1)由上图读得圆柱体的直径为________ cm ,长度为________ cm.(2)若流经圆柱体的电流为I ,圆柱体两端之间的电压为U ,圆柱体的直径和长度分别为D 、L ,测得D 、L 、I 、U 表示的电阻率的关系式为ρ=________. 答案 (1)0.1844 4.240 (2)πD 2U4IL解析 (1)螺旋测微器的读数为1.5 mm +34.4×0.01 mm =1.844 mm(1.842-1.846范围内的均可);游标卡尺的读数为42 mm +8×0.05 mm =42.40 mm =4.240 cm ;(2)圆柱体的横截面积为S =π(D 2)2,由电阻定律R =ρL S 和欧姆定律R =U I 可知,ρ=πD 2U4IL.2.衡水中学课外活动小组的同学们在做《自来水电阻率的测定》课题时,在一根粗细均匀的长玻璃管两端各装了一个电极,其间充满待测的自来水,然后用如图甲所示电路进行测量.某同学选用的电学器材如下:电压表(量程15 V ,内阻约90 k Ω)、电流表(量程300 μA ,内阻约50 Ω)、滑动变阻器(100 Ω,1 A)、电池组(电动势E =12 V ,内阻r =6 Ω)、开关一个、导线若干. 实验中测量情况如下:安装前他用图乙(a)的游标卡尺测量玻璃管的内径,结果如图乙(b)所示. 测得两电极相距L =0.314 m.实验中测得包括0在内的9组电流I 、电压U 的值,在坐标纸上描点如图所示.根据以上材料请回答下面的问题:(1)测量玻璃管内径时,应将图乙(a)游标卡尺中的A、B、C三部分中的________与玻璃管内壁接触;玻璃管的内径d=________mm.(2)为保证安全,闭合开关前滑动变阻器的滑片应移至________端(选填M或N).(3)根据实验数据可知他测得水柱的电阻R=________Ω(保留两位有效数字);用水柱电阻R、玻璃管内径d、水柱长度L表示自来水的电阻率ρ=________.(4)该同学在完成实验报告时,通过比较水柱电阻、电表内阻时发现,实验中的电路设计有不妥之处,会引起较大的系统误差,于是他在实验报告中提出了改进意见,并画出了改进后的电路原理图.请在虚线框中画出改进后的实验电路原理图.答案(1)A 30.75 (2)M (3)1.0×105πRd2 4L(4)如图所示解析(1)游标卡尺中的A是用于测内径的,其读数d=30 mm+15×0.05 mm=30.75 mm(2)滑动变阻器分压接法时,闭合开关时,分压应为零,即滑片应置于M端.(3)根据图作过原点的直线(使较多的点在直线上或平均分布于直线两侧),其斜率即为阻值R =1.0×105Ω.根据R =ρL S ,得ρ=πRd24L.(4)由于被测电阻阻值较大,故电流表应内接.3.为了测量某待测电阻R x 的阻值(约为30 Ω),有以下一些器材可供选择. 电流表A 1(量程0-50 mA ,内阻约10 Ω); 电流表A 2(量程0-3 A ,内阻约0.12 Ω); 电压表V 1(量程0-3 V ,内阻很大); 电压表V 2(量程0-15 V ,内阻很大); 电源E(电动势约为3 V ,内阻约为0.2 Ω); 定值电阻R(20 Ω,允许最大电流1.0 A); 滑动变阻器R 1(0-10 Ω,允许最大电流2.0 A); 滑动变阻器R 2(0-1 k Ω,允许最大电流0.5 A); 单刀单掷开关S 一个,导线若干.(1)电流表应选________,电压表应选________,滑动变阻器应选________.(填字母代号) (2)请在下面的虚线框内画出测量电阻R x 的实验电路图.(要求所测量范围尽可能大)(3)某次测量中,电压表示数为U 时,电流表示数为I ,则计算待测电阻阻值的表达式为R x =________.答案 (1)A 1 V 1 R 1 (2)见解析图 (3)UI-R 解析 (1)首先选取唯一性器材:电源E(电动势约为3 V ,内阻约为0.2 Ω),定值电阻R(20 Ω允许最大电流1.0 A),单刀单掷开关S ,导线.电源电动势约为3 V ,所以电压表选择V 1(量程0-3 V ,内阻很大);待测电阻R x 的阻值约为30 Ω,流过R x 的最大电流为3 V30 Ω=0.1 A =100 mA ,如果电流表选择A 2(量程0-3 A ,内阻约0.12 Ω),指针偏转很小,测量不准确,所以只能选择A 1(量程0-50 mA ,内阻约10 Ω);滑动变阻器R 2的全值电阻太大,操作不便,所以滑动变阻器应选R 1(0-10 Ω,允许最大电流2.0 A).(2)因为实验要求所测量范围尽可能大,所以滑动变阻器应采用分压接法;因为待测电阻R x 的阻值远小于电压表内阻,所以电流表采用外接法;为了使流过电流表的电流不超过其最大量程,即50 mA ,应给待测电阻串联一个定值电阻R ,起保护作用.实验原理图如图所示. (3)根据欧姆定律可得R x =UI-R.4.在“探究导体电阻与其影响因素的定量关系”的实验中:(1)某实验小组用如图甲所示电路对镍铬合金丝和康铜丝进行探究,a 、b 、c 、d 是四种金属丝.①实验小组讨论时,某同学对此电路提出异议,他认为,电路中应该串联一个电流表,只有测出各段金属丝的电阻,才能分析电阻与其影响因素的定量关系.