第一章晶体的结构
第一章晶体的结构

求晶面指数的方法
OA1 ra1, OA2 sa2 , OA3 ta3
h1 : h2 : h3 1 1 1 : : r s t
n
N
a3
O
d
a2
A2 A1
a1
设 a 1 , a 2 , a 3的末端上的格点分别在离原点距离h1d、h2d、
h3d的晶面上,这里 h1、h2、h3为整数 。 基矢
格点只在顶角上,内部和面上都不包含其他格点,整个原胞 只包含一个格点。
3、晶胞
原胞往往不能反映晶体的对称性
晶胞:能反映晶体对称性的最小结构重复单元
是原胞的数倍。晶胞的基矢用 a b c
原胞:
表示
a1 a2 a3
*几种典型晶体结构的原胞和晶胞
每种原子都各自构成一种相同的Bravais格子,这些Bravais 格子相互错开一段距离,相互套构而形成的格子。即复式 格子是由若干相同的Bravais格子相互位移套构而成的。
*几种典型的复式晶格
NaCl结构(Sodium Chloride structure ) 复式面心立方
例:MgO、KCl、AgBr 等
用来描述晶体中原子排列的紧密程度,原子排 列越紧密,配位数越大
简单立方(简立方)(simple cubic, sc)
配位数
6
晶胞内有 1 个原子
体心立方( body-centered cubic, bcc )
排列:ABABAB……
配位数
8
晶胞内有 2 个原子 具有体心立方结构的金属晶体:LI、Na、K、Fe等
重复周期为二层。形成AB AB AB· · · · · · 方式排列。
具有六角结构的金属: Mg,Co,Zn等
第一章 晶体结构(Crystal Structure)

基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
六角密堆积晶格结构是一个复式晶格
基元为两个原子 2 1 1 (0,0,0)、( , , ) 3 3 2
c
a
b
三、致密度
反映粒子排列的紧密程度,或也称堆积因 子。 定义: 晶胞内所有粒子的体积与晶胞体积之比。
例1:计算简单立方晶胞的致密度
解: 3 简单立方晶胞的体积为 a,
晶胞内有一个原子,原 子半径为 0 .5 a
a ( a a ) 1 2 3
就是布拉菲格子的晶胞。 晶胞基矢的选取使得平行六面体有尽可能多的相等的棱和 角,有尽可能多的直角,尽可能地反映空间点阵的对称性。 ,一般 晶胞体积为 。 a ( b c )
c构成的最小的平行六面体 以不共面的晶胞基矢 a 、b 、
如果将A、B两个原子看作为一 个基元,则点阵结构就如前页所示 ,格子就是布拉菲格子了。
二维蜂窝格子 (非布拉菲格子)
二、布拉菲格子的原胞与晶胞 a3 以不共面的原胞基矢 a 、 、 a 1 2 构成的最小的平行六面体就是
布拉菲格子的原胞。其体积为:
基矢的取法不唯一,故原胞的取法也不唯一。 无论如何选取,原胞均有相同的体积。 对于布拉菲格子,原胞只含有一个基元(格点)。
原胞体积为:
第一章 晶体结构

1.点对称操作
点对称操作:对称操作前后空间中至少保持一个不动的点的操作.
(1)n度旋转对称 2 n度旋转对称轴:晶体绕旋转 后仍能复原的轴. n 晶体只具有1、2、3、4、6度对称轴. (2)中心反演 中心反演的对称元素是一个点,中心反演操作用i表示. i操作作用 于(x,y,z)使之变换为(-x,-y,-z). 目录
(3)镜像(m,对称素为面) 镜像操作常用m表示,镜像的操作的对称元素是平面. 若选z=0为对称面,该操作使点(x,y,z)变换为(x,y,-z) (4)n度旋转反演对称 该操作由n度旋转对称和中心反演两个操作组成.晶体先绕一固定轴 旋转 2 n后,再经过中心反演,晶体能与自身重合.该轴称为n度旋 转反演轴. 晶体n度旋转反演对称中n只能取1,2,3,4,6中的数值,通常用 n 表示n度旋转反演轴. 注: a.1度旋转反演对称与中心反演i实质是同一操作. b. 2度旋转反演对称与镜像m实质是同一操作.
a
ak
a1 a 2 a j
a3
目录
ai
a-Fe的晶体结构
固体物理学原胞的体积: 3.面心立方(fcc)结构
Ω a1 (a2 a3 ) a
3
2
每个晶胞包含4个 格点.基矢为:
a a1 ( j k ) 2 a a2 ( k i ) 2 a a3 (i j ) 2
abc
900
5.四角系: a b c 900 (正方晶系) 6.六角晶系: 900 1200
abc
7.立方晶系: 900
abc
简立方(12),体心立方(13), 面心立方(14) 目录
晶体结构.01

