光电探测器

合集下载

光电探测器的原理

光电探测器的原理

光电探测器的原理光电探测器是一种能够将光信号转换为电信号的器件,它在光通信、光电测量、光谱分析等领域有着广泛的应用。

光电探测器的原理主要基于光电效应和半导体材料的特性,下面将详细介绍光电探测器的原理。

首先,光电探测器的基本原理是光电效应。

光电效应是指当光线照射在金属或半导体表面时,光子能量被吸收,激发出电子从固体表面逸出的现象。

这些逸出的电子就构成了光电流,通过测量光电流的大小可以间接测量光的强度。

在光电探测器中,光电效应是将光信号转换为电信号的关键过程。

其次,光电探测器的原理还与半导体材料的特性密切相关。

常见的光电探测器主要有光电二极管(Photodiode)、光电导(Phototransistor)、光电二极管阵列(Photodiode Array)等。

这些光电探测器主要利用半导体材料的光电特性来实现光信号的转换。

当光线照射在半导体材料上时,会产生电子-空穴对,并在外加电场的作用下产生电流。

不同类型的光电探测器采用不同的半导体材料和工作原理,但它们都是利用半导体材料的光电特性来实现光信号的探测和转换。

除此之外,光电探测器的原理还涉及到光信号的增强和处理。

在实际应用中,光信号往往非常微弱,需要经过光电探测器的增强和处理才能得到有效的电信号。

因此,光电探测器通常会与放大器、滤波器、模数转换器等电路相结合,以实现对光信号的放大、滤波和数字化处理,最终得到精确的电信号输出。

总的来说,光电探测器的原理主要包括光电效应、半导体材料的光电特性以及光信号的增强和处理。

通过光电效应将光信号转换为电信号,利用半导体材料的特性实现光信号的探测和转换,再通过电路的增强和处理得到最终的电信号输出。

光电探测器在光通信、光电测量、光谱分析等领域有着广泛的应用,其原理的深入理解对于光电器件的设计和应用具有重要意义。

消防光电探测器原理

消防光电探测器原理

消防光电探测器原理
光电探测器是一种常用于消防系统中的设备,用于检测烟雾或火焰的存在。

它的原理是利用光电效应来检测烟雾或火焰引起的光的变化。

光电探测器由两个主要部分组成:光源和光电传感器。

光源可以是一个发光二极管,发射红外光或可见光。

光电传感器通常是光敏二极管,用于接收光源产生的光。

当没有烟雾或火焰时,光源发射的光会直接照射到光敏二极管上,没有阻挡或干扰。

当烟雾或火焰产生时,它们会散射或吸收光源发出的光,导致光敏二极管接收到的光减少。

光电探测器会通过测量光敏二极管接收到的光的强度变化来判断是否存在烟雾或火焰。

当光敏二极管接收到的光强度下降到一定程度时,探测器会触发报警信号,以提醒人们可能发生火灾。

为了提高探测器的准确性和灵敏度,一些光电探测器还采用了特殊的光学设计和滤波器来过滤掉其他光干扰,只检测特定波长范围内的光变化。

总之,光电探测器利用光电效应来检测烟雾或火焰引起的光的变化。

通过测量光敏二极管接收到的光的强度变化,探测器可以准确地判断是否存在火灾,从而触发相应的报警系统。

光电信号检测光电探测器概述概要课件

光电信号检测光电探测器概述概要课件
光电探测器广泛应用于光通信、光谱分析、环境监测、生物医学 等领域,是光电信号检测中的关键器件。
光电探测器的工作原理
光电探测器的工作原理基于光子与物质相互作用产生电子-空穴对或光生电场效 应,从而将光信号转换为电信号。
具体来说,当光子照射到光电探测器的敏感区域时,光子能量被吸收并产生电子 -空穴对,这些电子-空穴对在电场的作用下分离并形成光电流,从而完成光信号 到电信号的转换。