你认为要不要串联电流表?并简单说明理由.____________________________;②几根镍铬合金丝和康铜丝的规格如下表所示:电路图中金属丝a 、b 、c 分别为下表中编号为A 、B 、C 的金属丝,则金属丝d 应为下表中的________(用表中编号D 、E 、F 表示).(2) ①用毫米刻度尺测量金属丝长度为L =80.00 cm ,用螺旋测微器测金属丝的直径如图乙所示,则金属丝的直径d 为________;②按如图丙所示连接好电路,测量金属丝的电阻R.改变滑动变阻器的阻值,获得六组I 、U 数据描在如图丁所示的坐标系上.由图可求得金属丝的电阻R =________Ω,该金属丝的电阻率ρ=________Ω·m(保留两位有效数字).答案 (1)①不需要,串联电路的电流处处相等,电压与电阻成正比 ②E (2)①1.600 mm ②0.52 1.3×10-6解析 (1)①串联电路的电流处处相等,串联电阻两端电压与电阻成正比,不需要测出电流,根据电阻两端电压大小即可比较出电阻大小.②探究影响电阻的因素,应采用控制变量法,实验已选A 、B 、C 的金属丝,根据控制变量法的要求,应控制材料的长度与横截面积相等而材料不同,因此d 应选表中的E. (2)①由题图乙示螺旋测微器可知,其示数为1.5 mm +10.0×0.01 mm=1.600 mm ; ②根据坐标系内的点作出图像如图所示.由图像可知,电阻阻值为R =U I =0.30.58 Ω≈0.52 Ω;由R =ρlS=ρl π(d 2)2可得,电阻率ρ=πRd 24l =3.14×0.52×(1.600×10-3)24×0.800 Ω·m ≈1.3×10-6Ω·m.5.某同学测量一个圆柱体的电阻率,需要测量圆柱体的尺寸和电阻.(1)分别使用游标卡尺和螺旋测微器测量圆柱体的长度和直径,某次测量的示数如图(a)和(b)所示,长度为________ cm ,直径为________ mm.(2)按图(c)连接电路后,实验操作如下.①将滑动变阻器R 1的阻值置于最________处(填“大”或“小”);将S 2拨向接点1,闭合S 1,调节R 1,使电流表示数为I 0.②将电阻箱R 2的阻值调至最________(填“大”或“小”),S 2拨向接点2;保持R 1不变,调节R 2,使电流表示数仍为I 0,此时R 2阻值为1 280 Ω. (3)由此可知,圆柱体的电阻为________Ω. 答案 (1)5.01 5.315 (2)大 大 (3)1 280 解析 (1)长度l =5.0 cm +1×110mm =5.01 cm ; 直径d =5 mm +31.5×0.550mm =5.315 mm. (2)①为保护电路使电路中电流不会超出电流表量程,应将滑动变阻器接入电路的阻值置于最大处.②为使电路中电流较小,使电流表示数逐渐变大,电阻箱阻值也应先调至最大. (3)将S 1闭合,S 2拨向接点1时,其等效电路图如图甲所示.当S 2拨向2时,其等效电路图如图乙所示. 由闭合电路欧姆定律,知I =ER 1+R +r当I 相同均为I 0时,R 2=R 圆柱体 所以R 圆柱体=1 280 Ω6.现要测量一待测电阻的阻值,所用器材如下: 标准电流表A 1(量程250 mA ,内阻r 1=5 Ω); 电流表A 2(量程300 mA ,内阻r 2约为5 Ω); 待测电阻R 1(阻值约为100 Ω); 滑动变阻器R 2(最大阻值10 Ω);电源E(电动势约为6 V ,内阻r 约为1 Ω); 单刀单掷开关,导线若干.(1)要求方法简捷,并能测量多组数据,画出实验电路原理图,并标明每个器材的代号. (2)实验中,需要直接测量的物理量有________,用测得的量表示待测电阻R 1的阻值R 1=________.答案 (1)实验电路原理图见解析图 (2)两电流表A 1、A 2的读数I 1、I 2I 1I 2-I 1r 1【解析】(1)由于A1的内阻已知,可当做电压表来用;又给了另一个电流表A2,可结合两电流表示数之差,利用欧姆定律测R1的阻值;题目要求测多组数据,滑动变阻器应接成分压式;电路图如图所示:(2)实验中,测出两电流表A1、A2的读数I1、I2之后,则(I2-I1)R1=I1r1,所以R1=I1r1I2-I1. 7.(2016·课标全国Ⅱ)某同学利用图(a)所示电路测量量程为2.5 V的电压表的内阻(内阻为数千欧姆),可供选择的器材有:电阻箱R(最大阻值99 999.9 Ω),滑动变阻器R1(最大阻值50 Ω),滑动变阻器R2(最大阻值5 kΩ),直流电源E(电动势3 V),开关1个,导线若干.实验步骤如下:①按电路原理图(a)连接线路;②将电阻箱阻值调节为0,将滑动变阻器的滑片移到与图(a)中最左端所对应的位置,闭合开关S;③调节滑动变阻器,使电压表满偏;④保持滑动变阻器滑片的位置不变,调节电阻箱阻值,使电压表的示数为2.00 V,记下电阻箱的阻值.回答下列问题:(1)实验中应选择滑动变阻器________(填“R1”或“R2”).(2)根据图(a)所示电路将图(b)中实物图连线.