1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的 排列具有长程周期性结构
非晶体:组成固体的粒子只有短程序(在近邻或 次近邻原子间的键合:如配位数、键长 和键角等具有一定的规律性),无长程 周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
第一章 晶体结构(crystal structure)
1-1 几种常见的晶体结构 1-2 晶格的周期性 1-3 晶向、晶面和它们的标志 1-4 对称性和Brawais点阵
1-5 倒点阵及其基本性质
1-6 晶体衍射物理基础
1
1-1几种常见的晶体结构
主要内容
1.1简立方晶格结构(cubic)
1) NaCl晶体的结构 氯化钠由Na+和Cl-结合而成 —— 一种典型的离子晶体 Na+构成面心立方格子;Cl-也构成面心立方格子
20
2) CsCl晶体的结构 CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对 角线位移1/2 的长度套构而成
21
CsCl晶体
22
3) ZnS晶体的结构 —— 闪锌矿结构 立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
六角密排晶格的原胞基矢选取 —— 一个原胞中包含A层 和B层原子各一个 —— 共两个原子 k
定义:
i
j
原胞基矢为:
a1 , a2 , a3
a1 a2 a3
(四)晶格周期性的描述 —— 布拉伐格子
Bravais lattices
由于组成晶体的组分和 组分的原子排列方式的 多样性,使得实际的晶 体结构非常复杂。
第一章晶体结构

第一章晶体结构1 布喇菲点阵和初基矢量晶体结构的特点在于原子排列的周期性质。
布喇菲点阵是平移操作112233R n a n a n a =++所联系的诸点的列阵。
布喇菲点阵是晶体结构周期性的数学抽象。
点阵矢量112233R n a n a n a =++,其中,1n ,2n 和3n 均为整数,1a ,2a 和3a 是不在同一平面内的三个矢量,叫做布喇菲点阵的初基矢量,简称基矢。
初基矢量所构成的平行六面体是布喇菲点阵的最小重复单元。
布喇菲点阵是一个无限的分立点的列阵,无论从这个列阵中的哪个点去观察,周围点的分布和排列方位都是完全相同的。
对一个给定的布喇菲点阵,初级矢量可以有多种取法。
2 初基晶胞(原胞)初基晶胞是布喇菲点阵的最小重复单元。
初基晶胞必定正好包含布喇菲点阵的一个阵点。
对于一个给定的布喇菲点阵,初基晶胞的选取方式可以不只一种,但不论初基晶胞的形状如何,初基晶胞的体积是唯一的,()123c V a a a =⋅⨯。
3 惯用晶胞(单饱)惯用晶胞是为了反映点阵的对称性而选用的晶胞。
惯用晶胞可以是初基的或非初基的。
惯用晶胞的体积是初基晶胞体积的整数倍,c V nV =。
其中,n 是惯用晶胞所包含的阵点数。
确定惯用晶胞几何尺寸的数字叫做点阵常数。
4 维格纳—赛兹晶胞(W-S 晶胞)维格纳—赛兹晶胞是另一种能够反映晶体宏观对称性的晶胞,它是某一阵点与相邻阵点连线的中垂面(或中垂线)所围成的最小体积。
维格纳—赛兹晶胞是初基晶胞。
5 晶体结构当我们强调一个实际的晶体与布喇菲点阵的抽象几何图案的区别时,我们用“晶体结构”这个名词[1]。
理想的晶体结构是由相同的物理单元放置在布喇菲点阵的阵点上构成的。
这些物理单元称为基元,它可以是原子、分子或分子团(有时也可以指一组抽象的几何点)。
将基元平移布喇菲点阵的所有点阵矢量,就得到晶体结构,或等价地表示为基元十点阵=晶体结构[2]当选用非初基的惯用晶胞时,一个布喇菲点阵可以用带有基元的点阵去描写。
第一章 晶体结构(Crystal Structure)