光电探测器的应用领域不断拓 展,如物联网、智能制造、无 人驾驶等新兴领域,为市场发 展带来更多机遇。
05
光电探测器的挑战与展望
光电探测器的挑战与展望
• 光电探测器是用于检测光信号并将其转换为电信号的器件,广泛应用于光通信、环境监测、安全监控等领域。随着光电子技术的发展,光电 探测器的性能不断提高,应用范围不断扩大。
THANK YOU
感谢聆听
04
光电探测器的市场前景
全球市场情况
光电探测器在全球范围内应用广泛,包括通信、工 业、医疗、安全等领域。
随着技术的不断进步和应用需求的增加,全球光电 探测器市场规模持续增长。
市场竞争激烈,各大厂商在技术研发、产品创新等 方面不断投入,以提高市场份额。
中国市场情况
02
01
03
中国光电探测器市场发展迅速,成为全球最大的光电 探测器市场之一。
光电探测器的分类
01
光电探测器可以根据工作原理、材料、波长响应范围、光谱响应特、光电发射型等;按材料可分为硅基、锗 基、硫化铅等;按波长响应范围可分为可见光、红外、紫外等;按光谱响应特 性可分为窄带、宽带等。
03
•·
02
光电探测器的应用
通信领域的应用
光纤通信
光电探测器在光纤通信中起到至关重要的作用。它们能够将光信 号转换为电信号,使得信息的传输和处理成为可能。

光电探测器

光电探测器

光电探测器光电探测器是利用辐射引起被照射材料电导率改变的一种物理现象的原理而制成的器件。

它的的工作原理是基于光电效应(包括外电光效应和内电光效应)。

根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子型探测器;另一类是热探测器。

其中光子探测器包括真空光电器件(光电倍增管等)和固体光电探测器(光电二极管、光导探测器、CCD等)。

1光子探测器1)原理光子探测器利用外光电效应制成的光子型探测器是真空电子器件,如光电管、光电倍增管和红外变像管等。

这些器件都包含一个对光子敏感的光电阴极,当光子投射到光电阴极上时,光子可能被光电阴极中的电子吸收,获得足够大能量的电子能逸出光电阴极而成为自由的光电子。

在光电管中,光电子在带正电的阳极的作用下运动,构成光电流。

光电倍增管与光电管的差别在于,在光电倍增管的光电阴极与阳极之间设置了多个电位逐级上升并能产生二次电子的电极(称为打拿极)。

从光电阴极逸出的光电子在打拿极电压的加速下与打拿极碰撞,发生倍增效应,最后形成较大的光电流信号。

因此,光电倍增管具有比光电管高得多的灵敏度。

红外变像管是一种红外-可见图像转换器,它由光电阴极、阳极和一个简单的电子光学系统组成。

光电子在受到阳极加速的同时又受到电子光学系统的聚焦,当它们撞击在与阳极相连的磷光屏上时,便发出绿色的光像信号。

2)光电管光电管原理是光电效应。

一种是半导体材料类型的光电管,它的工作原理光电二极管又叫光敏二极管,是利用半导体的光敏特性制造的光接受器件。

当光照强度增加时,PN结两侧的P区和N区因本征激发产生的少数载流子浓度增多,如果二极管反偏,则反向电流增大,因此,光电二极管的反向电流随光照的增加而上升。

光电二极管是一种特殊的二极管,它工作在反向偏置状态下。

常见的半导体材料有硅、锗等。

如我们楼道用的光控开关。

还有一种是电子管类型的光电管,它的工作原理用碱金属(如钾、钠、铯等)做成一个曲面作为阴极,另一个极为阳极,两极间加上正向电压,这样当有光照射时,碱金属产生电子,就会形成一束光电子电流,从而使两极间导通,光照消失,光电子流也消失,使两极间断开。