(3)实验步骤④中记录的电阻箱阻值为630.0 Ω,若认为调节电阻箱时滑动变阻器上的分压不变,计算可得电压表的内阻为________Ω(结果保留到个位).(4)如果此电压表是由一个表头和电阻串联构成的,可推断该表头的满刻度电流为________(填正确答案标号). A .10 μA B .250 μA C .500 μAD .1 mA答案 (1)R 1 (2)连线如下图所示 (3)2 520 (4)D解析 (1)实验原理类比于半偏法测电表内阻,电压表所在支路的总电压应该尽量不变化,即滑动变阻器选最大阻值小的即选R 1.(3)近似认为电压表所在电路的总电压不变,2R V =2.5-2R ,则R V =4R =2 520 Ω. (4)由欧姆定律可知,I 满=U 满R V = 2.52 520mA ≈1 mA.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题组层级快练(一)1.下列各组集合中表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}答案 B2.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则下列关系中正确的是()A.M P B.P MC.M=P答案 A解析P={x|x=1+(a-2)2,a∈N*},当a=2时,x=1,而M中无元素1,P比M多一个元素.3.(2014·四川文)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}答案 D解析由二次函数y=(x+1)(x-2)的图像可以得到不等式(x+1)(x-2)≤0的解集A=[-1,2],属于A的整数只有-1,0,1,2,所以A∩B={-1,0,1,2},故选D.4.(2015·《高考调研》原创题)已知i为虚数单位,集合P={-1,1},Q={i,i2},若P∩Q={z i},则复数z等于()A.1B.-1C.i D.-i答案 C解析因为Q={i,i2},所以Q={i,-1}.又P={-1,1},所以P∩Q={-1},所以z i=-1,所以z=i,故选C.5.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4答案 D解析由A∪B={0,1,2,a,a2},知a=4.6.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P答案 C解析依题意得集合P={y|y≤1},Q={y|y>0},∴∁R P={y|y>1},∴∁R P⊆Q,选C.7.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为()A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)答案 D解析因为A={x|y=f(x)}={x|1-x2>0}={x|-1<x<1},则u=1-x2∈(0,1],所以B={y|y=f(x)}={y|y≤0}.所以A∪B=(-∞,1),A∩B=(-1,0].故图中阴影部分表示的集合为(-∞,-1]∪(0,1),故选D.8.已知集合M={1,a2},P={-1,-a},若M∪P有三个元素,则M∩P=() A.{0,1} B.{0,-1}C.{0} D.{-1}答案 C解析由题意知a2=-a,解得a=0或a=-1.①当a=0时,M={1,0},P={-1,0},M∪P={-1,0,1},满足条件,此时M∩P={0};②当a=-1时,a2=1,与集合M中元素的互异性矛盾,舍去,故选C.9.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.a≤1 B.a<1C.a≥2 D.a>2答案 C解析∵B={x|1<x<2},∴∁R B={x|x≥2或x≤1}.又∵A={x|x<a}且A∪(∁R B)=R,∴a≥2.10.(2015·保定模拟)已知集合M={x|x2-5x≤0},N={x|p<x<6},且M∩N={x|2<x≤q},则p+q=()A .6B .7C .8D .9答案 B解析 由题意知,集合M ={x |0≤x ≤5},画数轴可知p =2,q =5,所以p +q =7,故选B.11.已知集合A ={x |log 2x <1},B ={x |0<x <c },(c >0).若A ∪B =B ,则实数c 的取值范围是________.答案 [2,+∞)解析 A ={x |0<x <2},由数轴分析可得c ≥2.12.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.答案 {2,4,6,8}解析 U ={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9},∴B ={2,4,6,8}.13.(2015·广东揭阳调研)对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M .