§1.3 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。 定义: 各晶体是由一些基元(或格点)按一定规则, 周期重 复排列而成。任一格点的位矢均可以写成形式 R n a n a n a n 1 n 2 n 3 、 、 a1 a2 。其中, 、 、 取整数, n 1 1 2 2 3 3 a Rn 为基矢, 为布拉菲格子的格矢,或称 正格矢。 3 能用上式表示的空间点阵称为布拉菲点阵,相应的 空间格子称为布拉菲格子.
§1.2 空间点阵
空间点阵定义: 晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地作周期性的无限分布,这 些点子的总体称为点阵。 X射线衍射技术从实验上证明。
1、格点与基元 如果晶体是由完全相同的一种原子所组成 的,则格点代表原子或原子周围相应点的位置, 如铜的晶体结构。 点阵(lattice) 在空间任何方向 上均为周期排列的无 限个全同点的集合。
基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
复式晶格:
如果晶体的基元中包含两种或两种以上的原 子。显然,每一种等价原子各构成与晶体基元代表 点的空间格子相同的网格 , 称为晶体的 子晶格 . 每 一种等价原子的子晶格具有相同的几何结构,整 个晶格可视为,子晶格相互位移套构而成。该晶 体晶格称为复式晶格. 例如:氯化钠晶体
第一章晶体结构

第一章晶体结构1-1. 试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
1-2. 晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=晶体结构1-3. 晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
心四方解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
(b)“边心”立方不是布喇菲格子。
从“边心”立方体竖直边心任一点来看,与它最邻近的点子有8个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有8个。
虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。
晶体结构