光电探测器原理及应用

光电探测器原理及应用

光电探测器原理及应用
光电探测器是一种能够将光信号转化为电信号的装置,其基本原理是利用光的能量激发材料中的电子从而产生电流。

根据光电效应的不同机制,光电探测器通常可以分为光电二极管、光电导、光电二极管阵列等多种类型。

光电二极管是最基本的光电探测器之一,其工作原理是光照射到光敏材料表面时,材料中的电子会被光激活并跃迁至导带中,从而形成电流。

光电二极管具有响应速度快、灵敏度高等特点,广泛应用于光通信、光谱分析、光电测量等领域。

光电导是一种利用光照射后材料电阻发生变化的光电探测器,其工作原理是光激发后,光电导材料中的载流子浓度发生改变,从而引起电阻的变化。

光电导具有较高的灵敏度和较宽的光谱响应范围,可广泛应用于光谱分析、光学测量、遥感等领域。

光电二极管阵列是由多个光电二极管组成的阵列结构,可以同时检测多个光信号,具有高灵敏度和高分辨率的特点。

光电二极管阵列常被用于光通信、图像传感、光谱分析等领域,如CCD(电荷耦合器件)摄像头就是经典的光电二极管阵列应
用之一。

此外,光电探测器还广泛应用于激光测距仪、扫描仪、光电子显像、医学诊断、环境监测等领域。

例如,激光测距仪利用光电探测器检测激光脉冲的发射和接收时间差,实现对目标距离的测量;扫描仪利用光电探测器对扫描光线的反射或透射光进行检测,实现图像的数字化处理和存储。

总之,光电探测器通过将光信号转化为电信号,实现了光能量的检测和测量。

其应用领域广泛,并在科学研究、工业生产、医疗诊断等领域发挥着重要的作用。

光电探测器

光电探测器
Id为探测器的暗电流,M为探测器的内增益
种类
• • • • 真空管光电探测器(PMT等) 半导体光电探测器 热电探测器 多通道探测器、成像器件
1.真空管光电探测器
• 利用在真空中光阴极受光辐照后产生光电子发射效应
光电阴极材料 • 光吸收系数大 • 传输能量损失小 • 光电子逸出功低
探测器窗口 • 透过率大
G n
AE

1.2光电倍增管
主要指标:
4. 暗电流 • 主要来源于阴极和倍 增级的热电子发射 • 决定了光电倍增管可 探测的最小光功率 • 暗电流与管子的工作 温度以及所加电压有 关
1.2光电倍增管
主要指标:
5.噪声等效功率 • 与阳极暗电流相等 的阳极输出电流所 需要的光功率决定 了光电倍增管可探 测的最小光功率 • ~10-15—10-16瓦, • ~10-18—10-19瓦(冷 却后),单光子探 测水平
单位时间内流出探测器件的光电子数与入射光子数之比
如有一探测器的灵敏度为0.5 A/W,其量子效率 为多少(光波长为1um)?
光探测器-参数
2.噪声等效功率(NEP) • 信噪比: SNR 信号的峰值和噪声的有效值(√带宽)之比
• NEP
NEP P S / N 1/ Hz
单位为W/Hz1/2
R1
C
R2
Vs
fC
图2.3 探测器的频率响应
f
Vmax
1 = c
T
i t dt
0
光探测器-参数
响应光谱 频谱响应 噪声
光探测器-噪声
1. 热噪声(thermal noise 或称Johnson noise)
白噪声
热噪声均方振幅电压值:

什么是光的光电探测器和光电导

什么是光的光电探测器和光电导

什么是光的光电探测器和光电导?光的光电探测器和光电导是光电传感器的重要类型,用于检测和测量光信号。

本文将详细介绍光的光电探测器和光电导的原理、结构和应用。

1. 光电探测器(Photodetector)的原理和结构:光电探测器是一种能够将光信号转换为电信号的器件。

它基于光子的能量被半导体材料吸收,激发带载流子,从而形成电流的原理。

最常见的光电探测器类型是光电二极管(Photodiode)和光电倍增管(Photomultiplier Tube),前文已经详细介绍过。

除了这两种常见类型,还有其他一些光电探测器,如光电晶体管、光电场效应晶体管和光电导等。

光电探测器的结构和工作原理与具体的类型有关。

总体而言,光电探测器通常包括光敏元件、电极、引线和封装等部分。

光敏元件是用于吸收光信号并产生电荷载流子的材料,电极用于收集和测量电流,引线用于连接光电探测器与外部电路,封装则是保护和固定光电探测器的外壳。

2. 光电探测器的应用:光电探测器在许多领域有着广泛的应用,包括但不限于以下几个方面:-光通信:光电探测器用于接收光信号,将光信号转换为电信号,并通过电路进行处理和解码,实现光通信的接收端。