对于两个集合A ,B ,定义集合A △B ={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A △B 的结果为( )A .{1,6,10,12}B .{2,4,8}C .{2,8,10,12}D .{12,46}答案 A解析 要使f A (x )·f B (x )=-1,必有x ∈{x |x ∈A 且x ∉B }∪{x |x ∈B 且x ∉A }={1,6,10,12},所以A △B ={1,6,10,12}.14.在集合M ={0,12,1,2,3}的所有非空子集中任取一个集合,该集合恰满足条件“对∀x ∈A ,有1x∈A ”的概率是________.答案331解析 集合M 的非空子集共有25-1=31(个), 其中集合A 可以是:{1},{12,2},{12,1,2}.15.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合; ②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合. 其中正确结论的序号是________. 答案 ②解析 ①中,-4+(-2)=-6∉A ,所以不正确;②中设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,k 1,k 2∈Z ,则n 1+n 2∈A ,n 1-n 2∈A ,所以②正确;③令A 1={n |n =5k ,k ∈Z },A 2={n |n =2k ,k ∈Z },则A 1,A 2为闭集合,但A 1∪A 2不是闭集合,所以③不正确.16.设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,试求实数m 的值.答案 m =1或m =2 解析 易知A ={-2,-1}. 由(∁U A )∩B =∅,得B ⊆A .∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴B ≠∅. ∴B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)×(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)×(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件. ∴m =1或2.17.(2015·福建三明)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)若A ⊆B ,求实数m 的取值范围; (2)若A ∩B =(1,2),求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 答案 (1)(-∞,-2] (2)m =-1 (3)[0,+∞)解析 (1)由A ⊆B ,得⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(2)由已知,得⎩⎪⎨⎪⎧2m ≤1,1-m =2⇒⎩⎪⎨⎪⎧m ≤12,m =-1,∴m =-1.(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧ m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).1.若集合A ={2,3,4},B ={x |x =n ·m ,m ,n ∈A ,m ≠n },则集合B 中元素个数为( ) A .2 B .3 C .4 D .5答案 B解析 由题意知,B 中的元素有:2×3=6,2×4=8,3×4=12,因此B ={6,8,12},故选B.2.已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≤4,x ∈Z },则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2} D .{0,1,2} 答案 D解析 由已知得A ={x |-2≤x ≤2},B ={0,1,…,16},所以A ∩B ={0,1,2}. 3.(2013·山东文)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C .{3,4}D .∅ 答案 A解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B ={3,4},故A∩(∁U B)={3}.4.已知集合A={-1,0,a},B={x|0<x<1},若A∩B≠∅,则实数a的取值范围是________.答案(0,1)解析∵A中-1,0不属于B,且A∩B≠∅,∴a∈B,∴a∈(0,1).5.已知集合A,B与集合A@B的对应关系如下表:若A={-2 014,0,2 015},B={-2 014,0,2 016},试根据图表中的规律写出A@B=________.答案{2 015,2 016}。

相关文档
最新文档