[011]
E
uur a3 uur
a2
A
uur a3 uur
a2
O
ur
a1 B
uuur uur uur
BE a2 a3
O
ur a1
另解:
C uuur ur
OB a1
D
uuur ur uur uur
OE a1 a2 a3
uuur uuur uuur uur uur BE OE OB a2 a3
晶体的物理性质在不同方向上存在差异.
例如:电导率、热学性质、折射率等 石墨沿不同晶向电导率不同 方解石沿不同晶向折射率不同
晶体的宏观特性是由晶体内部结构的周期性决 定的,即晶体的宏观特性是微观特性的反映。
1.2 密堆积
晶体中的原子(或离子)由于彼此之间的吸引力会 尽可能地靠近,以形成空间密堆积排列的稳定结构。
(5)CsCl结构(CsBr、CsI、TlCl等)
Cl
Cs
Cl-和Cs+分别组成简立方子晶格. 氯化钠结构由两个简立方子晶格沿体对角线位移1/2的 长度套构而成为复式格子。 一个晶胞包含一个Cl-和一个Cs+. 其原胞为简立方, ,包含一个Cl-和一个Cs+.
(6)金刚石结构(Si、Ge等)
(3)原胞(Primitive Cell)
这个体积最小的重复单元即为原胞,代表原胞三个边 的矢量称为原胞的基本平移矢量,简称基矢。
基矢通常用 a 1 , a 2 表, a示3
a3 a2
a1
(3)原胞(Primitive Cell)
原胞的体积:
Ω a1 a 2 a 3
a3
a2
原胞的特点:
原胞和晶胞是一致的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章晶体的结构
测试题
1.以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数目之比.
2.解理面是面指数低的晶面还是面指数高的晶面?为什么?
3.与晶列垂直的倒格面的面指数是什么?
4.高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面族衍射光弱?为什么?
5.以刚性原子球堆积模型,计算以下各结构的致密度分别为:
(1)简立方,π /6 ;(2)体心立方,;
(3)面心立方,;(4)六角密积,;
(5)金刚石结构,。
6.试证面心立方晶格子是体心立方;体心立方的倒格子是面心立方.
7.六角晶胞的基矢. 求其倒格基矢。
8.求晶格长数为a的面心立方和体心立方晶体晶面族的面间距.
第一章晶体的结构
习题解答
1.以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数目之
比.
[解答]
设原子的半径为R,体心立方晶胞的空间对角线为4R,胞的边长为,晶胞的体积为,一个晶胞包含两个原子,一个原子占的体积为,单位体
积晶体中的原子数为;面心立方晶胞的边长为 ,晶胞的体积为
,一个晶胞包含四个原子,一个原子占的体积为,单位体积晶体中的原子数为 . 因此,同体积的体心和面心立方体晶体中原子数之比为:=0.909。
2.解理面是面指数低的晶面还是面指数高的晶面?为什么?
[解答]
晶体容易沿解理面劈裂,说名平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大。
因为面间距大的晶体晶面族的指数低,所以解理面是面指数低的晶面。
3.与晶列垂直的倒格面的面指数是什么?
[解答]
正格子与倒格子互为倒格子。
正格子晶面与倒格式
垂直,则倒格晶面与正格
矢
正交。
即晶列与倒格面垂直。
4.高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面族衍射光弱?为什么?
[解答]
对于同级衍射,高指数的晶面族衍射光弱,低指数的晶面族衍射光强。
低指数的晶面族间距大,晶面上的原子密度大,这样的晶面对射线的反射(衍射)作用强。
相反,高指数的晶面族面间距小,晶面上的原子密度小。
另外,由布拉格反射公式
2dh k l s inθ=nλ
可知,面间距d h k l大的晶面,对应一个小的光的掠射角θ面间距d h k l小的晶面,对应一个大的光的掠射角θ。
θ越大,光的透射能力就越强,反射能力就越弱。
5.以刚性原子球堆积模型,计算以下各结构的致密度分别为:
(1)简立方,π /6 ;(2)体心立方,;
(3)面心立方,;(4)六角密积,;
(5)金刚石结构,。
[解答]
设想晶体是由刚性原子球堆积而成。
一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度。
设n为一个晶胞中刚性原子球数,r表示刚性原子球半径,表示晶胞体积,则致密度
(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚球堆积,如图1·2所示,中心在1,2,3,4处的原子球将依次相切。
因为a=2r,V=a3,晶胞内包含1个原子,所以
(2)对体心立方晶体,任一个原子有8个最近邻,若原子以刚性球堆积,如图1·2所示,体心位置O的原子与处在8个角顶位置的原子球相切。
因为晶胞空间对角线的长
为,晶胞内包含2个原子,所以
(3)对面立方晶体,任一个原子有12个最近邻,若以刚性球堆积,如图1.4所示,中心
位于角顶的原子与相邻的3个面心原子球相切。
因为1个晶胞内包含4个原子,所以
(4)对六角密积结构,任一个原子有12个最近邻,若以刚性球堆积,如图1.5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,晶胞内的原子O与中心在1, 3,4,5,7,8处的原子相切,即O点与中心在5,7,8处的原子分布在正四面体的顶上。
因为四面体的高:
晶胞体积:
一个晶胞内包含两个原子,所以:
(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O原子与中心在1,2,3,4处的面心原子相切。
因为
晶胞体积
一个晶胞内包含8个原子,所以
6.试证面心立方晶格子是体心立方;体心立方的倒格子是面心立方.
[解答]
设与晶轴平行的单位矢量分别为面心立方正格子的原胞基矢可取为
由倒格矢公式
可得其倒格矢为
设与晶轴平行的单位矢量分别为,体心立方正格子的原胞基矢可取为
以上三式与面心立方的倒格基矢相比较,两者只相差一常数公因子,这说明面心立方的倒格子是体心立方。
将体心立方正格子原胞基矢代入倒格矢公式
则得其倒格子基矢为
可见体心立方的倒格子是面心立方。
7.六角晶胞的基矢. 求其倒格基矢。
[解答]
晶胞体积为
其倒格矢为
8.求晶格长数为a的面心立方和体心立方晶体晶面族的面间距.
[解答]
面心立方正格子的原胞基矢为
由
可得其倒格基矢为
倒格矢
根据《固体物理教程》(1.16)式
得面心立方晶体晶面族的面间距
体心立方正格子原胞基矢可取为
其倒格子基矢为:
则晶面族的面间距为。