-光测量:光电探测器可以用于测量光的强度、波长、频率和相位等参数,用于光谱分析、光度计和光谱仪等。

-光电检测:光电探测器可以用于检测物体的存在、位置和运动等,用于光电开关、光电传感和光电探测等应用。

-光电能转换:光电探测器可以将光能转化为电能,用于太阳能电池板和光伏发电系统等。

3. 光电导(Photoconductor)的原理和结构:光电导是一种能够根据光信号的强度来改变电导率的材料。

光电导的原理是光照射到材料上时,光子的能量被吸收,激发带载流子,从而改变材料的导电性能。

光电导材料通常是半导体材料,如硒化铟(Indium Selenide)、硒化镉(Cadmium Selenide)和硒化铅(Lead Selenide)等。

光电探测器原理

光电探测器原理

光电探测器原理光电探测器是一种能够将光信号转换为电信号的器件,它在光通信、光测量、光学成像等领域有着广泛的应用。

光电探测器的原理是基于光电效应和半导体器件的特性,通过光的照射使半导体器件产生电荷载流子,从而实现光信号到电信号的转换。

本文将介绍光电探测器的工作原理、结构特点及应用领域。

光电探测器的工作原理主要基于光电效应,即当光线照射到半导体材料表面时,光子能量被半导体吸收,激发出电子和空穴对。

在外加电场的作用下,电子和空穴被分离,从而产生电流。

这种光电效应是光电探测器能够将光信号转换为电信号的基础。

另外,光电探测器还利用了半导体器件的PN结构,通过光的照射改变PN结的导电特性,从而实现对光信号的探测和转换。

光电探测器的结构特点主要包括光电转换元件、信号放大电路和输出接口。

光电转换元件是光电探测器的核心部件,它通常采用硅、锗、InGaAs等半导体材料制成,具有高灵敏度和快速响应的特点。

信号放大电路用于放大光电转换元件产生的微弱电信号,以提高信噪比和传输距离。

输出接口将放大后的电信号转换为可用的电压或电流信号,以便接入到其他电子设备中进行信号处理和传输。

光电探测器在光通信、光测量、光学成像等领域有着广泛的应用。

在光通信系统中,光电探测器用于接收光信号并转换为电信号,实现光信号的调制和解调。

在光测量领域,光电探测器可以用于测量光强、光功率和光谱等参数,实现对光信号的精确测量和分析。

在光学成像系统中,光电探测器可以将光信号转换为图像信号,实现对光学图像的采集和处理。

总之,光电探测器是一种能够将光信号转换为电信号的重要器件,它的工作原理基于光电效应和半导体器件的特性,具有灵敏度高、响应速度快的特点。

光电探测器在光通信、光测量、光学成像等领域有着广泛的应用前景,将在未来发挥越来越重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一`光电探测器第一节 光辐射探测器的主要指标光信号的探测是光谱测量中的重要一环,在不同的场合和针对不同的目的所采用的探测器也不同,最重要的考虑是探测器的应用波长范围、探测灵敏度以及响应时间。

光探测器是将光辐射能转变为另一种便于测量的物理量的器件,它的门类繁多,一般来说可以按照在探测器上所产生的物理效应,分成光热探测器、光电探测器和光压探测器,光压探测器使用得很少。

本章将着重介绍光谱学测量中常用的探测器。

光热探测器是探测元件吸收光辐射后引起温度的变化,例如光能被固体晶格振动吸收引起固体的温度升高,因此对光能的测量可以转变为对温度变化的测量。

这种探测器的主要特点是:具有较宽的光波长响应范围,但时间响应较慢,测量灵敏度相对也低一些,经常用于光功率或光能量的测量。

光电探测器是将光辐射能转变为电流或电压信号进行测量,是最常使用的光信号探测器。

它的主要特点是:探测灵敏度高,时间响应快,可以对光辐射功率的瞬时变化进行测量,但它具有明显的光波长选择特性。

光电探测器又分内光电效应器件和外光电效应器件,内光电效应是通过光与探测器靶面固体材料的相互作用,引起材料内电子运动状态的变化,进而引起材料电学性质的变化。

例如半导体材料吸收光辐射产生光生载流子,引起半导体的电导率发生变化,这种现象称为光电导效应,所对应的器件称为光导器件;又如半导体PN 结在光辐照下,产生光生电动势,称为光生伏特效应,利用这种效应制成的器件称为光伏效应器件。

外光电效应器件是依据爱因斯坦的光电效应定律,探测器材料吸收辐射光能使材料内的束縛电子克服逸出功成为自由电子发射出来。

P k E h E -=ν ---------------------------------- (2.1-1)上式中 νh 是入射光子的能量,E p 是探测器材料的功函数,即光电子的逸出功,E k 是光电子离开探测器表面的动能。

这种探测器有一个截止频率和截止波长C ν和C λ: hp E c =ν , ()()nm eV E E hC p p C 1240==λ --------(2.1-2)频率低于C ν 或波长长于C λ 的光波不能被探测到,因为这样的光子能量不足以使电子克服材料的逸出功。

由于电子的发射必须在真空中进行,所以外光电效应器件都属于电真空器件。

光探测器的一些主要特性和参数1,灵敏度(或称响应度)(sensitivity 或 responsibility )灵敏度R V (或R I ) 的定义为:探测器输出电压V S (或输出电流I S )与输入光功率P 之比。

P V R S V =(单位为V/W )或 PIR S I =(单位为A/W )---------- (2.1-3) 由于灵敏度与入射光波长有密切的关系,入射波长不同,探测器的灵敏度也不同,所以一般还须给出灵敏度的光谱响应 (spectral response) 特性,如图2.1所示。

在光谱响应特性曲线中,峰值灵敏度下降一半时的波长范围(图2.1中的从S λ到L λ的范围)为探测器的光谱响应范围(注:对具体器件的光谱响应范围的定义可能不同,例如对光电倍增管的定义为下降到峰值灵敏度的1% 或 0.1%的波长范围)。

量子效率(Quantum Efficiency , QE)是从光的量子特性出发来定义灵敏度,表示单位时间内流出探测器件的电子流与入射光子流之比: νηh Pe I =----------------------------------- (2.1-4)上式中 I 为光生电流,e 为电荷,P 为光辐射功率。

量子效率与灵敏度之间的关系为:λS λLλP R1图2.1 探测器灵敏度的光谱响应%1001240⨯⨯=ληI R -------------------------- (2.1-5)R I 为给定波长时的灵敏度,单位为 (A/W), 波长的单位取为 (nm) 。

2,噪声等效功率 (Noise Equivalent Power ,NEP)NEP 定义为:探测信噪比S/N =1时(信噪比是指信号的峰峰值和噪声的有效值之比),入射到探测器上的信号光功率。

它表征探测器的噪声电平和探测器对微弱光信号的探测能力。

由于噪声电平与测量带宽的根号成正比,所以NEP 规定在1Hz 带宽条件下的测量结果。

NEP 越小,则探测器的探测灵敏度越高。

1==N S P NEP (单位为W/Hz 1/2)----- (2.1-6)或者写为:InoiseR I NEP =------------------------------- (2.1-7) I noise 为在1Hz 测量带宽内的噪声电流(单位为A/Hz 1/2),R I 为在峰值响应波长P λ上的灵敏度,单位为A/W 。

3, 噪声等效辐射照度 (Noise Equivalent Irradiance ,NEI)NEI 定义为:信噪比为1时的信号光辐射照度(单位面积上的辐射功率),即噪声等效功率 (NEP) 再除以探测器的靶面积A d 。

dA NEPNEI =(单位为W/Hz 1/2cm -2)--------------- (2.1-8) 4,探测率D (detectivity)探测率D 定义为NEP 的倒数,这样D 越大表明探测器的灵敏度越高。

PN SNEPD 11=== (单位为Hz 1/2W -1)------- (2.1-9)5,比探测率D * (D —star 或称品质因数 figure of merit)由于探测器靶面积A d 不同,以及测量电路带宽Δf 不同,D 值也会不同。

一般来说噪声电压正比于f A d ∆⋅,因此把噪声除以f A d ∆⋅,相当于把探测率D 值归一为A d =1cm 2和 Δf =1Hz 时的值,这时的探测率称为比探测率D *,以便对不同探测器之间的比较。

D *越大,探测器探测弱信号的能力越强。

()NEPf d A D 21*∆= (单位为121-⋅⋅W Hzcm )----- (2.1-10)6,探测器的时间常数τ(time constant ,TC ) 和截止频率(cut-off frequency, f C ) 探测器的时间常数是表征它对入射光功率随时间变化的响应,用τ来表示。

从时域的角度看,时间常数τ定义为上升时间t r 和下降时间t f 之和,t r 和t f 反映了探测器对阶跃信号的时间响应。

如图2.2所示,表示输入理想的方波脉冲信号时探测器的输出,时间常数为输出波形前沿的上升时间(从0.1到0.9)和后沿的下降时间 (从0.9到0.1) 之和:τ=+t r t f 。

注意τ与入射光波长和探测器负载阻抗有关。

从频域的角度看,1/τ即为探测器的高频截止园频率,即τω1=C 。

探测器工作在 f频率(注意:这里的频率 f 是指光强度的变化频率,例如对光强的调制频率)下的灵敏度响应特性与τ的关系可以用下式表示:ttP 10.9 0.1 图2.2 探测器的时间响应()2021)(τπf R f R +=-------------------------- (2.1-11)R 0 为探测直流光强时的灵敏度,当光强信号的园频率为τπω12 ==f 时,灵敏度下降为 R 0 的0.707倍,πτ21=C f ,称为截止频率。

除此之外,还有一些重要的指标,如反映探测器噪声电平的暗电流I d ,探测器的接收截面A d (会影响灵敏度和时间响应),探测器随温度的变化特性,半导体光电探测器的结电容(决定了时间响应),以及最大反偏电压、光照功率允许范围等,在使用时都必须注意的。

光探测器的噪声任何一个探测器都有噪声的随机输出,通常采用统计的方法来讨论,并用噪声功率(或电平)的有效值(即均方根值)给出。

1,热噪声(thermal noise 或称Johnson noise)探测器有一个等效电阻R ,电阻中自由电子的热运动引起电阻两端电压的随机起伏而产生的噪声,称为热噪声。

理论和实验都表明热噪声与频率无关,因此属于白噪声。

任何一个电子学器件都会有热噪声,热噪声均方振幅电压值可以表示为: n n f kTR V ∆=42-------------------------- (2.1-12)R(f)1 0.707C 图2.3 探测器的频率响应式中 k 为玻尔兹曼常数 (1.38×10-23J/K),T 为绝对温度(K ),R 为电阻阻值(Ω),Δf n 为测试系统等效噪声带宽。

这个噪声源等效于与电阻相串联的电压源,或者看成与电阻相并联的电流噪声源,它的噪声电流均方值为:Rf kT i nn ∆=42----------------------------- (2.1-13) 热噪声的功率谱密度(定义为单位频率范围的噪声功率)为:kTR f S 4)(= ---------------------- (2.1-14)严格说,热噪声还不是真正的白噪声,热噪声功率谱密度更精确的公式应写为:1exp 4)(--=⎪⎪⎭⎫ ⎝⎛kT hf hfR f S --------------- (2.1-15) 只有当hf kT >>时,才近似为式(2.1-14),但在大部分情况下这个关系都可以满足,因此我们总是把热噪声作为白噪声来处理。

2,散粒噪声(shot noise)散粒噪声(或称散弹噪声)最早是在电子管电路中发现的,由阴极热电子随机性发射而引起。

在半导体器件中,当电荷载流子通过PN 结时也有类似的随机产生和流动,这类由于粒状电流引起的起伏称为散粒噪声。

在散粒噪声极限下探测到的信号,称为量子极限探测。

散粒噪声也属于白噪声类,其功率谱密度为: d i eI f S 2)(= ------------------------- (2.1-16)上式中 e 为电子电荷 (1.59×10-19库伦),I d 为流过的电流(无光照射时即为暗电流)。

散粒噪声的电流有效值可以写为: n d S f eI I ∆=2 ------------------------ (2.1-17)相应的噪声电压有效值为:n d S f R eI V ∆=22 -------------------- (2.1-18)上式中R 为探测器的电阻,如果探测器具有内增益M ,在上二式中还要乘以M 因子,例如光电倍增管和半导体雪崩二极管光探测器具有M 增益因子。

3,闪烁噪声 (flicker noise)闪烁噪声属于器件内部的低频噪声,大约在1KHz 以下的频域范围。

如光电阴极表面局部不均匀性,引起发射电子的缓慢随机起伏,半导体器件也有类似的情况,其噪声电流的有效值可以用经验公式表述:21)/(βαf f AI I n f ∆= ------------ (2.1-19)A 为与探测器有关的系数,I 为流过探测器的总直流电流,2≈α,1≈β。

相关文档
最新文档